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Introduction

Concepts are the glue that holds our mental world together. When we walk into a
room, try a new restaurant, go to the supermarket to buy groceries, meet a doctor,
or read a story, we must rely on our concepts of the world to help us understand
what is happening. We seldom eat the same tomato twice, and we often encounter
novel objects, people, and situations. Fortunately, even novel things are usually
similar to things we already know, often exemplifying a category that we are familiar
with. Although I’ve never seen this particular tomato before, it is probably like other
tomatoes I have eaten and so is edible. If we have formed a concept (a mental rep-
resentation) corresponding to that category (the class of objects in the world), then
the concept will help us understand and respond appropriately to a new entity in
that category. Concepts are a kind of mental glue, then, in that they tie our past
experiences to our present interactions with the world, and because the concepts
themselves are connected to our larger knowledge structures.

Our concepts embody much of our knowledge of the world, telling us what things
there are and what properties they have. It may not seem to be a great intellectual
achievement to identify a bulldog or to know what to do with a tomato, but imagine
what our lives would be like without such a conceptual ability (Smith and Medin
1981, p. 1). We might know the things we had experienced in the past—a particular
chair, our bed, the breakfast we had today, our science teacher, etc.—but when we
encountered new exemplars of these categories, we would be at a loss. When going
into a new room and seeing a new chair, we would have to study it from scratch,
attempt to determine whether it is alive or dead, what its function is, whether it will
hurt us, or how it might help us. Instead, of course, we may not even consciously
think “chair,” but simply identify the object’s category and plop down into it. By
using our concept of chairs, we immediately draw the inference that it is appropriate
to sit on this object, even if we have never seen anyone sit on it before. At a new
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restaurant, we read names of dishes such “gnocchi,” “jerk chicken,” and “pad thai”
and feel we can decide which one we would prefer to eat, even though we have
never had that exact meal, or even an example of that kind of meal at this restau-
rant. The speed and ease with which we identify objects as chairs or draw inferences
about jerk chicken (too hot to have for lunch) can mislead us about how complex
this process is and how much information we may have stored about everyday cate-
gories. The psychology of concepts is like other areas of psychology, in which a
phenomenologically simple cognitive process, like understanding speech or walking,
turns out to be maddeningly complex. Much of the excitement in the field arises
from this complexity, as a topic that seemed to be fairly straightforward in 1960 has
turned out to be a much deeper and richer scientific problem than researchers had
expected.

The mental glue provided by concepts applies not only to the familiar categories
of objects, like chairs and tomatoes, but also to a number of other domains that are
of interest to psychologists, such as social and person categories, emotions, linguistic
entities, events and actions, and artistic styles. For example, if we meet a new, highly
talkative person and begin to suspect that he or she is a bore or instead a sociopath,
our behaviors toward the person will differ accordingly. If told by someone else that
the person is a lawyer or instead a priest, our behaviors will again differ. We rely on
such categories to direct our behavior, sometimes despite more reliable information
directly observed about the person.

The psychology of concepts cannot by itself provide a full explanation of the
concepts of all the different domains that psychologists are interested in. This book
will not explore the psychology of concepts of persons, musical forms, numbers,
physical motions, and political systems. The details of each of these must be dis-
covered by the specific disciplines that study them; to fully understand people’s mu-
sical concepts will require much research into the psychology of music, rather than
being predictable solely from what we know of concepts per se. Nonetheless, the
general processes of concept learning and representation may well be found in each
of these domains. For example, I would be quite surprised if concepts of musical
forms did not follow a prototype structure (chapter 2), did not have a preferred level
of categorization (chapter 7), and did not show differences depending on expertise
or knowledge (chapter 6). Spelling out what categories people have of musical
forms, what levels of abstraction there are, and what knowledge influences the con-
cepts is primarily part of the psychology of music rather than the psychology of
concepts. But once the basic elements of musical concepts are identified, the con-
cepts will likely be found to follow the principles identified in other domains. In
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short, the psychology of concepts has much to offer other fields of psychology and
cognitive science more generally.

Similarly, concepts are ubiquitous across different populations and ages—it is
hard to see how any intelligent creature could do without them. It used to be thought
that infants and young children were lacking in true conceptual abilities, which had
to be onerously acquired over the preschool years. However, more recent research
has found basic conceptual abilities in infants only a few months old (chapter 9),
and preschool children now appear to have sophisticated conceptual abilities, even
if they are lacking much of the conceptual content that adults have (chapter 10).

Another way that concepts infiltrate our everyday life and thoughts is through
communication. When we talk, we are attempting to communicate ideas about the
objects, people, and events that take place around us. Since we understand those
objects, people, and events through concepts, our word and sentence meanings must
make contact with conceptual representations. Not surprisingly, it turns out that
many properties of concepts are found in word meaning and use, suggesting that
meanings are psychologically represented through the conceptual system (chapters
11 and 12).

There is a real temptation for researchers in the field of concepts to get carried
away on the “everything is concepts” bandwagon that I have started rolling here. (If
I were more melodramatic, I could spin a fairy tale in which a person who has no
concepts starves while surrounded by tomatoes, because he or she had never seen
those particular tomatoes before and so doesn’t know what to do with them.) Al-
though in unguarded moments I do think that everything is concepts, that is not as
restrictive a belief as you might think. Concepts may have a great variety of forms
and contents, and this is part of what has made the field so complex. Across differ-
ent people, levels of experience with the category, tasks, and domains, concepts may
vary in a large number of ways. Although this is not itself a principle of the psy-
chology of concepts, many examples of this variation will be seen throughout the
book. Reconciling those differences, or at least understanding how different kinds of
concepts are coordinated, is an important goal of this field, one that has not been
fully accomplished yet.

The psychology of concepts, then, has the goal of understanding the representa-
tions that allow us to do all these things, most importantly, identifying objects and
events as being in a certain category, drawing inferences about novel entities, and
communicating about them. Although the field (and hence this book) concentrates
on common object concepts, the principles involving concept formation and use are
thought to be to some degree generalizable across different domains and settings.
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How This Book Differs from the Book You Expected to Read

Most books and review articles that I know of on concepts have used an organiza-
tion based on theories. The best example is the classic text by Smith and Medin
(1981). After some preliminaries, it had chapters on the classical view of concepts,
each of three probabilistic views, and then the exemplar view. Each chapter described
the theory, presented evidence relevant to it, and then evaluated it. In 1981, this
was an excellent organization. In 2001, however, this organization would have a
number of problems. The first is that the field shows very little agreement on which
theory of concepts is correct. One might have hoped that twenty years after Smith
and Medin’s review, the field would have sorted out many of the issues their book
raised. However, there is as much, and perhaps more, dissension now as there was
then. Focusing on theories, therefore, is not the best way to document the important
progress that has been made in the psychology of concepts. Many interesting prin-
ciples and generalizations have been discovered about concepts, and even if the field
does not agree on the overarching theory that encompasses all of them, that does
not deny that those discoveries have been a real advance.

The second reason not to organize this book around theories is that too many
interesting questions do not fall easily into theoretical pigeonholes. Issues such as
infant concept learning or conceptual combination are cohesive topics in their own
rights, but they are difficult to parcel out to chapters on the classical theory or ex-
emplar theory. If one were to divide up the parts of each topic that are most relevant
to a given theory, one would have balkanized a previously coherent topic.

The third reason I have not followed the theoretical organization is that I am
becoming increasingly uneasy about the particular theoretical disputes that have
characterized the field. Much of the literature has compared exemplar and proto-
type theory (see chapter 3), but it seems fairly clear that both theories are wrong to a
greater or lesser degree, and so focusing on them serves to reinforce this way of
dividing up the field, when new ways of thinking may be required. In particular, I
will suggest at the end of the book that a more inclusive approach may be needed,
an approach that would be ill-served by organizing the book around distinguishing
the different theories.

As a result, I have organized most of the book around phenomena or issues rather
than theories. The book does begin theoretically, starting with the so-called classical
theory of concepts and its downfall. The three main approaches to concepts are
described in the next chapter, as a preparation for the discussions in individual
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chapters. As a result, chapters 2 and 3 should be read first (except perhaps by those
already familiar with the field), and after that, readers may graze on the subsequent
chapters in any order. Each chapter describes a particular topic or set of related
phenomena and evaluates the explanations of those phenomena. At the end of each
chapter, I discuss the implications of those phenomena and their explanations for
the three main theoretical approaches discussed in chapter 3. The final chapter
revisits the main theories and makes proposals for future directions. Thus, theoreti-
cal issues are by no means ignored in the book. However, one discovery I have
made in organizing the book this way is that no theory has a ready explanation for
all of the findings even within each specific topic. This helps to point out goals for
researchers who take a given theoretical approach, but it also serves to point out the
limitation of organizing the field primarily by the theories.

This book is not a complete reference work of our knowledge of concepts. It is a
selective review, and I sometimes do deviate from the majority of the field in my
choices of what I think is most significant or interesting. My goal here has not been
to evaluate everything that has been done but instead to explain the most basic and
exciting findings in the field and to try to draw some conclusions about how to ex-
plain them. I have attempted to take the “long view” and not to necessarily include
the hot topics of this moment, much less the abandoned hot topics of yesteryear. For
the most part, then, I have focused on the topics about which enough work has been
done to draw a conclusion, rather than on topics that are still unsettled and perhaps
of unclear future interest.

Terminology and Typography

In general, I try to use the word concepis to talk about mental representations of
classes of things, and categories to talk about the classes themselves. However, in
both everyday speech and the literature in this field, it is often hard to keep track of
which of these one is talking about, because the two go together. That is, whatever
my concept is, there is a category of things that would be described by it. Thus,
when talking about one, I am usually implying a corresponding statement about the
other. Writers in this field often say things like “four-year-olds have a category of
animals,” meaning “four-year-olds have formed a concept that picks out the cate-
gory of animals.” However, being too fussy about saying concept and category
leads to long-winded or repetitious prose (like my example) with little advantage
in clarity. When it is important to distinguish the mental representation from the
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category itself, I will be careful. In other situations, I will leave it to the reader to
make the appropriate translation (e.g., from “having a category” to “having a con-
cept that corresponds to a particular category”).

Many writers also use typographic conventions to distinguish concepts (or cate-
gories) from the actual things. Obviously, a concept of a dog is not the same as a
dog, and some authors indicate this by printing concept names in italics or small
capitals. I have gone this route in the past, but I decided not to do so here. This issue
is related to an underlying assumption about the relation of concepts and categories,
so I will briefly explain why I have come to this decision.

In many cases, it is simply obvious whether one is talking about the concept or
the object, and so the typographical convention is not necessary. In other cases,
though, the ambiguity between the concept and the thing is intentional. Indeed, I am
not always sure that authors get it right when they decide to capitalize the word.
For example, suppose you learn that dogs bark. Have you learned that dogs bark or
that poG (the concept) has the property “barks”? From one perspective, you have
learned about a property in the world, and so you have learned something about
actual, lower-case dogs. From another perspective, you have changed your concept,
and so you have modified your mental representation, that is, DOG. In fact, you have
probably learned both. But when one follows such a distinction, choosing one ty-
pography implies that the other one is not intended. That is, if I were to say some-
thing about dogs, I would not intend you to understand this to be true of the
concept of dogs, because I didn’t write DOG. But often I, in fact, would intend to be
making the statement about both: The parallelism between concepts and categories
means that when you learn something about dogs, your concept of dogs has also
changed, and so constantly making this distinction leads to false implications. So, I
do not use a separate typography for concepts and real things, but instead simply
say “the concept of dog” or the like when I want specifically to discuss concepts.

I follow standard practice in linguistics by italicizing cited words, as in “the word
dog has one syllable.” Things that people say are quoted.

A Note to Students

I have attempted to write this book at a level that an advanced undergraduate or
beginning graduate student could understand. Although I assume general knowl-
edge about experimental psychology and some familiarity with cognitive psychol-
ogy, I have tried to start from scratch when it comes to concepts, so that little or no



Introduction 7

knowledge is assumed other than what has already been covered in the book. In
fact, I have erred on the side of redundancy, so that chapters would be more self-
contained. If you are not very familiar with the “traditional” literature of concepts
(i.e., from the 1970s), then the first few chapters will be necessary reading. Even
seasoned concepts researchers may be surprised to find themselves interested in these
chapters, as it is often the most basic phenomena that are the most difficult to
explain.

A student picking up this book might wonder whether there are still interesting
questions to be asked in the psychology of concepts. Have the basic questions been
answered, and are we only spelling out the details now? The book’s conclusion is
one answer to this question. Before getting there, however, I think I can safely say
that the answer is “no.” There are still important and surprising discoveries being
made in the field. Many of these are coming through attempts to look at real-world
concepts in greater detail, in which the findings are sometimes quite different from
what would be expected from studies with artificial categories. Related to this is the
benefit that concept research is receiving from connections to other areas of cogni-
tive science such as psycholinguistics, reasoning, anthropology, neuropsychology,
and problem-solving. Working out how concepts are influenced by and in turn
influence processes in these other domains has been a fruitful and in some cases
surprising enterprise. However, before a new researcher can engage in such cross-
discipline interactions, he or she must understand the basic issues and findings in the
field, and this is what the next few chapters discuss.

Some students may have more basic questions of the sort that one is reluctant
to ask one’s teacher or adviser. I find these illustrated in a letter written by an ama-
teur student of astronomy to observers at the Mount Wilson Laboratory in 1933
(Simons 1993, p. 113):

Just a few lines to let you know that I am Interested in Astronomy. I have did quite a lot of
reading on it and I am really interested in it. [ have quite a bit of confidence in Materialism; I
believe myself the whole Universe is substance. But what I would really like to know is will
Astronomy get a person anywhere—is there any use in a person studying it. Will it put you in
an unmentally condition?!

These are questions I have asked myself about the psychology of concepts as well.
As to whether studying concepts will “get a person anywhere,” it of course depends
on where you want to get. I don’t think it will get you a high-paying job in the new
economy, but I think it may help you to understand a basic function of the mind. If
you want to understand social thinking or perception or cognitive development,
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then learning about concepts will be a necessary part of your study. Another reason
studying concepts may get you where you want to go is the incredible variety of
research on concepts. It ranges from the mathematical models tested in artificial
category-learning experiments to anthropological studies in rain forests to linguistic
analyses of word and phrase meaning. It is possible to find your own niche within
the study of concepts almost regardless of what your interests are. If you find one
part of it (and of this book) too boring or too touchy-feely or too technical, you
can wait a chapter or two and discover a topic and approach that are completely
opposite.

The question of whether getting involved in this topic will put you in “an un-
mentally condition,” is a trickier one. Studying almost any question in psychology is
bound to have its moments of mental unbalance, as past beliefs are called into
question, and issues that were thought to be settled twenty years ago come back
with renewed force. Overall, I believe that the risk is no greater here than in most
areas of psychology. However, the risk of becoming unbalanced is clearly greatest in
the prototype-exemplar theory debate, which shows little signs of abating after
many years of controversy, so those who feel mentally vulnerable may wish to focus
on other topics.

The writer of that letter concluded by saying:

But I know that the more you read up on it the more you get Interested. ... Would you please
give me some kind of basis to the Knowledge of astronomy?

My expectation is that the more you read up on concepts the more you will get
interested in them as well, and the goal of this book is not so much to tell you all
about concepts as to provide some kind of basis to your continuing acquisition of
knowledge. That is, if you understand the sections on typicality and concept learn-
ing, for example, you should be able to pick up a contemporary paper on these
topics and understand it. In serving that function, I hope that this book will have a
shelf life that is longer than its function of describing recent discoveries, just as the
Smith and Medin (1981) book could be used as background reading in the area for
many years after its publication. The field has greatly expanded since 1981, covering
many topics that did not really exist then; and much more has been learned about
the topics that their book did cover. Therefore, this book is correspondingly bigger
and more detailed than Smith and Medin’s. My guess is that in twenty more years, it
will be impossible to write a single-authored book that covers the same ground, be-
cause there will be more research than any one author and volume can handle. That
is exactly why I have written this book now.
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Typicality and the Classical View of Categories

The Classical View

When you were in junior high school or even earlier, you probably had a teacher
who tried to get you to define words. Given a word like wildebeest, you might say
“It’s a kind of animal.” Your teacher would not be satisfied with this definition,
though. “A frog is also a kind of animal,” she might point out, “Is it the same as a
frog?” “No,” you would reply sheepishly, “it has four legs and is about the size of a
cow and has horns and lives in Africa.” Well, now you’re getting somewhere. My
teacher used to tell us that a definition should include everything that is described by
a word and nothing that isn’t. So, if your description of a wildebeest picks out all
wildebeest and nothing else, you have given a successful definition. (In fact, most
definitions in dictionaries do not meet this criterion, but that is not our problem.)
Definitions have many advantages from a logical standpoint. For example, the
truth or falsity of “Rachel is a wildebeest” is something that can be determined
by referring to the definition: Does Rachel have all the properties listed in the
definition—four legs, horns, and so on? By saying “Rachel is not a wildebeest,” we
are saying that Rachel lacks one or more of the definitional properties of wildebeest.
And we could potentially verify statements like “Wildebeest can be found in Sudan”
by looking for things in Sudan that meet the definition. Philosophers have long
assumed that definitions are the appropriate way to characterize word meaning and
category membership. Indeed, the view can be traced back as far as Aristotle (see
Apostle 1980, pp. 6, 19-20). In trying to specify the nature of abstract concepts like
fairness or truth, or even more mundane matters such as causality and biological
kinds, philosophers have attempted to construct definitions of these terms. Once we
have a definition that will tell us what exactly is and is not a cause, we will have
come a long way toward understanding causality. And much philosophical argu-
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Figure 2.1

Two concepts from Hull’s (1920) study. Subjects learned 12 concepts like this at a time, with
different characters intermixed. Subjects were to respond to each stimulus with the name at
left (0o and yer in this case). Note that each example of a concept has the defining feature, the
radical listed in the “concept” column.

mentation involves testing past definitions against new examples, to see if they
work. If you can find something that seems to be a cause but doesn’t fit the pro-
posed definition, then that definition of cause can be rejected.

It is not surprising, then, that the early psychological approaches to concepts took
a definitional approach. I am not going to provide an extensive review, but a read-
ing of the most cited work on concepts written prior to 1970 reveals its assumption
of definitions. I should emphasize that these writers did not always explicitly say,
“I have a definitional theory of concepts.” Rather, they took such an approach for
granted and then went about making proposals for how people learned concepts
(i.e., learned these definitions) from experience.

For example, Clark Hull’s (1920) Ph.D. thesis was a study of human concept
learning—perhaps surprisingly, given his enormous later influence as a researcher of
simple learning, usually in rats. Hull used adapted Chinese characters as stimuli.
Subjects viewed a character and then had to respond with one of twelve supposedly
Chinese names (e.g., oo and yer). Each sign associated with a given name contained
a radical or component that was identical in the different signs. As figure 2.1 shows,
the oo characters all had the same radical: a kind of large check mark with two
smaller marks inside it. Clearly, then, Hull assumed that every example of a concept
had some element that was critical to it.

There are two aspects to a definition that these items illustrate. The first we can
call necessity. The parts of the definition must be in the entity, or else it is not a
member of the category. So, if a character did not have the check-mark radical, it
would not be an oo. Similarly, if something doesn’t have a distinctive attribute of
chairs, it is not a chair. The second aspect we can call sufficiency. If something has
all the parts mentioned in the definition, then it must be a member of the category.
So, anything having that radical in Hull’s experiment would be an oo, regardless of
what other properties it had. Note that it is not enough to have one or two of the
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parts mentioned in the definition—the item must have all of them: The parts of the
definition are “jointly sufficient” to guarantee category membership. So, it wouldn’t
be enough for something to be as big as a cow and be from Africa to be a wilde-
beest; the item must also be an animal, with four legs and horns, if those things are
included in our definition.

Hull (1920) explicitly adopted these aspects of a definition (without calling them
by these names) in one of the principles he followed in creating his experiment
(p. 13): “All of the individual experiences which require a given reaction, must
contain certain characteristics which are at the same time common to all members of
the group requiring this reaction [i.e., necessary] and which are NOT found in any
members of the groups requiring different reactions [i.e., sufficient].” (Note that
Hull adopted the behaviorist notion that it is the common response or “reaction”
that makes things be in the same category. In contrast, I will be talking about the
mental representations of categories.) Hull believed that this aspect of the experi-
ment was matched by real-world categories. He describes a child who hears the
word dog used in a number of different situations. “At length the time arrives when
the child has a ‘meaning’ for the word dog. Upon examination this meaning is found
to be actually a characteristic more or less common to all dogs and not common to
cats, dolls and ‘teddy-bears.” But to the child, the process of arriving at this meaning
or concept has been largely unconscious. He has never said to himself ‘Lo! T shall
proceed to discover the characteristics common to all dogs but not enjoyed by cats
and “teddy-bears
this meaning is ...,” he does not describe any examination that has shown this,

9359

(p. 6). Note that although Hull says that “Upon examination

nor does he say what characteristics are common to all dogs. These omissions are
significant—perhaps even ominous—as we shall soon see.

In the next major study of concept learning, Smoke (1932—the field moved some-
what more slowly in those days) criticized the definitional aspect of Hull’s concepts.
He says quite strongly that ““if any concepts have ever been formed in such a fashion,
they are very few in number. We confess our inability to think of a single one” (p. 3).
He also quotes the passage given above about how children learn the concept of
dog, and asks (pp. 3—4): “What, we should like to ask, is this ‘characteristic more or
that is
the ‘“meaning” for the word dog’ ... What is the ‘common element’ in ‘dog’? Is it
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less common to all dogs and not common to cats, dolls, and “teddy-bears

something within the visual stimulus pattern? If exact drawings were made of all the
dogs now living, or even of those with which any given child is familiar, would they
‘contain certain strokes in common’ [like Hull’s characters] which could be ‘easily
observed imbedded in each’?”
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One might think from this rather sarcastic attack on Hull’s position that Smoke is
going to take a very different position about what makes up a concept, one that is at
odds with the definitional approach described. That, however, is not the case.
Smoke’s objection is to the notion that there is a single, simple element that is com-
mon to all category members. (Although Hull’s stimuli do have such a simple ele-
ment in common, it is not so clear that he intended to say that all categories were
like this.) Smoke says “As one learns more and more about dogs, [one’s] concept of
‘dog’ becomes increasingly rich, not a closer approximation to some bare ‘element’”
(p. 5). What Smoke feels is missing from Hull’s view is that the essential compo-
nents of a concept are a complex of features that are connected by a specified rela-
tionship, rather than being a single common element. Smoke gives this example of a
concept called “zum,” which he feels is more realistic: “Three straight red lines, two
of which intersect the third, thereby trisecting it (p. 9). You may judge for yourself
whether this is more realistic than Hull’s Chinese characters. In teaching such con-
cepts, Smoke made up counterexamples that had some of the components of the
concept but not all of them. Thus, for a nonzum, he might make up something with
only two lines or something with three lines but that did not intersect one another in
the required way. Thus, he created a situation that precisely follows the definitional
view: Zums had all the required properties, and for the items that did not, subjects
had to learn not to call them zums. Thus, the properties of zums were necessary and
sufficient.

In short, although Smoke seems to be rejecting the idea of concepts as being
formed by definitions, he in fact accepts this view. The main difference between his
view and Hull’s is that he viewed the definitions as being more complex than (he
thought) Hull did. I have gone through these examples in part to show that one can
tell whether experimenters had the definitional view by looking at their stimuli. In
many older (pre-1970) studies of concepts, all the members have elements in com-
mon, which are not found in the nonmembers. Thus, even if such studies did not
explicitly articulate this definitional view, they presupposed it.

The work of Hull and Smoke set the stage for research within American experi-
mental psychology’s study of concepts. In addition to their view of concepts, the
techniques they developed for concept learning studies are still in use today. Another
influence that promoted the use of definitions in the study of concepts was the work
of Piaget in cognitive development. Piaget viewed thought as the acquisition of
logical abilities, and therefore he viewed concepts as being logical entities that could
be clearly defined. Again, Piaget did not so much argue for this view of concepts as
simply assume it. For example, Inhelder and Piaget’s (1964, p. 7) theory relied on
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constructs such as: “the ‘intension’ of a class is the set of properties common to the
members of that class, together with the set of differences, which distinguish them
from another class”—that is, a definition. Following this, they provide a list of logical
properties of categories which they argued that people must master in order to have
proper concepts. (Perhaps not surprisingly, they felt that children did not have true
concepts until well into school age—see chapter 10.) Piaget’s work was not directly
influential on most experimental researchers of adult concepts, but it helped to bolster
the definitional view by its extraordinary influence in developmental psychology.

Main Claims of the Classical View

The pervasiveness of the idea of definitions was so great that Smith and Medin
(1981) dubbed it the classical view of concepts. Here, then are the main claims of
the classical view. First, concepts are mentally represented as definitions. A defini-
tion provides characteristics that are a) necessary and b) jointly sufficient for mem-
bership in the category. Second, the classical view argues that every object is either
in or not in the category, with no in-between cases. This aspect of definition was an
important part of the philosophical background of the classical view. According to
the law of the excluded middle, a rule of logic, every statement is either true or false,
so long as it is not ambiguous. Thus, “Rachel is a wildebeest” is either true or false.
Of course, we may not know what the truth is (perhaps we don’t know Rachel), but
that is not the point. The point is that in reality Rachel either is or isn’t a wildebeest,
with no in-between, even if we don’t know which possibility is correct. Third, the
classical view does not make any distinction between category members. Anything
that meets the definition is just as good a category member as anything else. (Aris-
totle emphasized this aspect of categories in particular.) An animal that has the fea-
ture common to all dogs is thereby a dog, just the same as any other thing that has
that feature. In a real sense, the definition is the concept according to the classical
view. So all things that meet the definition are perfectly good members of the con-
cept, and all things that do not fit the definition are equally “bad” members (i.e.,
nonmembers) of the concept, because there is nothing besides the definition that
could distinguish these things. As readers are no doubt thinking, this all sounds too
good to be true.

Before confirming this suspicion, it is worthwhile to consider what kind of re-
search should be done if the classical view is true. What is left to understand about
the psychology of concepts? The basic assumption was that concepts were acquired
by learning which characteristics were defining. However, unlike Hull’s assumption
(and more like Smoke’s), it became apparent that any real-world concepts would
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involve multiple features that were related in a complex way. For example, dogs
have four legs, bark, have fur, eat meat, sleep, and so on. Some subset of these fea-
tures might be part of the definition, rather than only one characteristic. Further-
more, for some concepts, the features could be related by rules, as in the following
(incomplete) definition of a strike in baseball: “the ball must be swung at and missed
OR it must pass above the knees and below the armpits and over home plate with-
out being hit OR the ball must be hit foul (IF there are not two strikes).” The use of
logical connectives like AND, OR, and IF allows very complex concepts to be
defined, and concepts using such connectives were the ones usually studied in psy-
chology experiments. (There are not that many experiments to be done on how
people learn concepts that are defined by a single feature.) Often these definitions
were described as rules to tell what is in a category.

Bruner, Goodnow, and Austin (1956) began the study of this sort of logically
specified concept, and a cottage industry sprang up to see how people learned them.
In such experiments, subjects would go through many cards, each of which had a
picture or description on it. They would have to guess whether that item was in the
category or not, usually receiving feedback on their answer. For difficult concepts,
subjects might have to go through the cards a dozen times or more before reaching
perfect accuracy on categorizing items; for easy concepts, it might only take four or
five run-throughs (blocks). Research topics included how learning depended on the
number of attributes in the rule, the relations used in the rule (e.g., AND vs. OR),
the way that category examples were presented (e.g., were they shown to the subject
in a set order, or could the subject select the ones he or she wished?), the complexity
of the stimuli, and so on. But whether this research is of interest to us depends on
whether we accept the classical view. If we do not, then these experiments, although
valid as examples of learning certain abstract rules, do not tell us about how people
learn normal concepts. With that foreshadowing, let us turn to the problems raised
for the classical view.

Problems for the Classical View

The groundbreaking work of Eleanor Rosch in the 1970s essentially killed the clas-
sical view, so that it is not now the theory of any actual researcher in this area
(though we will see that a few theorists cling to it still). That is a pretty far fall for a
theory that had been the dominant one since Aristotle. How did it happen? In part it
happened by virtue of theoretical arguments and in part by the discovery of data
that could not be easily explained by the classical view. Let us start with the argu-
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ments. Because this downfall of the classical view has been very ably described by
Smith and Medin (1981) and others (e.g., Mervis and Rosch 1981; Rosch 1978), 1
will spend somewhat less time on this issue than could easily be spent on it. Inter-
ested readers should consult those reviews or the original articles cited below for
more detailed discussion.

In-Principle Arguments

The philosopher Wittgenstein (1953) questioned the assumption that important
concepts could be defined. He used the concept of a game as his example. It is
maddeningly difficult to come up with a definition of games that includes them
but does not include nongame sports (like hunting) or activities like kicking a ball
against a wall. Wittgenstein urged his readers not to simply say “There must be
something in common,” but to try to specify the things in common. Indeed, it turns
out to be very difficult to specify the necessary and sufficient features of most real-
world categories. So, the definition we gave earlier of dogs, namely, things that have
four legs, bark, have fur, eat meat, and sleep, is obviously not true. Does something
have to have four legs to be a dog? Indeed, there are unfortunate dogs who have lost
a leg or two. How about having fur? Although most dogs do have fur, there are
hairless varieties like chihuahuas that don’t. What about barking? Almost all dogs
bark, but I have in fact known a dog that “lost” its bark as it got older. This kind of
argument can go on for some time when trying to arrive at necessary features. One
can find some features that seem a bit “more necessary” than these—abstract prop-
erties such as being animate and breathing appear to be true of all dogs (we are
talking about real dogs here, and not toy dogs and the like). However, although
these features may be necessary, they are not nearly sufficient. In fact, all animals are
animate and breathe, not just dogs. So, features like these will not form adequate
definitions for dogs—they won’t separate dogs from other similar animals. Also,
sometimes people will propose features such as “canine” as being definitional of
dogs. However, this is just cheating. “Canine” is simply a synonym for the dog
concept itself, and saying that this is part of the definition of dog is not very different
from saying that the dogs all have the property of “dogginess.” Clearly, such circu-
lar definitions explain nothing.

Wittgenstein’s argument, which is now widely accepted in the field, does have a
problem, however (Smith and Medin 1981): It is primarily negative. It says some-
thing like “I can’t think of any defining features for games or dogs,” but this does
not prove that there aren’t any. Perhaps it’s just that we are not clever enough
to think of the defining features. Perhaps there are defining features that will be
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realized or discovered in 100 years. This may be true, but it is incumbent on some-
one who believes the classical view to explain what the defining features are, and
why we can’t easily think of them. If our concept of dogs is a definition, why are we
so bad at saying what it is even when we know the concept? Why is it that we can
use this definition for identifying dogs and for thinking about them, but the proper-
ties we give for dogs are not definitional? The classical view has considerable trouble
explaining this.

I used to think that the arguments against the classical view might be somewhat
limited. In particular, it seemed likely to me that in certain technical domains, con-
cepts might be well defined. For example, the rules of baseball are written down in
black and white, and they look very much like the rules of old category-learning
experiments (think of the disjunctive rule for a strike). Perhaps in the physical
sciences, one will find classical concepts, as the scientists will have figured out
the exact rules by which to decide something is a metal or a member of a biological
genus. However, my own experience has always been that whenever one explores
these domains in greater depth, one finds more and more fuzziness, rather than per-
fectly clear rules.

For example, consider the following portion of a lecture on metals by a distin-
guished metallurgist (Pond 1987). He begins by attempting, unsuccessfully, to get
audience members to define what a metal is.

Well, I'll tell you something. You really don’t know what a metal is. And there’s a big group
of people that don’t know what a metal is. Do you know what we call them? Metal-
lurgists! ... Here’s why metallurgists don’t know what metal is. We know that a metal is an
element that has metallic properties. So we start to enumerate all these properties: electrical
conductivity, thermal conductivity, ductility, malleability, strength, high density. Then you
say, how many of these properties does an element have to have to classify as a metal? And
do you know what? We can’t get the metallurgists to agree. Some say three properties; some
say five properties, six properties. We really don’t know. So we just proceed along presuming
that we are all talking about the same thing. (pp. 62-63)

And in biology, biologists are constantly fighting about whether things are two dif-
ferent species or not, and what species belong in the same genus, and so on. There is
no defining feature that identifies biological kinds (Mayr 1982). In 2000, there was
a dispute over whether Pluto is really a planet (apparently, it isn’t, though it is too
late to do anything about it now). Students in the town of Pluto’s discoverer put up
a web site demanding Pluto’s retention as a full-fledged planet. Among their points
was that the astronomers critical of Pluto’s planethood “don’t even have a definition
of what a planet really is!” (Unfortunately, they did not provide their own defini-
tion.) The very fact that astronomers can argue about such cases is evidence that
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the notion of planet is not well defined. The idea that all science consists of hard-
and-fast logical categories, in contrast to those of everyday life, may be a romantic
illusion.

One might well hope that legal concepts have a classical nature, so that definitions
can be evenly applied across the board. One does not want judges and juries having
to make decisions in fuzzy cases where there is no clear boundary between the legal
and illegal. However, legal practice has found that in practice the law is sometimes
very fuzzy, and legal theorists (e.g., Hart 1961) suggest that this is inevitably the
case, because lawmakers cannot foresee all the possibilities the law will have to ad-
dress, some of which do not exist at the time the law is passed (e.g., laws on intel-
lectual property were written before the invention of the internet). Furthermore,
since laws are written in language that uses everyday concepts, to the degree that
these concepts are fuzzy, the law itself must be fuzzy. So, if one has a rule, “No
vehicles in the park” (Hart 1961), does one interpret that to include wheelchairs?
Maintenance vehicles? Ambulances? Bicycles? Although the law is stated in a sim-
ple, clear-cut manner, the fuzziness of the vehicle category prevents it from being
entirely well-defined.?

Even artificial domains may have rules that are not particularly well defined. In
1999, Major League Baseball made a much publicized effort to clean up and stan-
dardize the strike zone, suggesting that my belief that strikes were well defined prior
to that was a delusion. Perhaps the only hope for true classical concepts is within
small, closed systems that simply do not permit exceptions and variation of the sort
that is found in the natural world. For example, the rules of chess may create clas-
sical concepts, like bishops and castling. Baseball, on the other hand, has too much
human behavior and judgment involved, and so its categories begin to resemble
natural categories in being less well defined than the purist would like.

Empirical Problems

Unfortunately for the classical view, its empirical problems are even greater than its
theoretical ones. One general problem is that the neatness envisioned by the classical
view does not seem to be a characteristic of human concepts. As mentioned above,
the notion of a definition implies that category membership can be discretely deter-
mined: The definition will pick out all the category members and none of the non-
members. Furthermore, there is no need to make further distinctions among the
members or among the nonmembers. In real life, however, there are many things
that are not clearly in or out of a category. For example, many people express un-
certainty about whether a tomato is a vegetable or a fruit. People are not sure about
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whether a low, three-legged seat with a little back is a chair or a stool. People do not
always agree on whether sandals are a kind of shoe. This uncertainty gets even
worse when more contentious categories in domains such as personality or aes-
thetics are considered. Is Sergeant Pepper’s Lonely Hearts Club Band a work of art?
Is your neighbor just shy or stuck up? These kinds of categorizations are often
problematic.

Research has gone beyond this kind of anecdote. For example, Hampton (1979)
asked subjects to rate a number of items on whether they were category members
for different categories. He did not find that items were segregated into clear mem-
bers and nonmembers. Instead, he found a number of items that were just barely
considered category members and others that were just barely not members. His
subjects just barely included sinks as members of the kitchen utensil category and
just barely excluded sponges; they just included seaweed as a vegetable and just
barely excluded tomatoes and gourds. Indeed, he found that for seven of the eight
categories he investigated, members and nonmembers formed a continuum, with no
obvious break in people’s membership judgments.

Such results could be due to disagreements among different subjects. Perhaps
55% of the subjects thought that sinks were clearly kitchen utensils and 45%
thought they were clearly not. This would produce a result in which sinks appeared
to be a borderline case, even though every individual subject had a clear idea of
whether they were category members or not. Thus, the classical view might be true
for each individual, even though the group results do not show this. However,
McCloskey and Glucksberg (1978) were able to make an even stronger argument
for such unclear cases. They found that when people were asked to make repeated
category judgments such as “Is an olive a fruit?” or “Is a dog an animal?” there was
a subset of items that individual subjects changed their minds about. That is, if you
said that an olive was a fruit on one day, two weeks later you might give the oppo-
site answer. Naturally, subjects did not do this for cases like “Is a dog an animal?”
or “Is a rose an animal?” But they did change their minds on borderline cases, such
as olive-fruit, and curtains-furniture. In fact, for items that were intermediate be-
tween clear members and clear nonmembers, McCloskey and Glucksberg’s subjects
changed their mind 22% of the time. This may be compared to inconsistent deci-
sions of under 3% for the best examples and clear nonmembers (see further dis-
cussion below). Thus, the changes in subjects’ decisions do not reflect an overall
inconsistency or lack of attention, but a bona fide uncertainty about the borderline
members. In short, many concepts are not clear-cut. There are some items that one
cannot make up one’s mind about or that seem to be “kind of” members. An avo-
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The Necessity of Category Fuzziness

The existence of unclear examples can be understood in part as arising from the great
variation of things in the world combined with the limitations on our concepts. We do
not wish to have a concept for every single object—such concepts would be of little use
and would require enormous memory space. Instead, we want to have a fairly small
number of concepts that are still informative enough to be useful (Rosch 1978). The
ideal situation would probably be one in which these concepts did pick out objects in a
classical-like way. Unfortunately, the world is not arranged so as to conform to our
needs.

For example, it may be useful to distinguish chairs from stools, due to their differ-
ences in size and comfort. For the most part, we can distinguish the two based on the
number of their legs, presence of a back or arms, and size. However, there is nothing to
stop manufacturers from making things that are very large, comfortable stools; things
that are just like chairs, only with three legs; or stools with a back. These intermediate
items are the things that cause trouble for us, because they partake of the properties of
both. We could try to solve this by forming different categories for stools with four legs
(stegs), for chairs with three legs (chools), stools with backs (stoocks), stools with backs
and arms (stoorms), and so on. But by doing so, we would end up increasing our nec-
essary vocabulary by a factor of 5 or 10, depending on how many distinctions we
added for every category. And there would still be the problem of intermediate items, as
manufacturers would no doubt someday invent a combination that was between a
stoock and a stoorm, and that would then be an atypical example of both. Just to be
difficult, they would probably also make stools with no back, with very tiny backs, with
somewhat tiny backs,... up to stools with enormous, high backs. Thus, there would
be items in between the typical stools and stoocks where categorization would be
uncertain.

The gradation of properties in the world means that our smallish number of catego-
ries will never map perfectly onto all objects: The distinction between members and
nonmembers will always be difficult to draw or will even be arbitrary in some cases. If
the world existed as much more distinct clumps of objects, then perhaps our concepts
could be formed as the classical view says they are. But if the world consists of shadings
and gradations and of a rich mixture of different kinds of properties, then a limited
number of concepts would almost have to be fuzzy.
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cado is “kind of a vegetable,” even if it is not wholeheartedly a vegetable. The clas-
sical view has difficulty explaining this state of affairs; certainly, it did not predict it.

Another problem for the classical view has been the number of demonstrations of
typicality effects. These can be illustrated by the following intuition. Think of a fish,
any fish. Did you think of something like a trout or a shark, or did you think of an
eel or a flounder? Most people would admit to thinking of something like the first: a
torpedo-shaped object with small fins, bilaterally symmetrical, which swims in the
water by moving its tail from side to side. Eels are much longer, and they slither;
flounders are also differently shaped, aren’t symmetrical, and move by waving their
body in the vertical dimension. Although all of these things are technically fish, they
do not all seem to be equally good examples of fish. The typical category members
are the good examples—what you normally think of when you think of the cate-
gory. The atypical objects are ones that are known to be members but that are un-
usual in some way. (Note that atypical means “not typical,” rather than “a typical
example.” The stress is on the first syllable.) The classical view does not have any
way of distinguishing typical and atypical category members. Since all the items in
the category have met the definition’s criteria, all are category members. (Later I will
try to expand the classical view to handle this problem.)

What is the evidence for typicality differences? Typicality differences are probably
the strongest and most reliable effects in the categorization literature. The simplest
way to demonstrate this phenomenon is simply to ask people to rate items on how
typical they think each item is of a category. So, you could give people a list of fish
and ask them to rate how typical each one is of the category fish. Rosch (1975) did
this task for 10 categories and looked to see how much subjects agreed with one
another. She discovered that the reliability of typicality ratings was an extremely
high .97 (where 1.0 would be perfect agreement)—though later studies have sug-
gested that this is an overestimate (Barsalou 1987). In short, people agree that a
trout is a typical fish and an eel is an atypical one.

But does typicality affect people’s use of the categories? Perhaps the differences
in ratings are just subjects’ attempt to answer the question that experimenters are
asking. Yes, a trout is a typical fish, but perhaps this does not mean that trouts are
any better than eels in any other respect. Contrary to this suggestion, typicality dif-
ferences influence many different behaviors and judgments involving concepts. For
example, recall that I said earlier that McCloskey and Glucksberg (1978) found that
subjects made inconsistent judgments for only a subset of their items. These items
could be predicted on the basis of typicality. Subjects did not change their minds
about the very typical items or the clear nonitems, but about items in the middle of
the scale, the atypical members and the “close misses” among the nonmembers. For



Typicality and the Classical View of Categories 23

example, waste baskets are rated as atypical examples of furniture (4.70, where 1 is
low and 10 is high), and subjects changed their minds about this item a surprising
30% of the time. They never changed their minds about tables, a very typical member
(rated 9.83), or windows, a clear nonmember (rated 2.53).

Rips, Shoben, and Smith (1973) found that the ease with which people judged
category membership depended on typicality. For example, people find it very easy
to affirm that a robin is a bird but are much slower to affirm that a chicken (a less
typical item) is a bird. This finding has also been found with visual stimuli: Identi-
fying a picture of a chicken as a bird takes longer than identifying a pictured robin
(Murphy and Brownell 1985; Smith, Balzano, and Walker 1978). The influence of
typicality is not just in identifying items as category members—it also occurs with
the production of items from a category. Battig and Montague (1969) performed a
very large norming study in which subjects were given category names, like furni-
ture or precious stone and had to produce examples of these categories. These data
are still used today in choosing stimuli for experiments (though they are limited, as a
number of common categories were not included). Mervis, Catlin and Rosch (1976)
showed that the items that were most often produced in response to the category
names were the ones rated as typical (by other subjects). In fact, the average corre-
lation of typicality and production frequency across categories was .63, which is
quite high given all the other variables that affect production.

When people learn artificial categories, they tend to learn the typical items before
the atypical ones (Rosch, Simpson, and Miller 1976). Furthermore, learning is faster
if subjects are taught on mostly typical items than if they are taught on atypical
items (Mervis and Pani 1980; Posner and Keele 1968). Thus, typicality is not just a
feeling that people have about some items (“trout good; eels bad”’)—it is important
to the initial learning of the category in a number of respects. As we shall see when
we discuss the explanations of typicality structure, there is a very good reason for
typicality to have these influences on learning.

Learning is not the end of the influence, however. Typical items are more useful
for inferences about category members. For example, imagine that you heard that
eagles had caught some disease. How likely do you think it would be to spread to
other birds? Now suppose that it turned out to be larks or robins who caught the
disease. Rips (1975) found that people were more likely to infer that other birds
would catch the disease when a typical bird, like robins, had it than when an atypi-
cal one, like eagles, had it (see also Osherson et al. 1990; and chapter 8).

As I will discuss in chapter 11, there are many influences of typicality on language
learning and use. Just to mention some of them, there are effects on the order of
word production in sentences and in comprehension of anaphors. Kelly, Bock, and
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Keil (1986) showed that when subjects mentioned two category members together
in a sentence, the more typical one is most likely to be mentioned first. That is,
people are more likely to talk about “apples and limes” than about “limes and
apples.” Garrod and Sanford (1977) asked subjects to read stories with category
members in them. For example, they might read about a goose. Later, a sentence
would refer to that item with a category name, such as “The bird came in through
the front door.” Readers took longer to read this sentence when it was about a
goose (an atypical bird) than when it was about a robin (a typical bird). Rosch
(1975) found that typical items were more likely to serve as cognitive reference
points. For example, people were more likely to say that a patch of off-red color
(atypical) was “virtually” the same as a pure red color (typical) than they were to
say the reverse. Using these kinds of nonlinguistic stimuli showed that the benefit of
the more typical color was not due to word frequency or other aspects of the words
themselves. Similarly, people prefer to say that 101 is virtually 100 rather than 100
is virtually 101.

This list could go on for some time. As a general observation, one can say that
whenever a task requires someone to relate an item to a category, the item’s typi-
cality influences performance. This kind of result is extremely robust. In fact, if one
compares different category members and does not find an effect of typicality, it
suggests that there is something wrong with—or at least unusual about—the ex-
periment. It is unfortunate for the classical view, therefore, that it does not predict
the most prevalent result in the field. Even if it is not specifically disproved by typi-
cality effects (see below), it is a great shortcoming that the view does not actually
explain why and how they come about, since these effects are ubiquitous.

Revision of the Classical View

As a result of the theoretical arguments and the considerable evidence against the
classical view, a number of writers have attempted to revise it so that it can handle
the typicality data and unclear members. The main way to handle this has been to
make a distinction between two aspects of category representation, which I will call
the core and identification procedures (following Miller and Johnson-Laird 1976;
see Armstrong, Gleitman, and Gleitman 1983; Osherson and Smith 1981; Smith
and Medin 1981; and Smith, Rips, and Shoben 1974 for similar ideas). The basic
idea is as follows. Although concepts do have definitions (which we have not yet
been able to discover), people have also learned other things about them that aren’t
definitional. This kind of information helps us to identify category members or to
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use information that is not defining. For example, not all dogs have fur, so having
fur cannot be part of the definition of the dog category. However, it is still useful to
use fur as a way of identifying dogs, because so many of them do have it. Thus,
“fur” would be part of the identification procedure by which we tell what actual
dogs are, but it would not be part of the concept core, which contains only the def-
inition. One could call “fur” a characteristic feature, since it is generally true of dogs
even if not always true: Characteristically, dogs have fur.

Part of the problem with this proposal is that it is not clear what the concept core
is supposed to do. If it isn’t used to identify the category members, then what is it
for? All the typicality effects listed above must arise from the identification proce-
dure, since the category core by definition (sic) does not distinguish typicality of
members. One proposal is that people use the identification procedure for fast and
less reliable categorization, but that they will use the category core for more careful
categorization or reasoning (e.g., Armstrong et al. 1983; Smith et al. 1974). Thus,
when tasks involve more careful thought, with less time pressure than in many
experiments, people might be encouraged to use the category core more. For exam-
ple, Armstrong et al. (1983) found that people took longer to identify less typical
even numbers than more typical ones (e.g., 4 is a more typical even number than 38
is). However, since subjects know the rule involving even numbers and are ex-
tremely accurate at this, they may use the category core to ultimately decide the
question. Whether this argument can be extended to items that do not have such a
clear rule, of course, needs to be considered.

In summary, on this revised view, the effects of typicality result from the identifi-
cation procedures, whereas certain other behaviors (primarily categorization deci-
sions) depend primarily on the concept core.

I will criticize this theory at the end of the chapter. However, there have been
some empirical tests of this proposal as well. First, Hampton’s (1979) study men-
tioned above also included a component in which subjects listed properties of dif-
ferent categories, and he attempted to separate defining from characteristic features.
For example, subjects first said what properties they used to decide that something
was a fruit. Other subjects then evaluated examples of fruit and similar objects to
see which ones had the properties. So, they would have considered whether apple

RN

and avocado have properties such as “is from a plant,” “is eaten,’

5

and ‘“has an
outer layer of skin or peel,” which were mentioned by other subjects as being critical
features. Hampton derived a list of necessary features for each category, by includ-
ing the listed features that were found in all the category members. For example, all
the items that his subjects identified as fruit had the feature “is eaten,” and so this



26 Chapter 2

was a necessary feature. The question he next asked was whether these features
were defining: If an item had all these features, would it be in the category? The
answer is no. He found many cases of items that had all of these necessary features
but were not considered to be category members. For example, cucumbers and garlic
had all of the necessary features for fruit but were not considered to be category
members. This, then, is another failure to find defining features of actual categories.
Furthermore, Hampton found that when he simply counted up how many relevant
features each item had (not just the necessary features, but all of them), he could
predict how likely people were to include the item as a category member. But since all
members would be expected to have the defining features (according to the revised
classical view), the number of other features should not predict category member-
ship. Thus, nondefining features are important in deciding category membership—
not just core features.

In more recent work, Hampton (1988b, 1995) has examined the relationship be-
tween typicality measures and category membership judgments. According to the
revised classical view, typicality is not truly related to category membership but
simply reflects identification procedures. So extremely atypical items like whales or
penguins are just as much mammals and birds, respectively, as typical examples are
(Armstrong et al. 1983; Osherson and Smith 1981). However, Hampton’s results in
a number of domains show that typicality ratings are the best predictor of untimed
category judgments, the ones that should only involve the core. These results appear
to directly contradict the revised classical view.

One reason for the popularity of the classical view has been its ties to traditional
logic (Inhelder and Piaget 1964). For example, how does one evaluate sentences of
the sort “All dogs are animals” or “Coach is a dog and a pet”? Propositional logic
tells us that “Coach is a dog and a pet” is true if “Coach is a dog” and “Coach is a
pet” are both true. This can be easily accommodated in the classical view by the
argument that “Coach is a dog and a pet” is true if Coach has the necessary and
sufficient features of both dogs and pets. Surprisingly, there is empirical evidence
suggesting that people do not follow this rule. Hampton (1988b) found that people
are willing to call something a member of a conjunctive category (X AND Y) even if
it is not in both components (X, Y). For example, subjects believe that chess is in the
category sports that are also games, but they do not believe that it is a sport. So,
chess seems to fulfill the definition for sport in one context but not in another. He
also found (Hampton 1997) that subjects believed that tree houses are in the cate-
gory of dwellings that are not buildings, but they also believe them to be buildings.
So, on different occasions, people say that it does and does not have the defining
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features of buildings. Although very troublesome for the classical view, these exam-
ples have a very natural explanation on other views, as is explained in chapter 12.

A related advantage that has been proposed for the classical view is that it has a
very natural way of explaining how categories can be hierarchically ordered. By this
I mean that categories can form nested sets in which each category includes the ones
“below” it. For example, a single object could be called Coach (his name), a yellow
labrador retriever, a labrador retriever, a retriever, a dog, a mammal, a vertebrate,
and an animal. These particular categories are significant because all yellow labs are
dogs, all dogs are mammals, all vertebrates are animals, and so on. As we will see in
chapter 7, this aspect of categories has been thought to be quite significant. The
classical view points out that if all X are Y, then the definition of Y must be included
in the definition of X. For example, all red triangles are triangles. Therefore, red
triangles must be closed, three-sided figures, because this is the definition of a triangle.
Similarly, whatever the definition of labradors is, that must be included in the defi-
nition of yellow labs, because all yellow labs are labradors. This rule ensures that
category membership is transitive. If all As are Bs, and all Bs are Cs, then all As
must be Cs. Since the definition of C must be included in B (because all Bs are Cs),
and the definition of B must be included in A (because all As are Bs), the definition
of C must thereby be included in A. The nesting of definitions provides a way of
explaining how categories form hierarchies.

Hampton (1982) suspected that there might be failures of transitivity, which
would pose a significant problem for the classical view. He asked subjects to decide
whether items were members of two categories—one of them a subset of the other.
For example, subjects decided whether an armchair is a chair and whether it is fur-
niture. They also had to judge whether chairs are furniture (they are). Hampton
found a number of cases in which an item was judged to be a member of the subset
category but not the higher category—that is, examples of chairs that were not
thought to be furniture. For instance, subjects judged that chairs were furniture and
that a car seat was a chair; however, they usually denied that a car seat was furni-
ture. But if a car seat has the defining features of chairs, and chairs have the defining
features of furniture, then car seat must have the defining features of furniture. It
should be pointed out that Hampton’s task was not a speeded, perceptual judgment,
but a more leisurely decision about category membership, which is just the sort of
judgment that should involve the concept core. It is puzzling to the revised classical
view that even such judgments do not show the use of definitions in the way that
is expected. However, we will see later that this kind of intransitivity is easily ex-
plained by other views.
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Finally, a theoretical problem with the revised classical view is that the concept
core does not in general appear to be an important part of the concept, in spite of its
name and theoretical intention as representing the “real” concept. As mentioned
earlier, almost every conceptual task has shown that there are unclear examples and
variation in typicality of category members. Because the concept core does not allow
such variation, all these tasks must be explained primarily by reference to the iden-
tification procedure and characteristic features. So, if it takes longer to verify that a
chicken is a bird than that a bluejay is a bird, this cannot be explained by the con-
cept core, since chicken and bluejay equally possess the core properties of birds,
according to this view. Instead, chicken and bluejays differ in characteristic features,
such as their size and ability to fly. Thus, speeded judgments must not be relying on
the category core. When this reasoning is applied to all the tasks that show such
typicality effects, including category learning, speeded and unspeeded catego-
rization, rating tasks, language production and comprehension, vocabulary learn-
ing, and category-based induction, the concept core is simply not explaining most of
the data. As a result, most researchers have argued that the concept core can simply

be done away with, without any loss in the ability to explain the results (see espe-
cially Hampton 1979, 1982, 1995).

Summary of Typicality as a Phenomenon

Before going on to the more recent theoretical accounts of typicality phenomena, it is
useful to discuss these phenomena in a theory-neutral way. Somewhat confusingly,
the phenomena are often referred to as revealing a prototype structure to concepts.
(This is confusing, because there is a prototype theory that is a particular theory of
these results, so sometimes prototype refers to the phenomenon and sometimes the
specific theory. This is not an isolated case of terminological confusion in the field,
as you will see.) A prototype is the best example of a category. One can think of
category members, then, arranged in order of “goodness,” in which the things that
are very similar to the prototype are thought of as being very typical or good mem-
bers, and things that are not very similar as being less typical or good members
(Rosch 1975).

One way to illustrate this concept concretely is by the dot-pattern studies of Pos-
ner and Keele (1968, 1970), since it is very clear what the prototype is in their
experiments. (Also, these are historically important experiments that are of interest
in their own right.) Posner and Keele first generated a pattern of randomly posi-
tioned dots (see figure 2.2a) as the category prototype. From this pattern, they made



Figure 2.2

Dot patterns of the sort used by Posner and Keele (1968, 1970). 2.2a represents the initial
randomly placed dots, the prototype. 2.2b represents a small distortion of the prototype, in
which each dot is moved a small distance in a random direction. 2.2¢ represents a large dis-
tortion, in which each dot is moved a large distance. On can make indefinitely many such
stimuli by generating a different (random) direction for each dot.
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many more patterns of dots, by moving each point in the original pattern in a ran-
dom direction. In some cases, they moved the points a small amount in that random
direction (as in figure 2.2b), and for other items, they moved the points a large
amount (as in figure 2.2¢). These new patterns were called “distortions” of the
original. Here, it is clear that the prototype is the most typical, best member of the
category, because it was the basis for making the other patterns. However, it is also
the case that the distortions were all somewhat similar to one another by virtue of
the fact that they were constructed from the same prototype. Indeed, subjects who
viewed only the distortions of four prototypes were able to learn the categories by
noticing this similarity (they had no idea how the patterns were made). Further-
more, the prototype itself was identified as a member of the category in test trials,
even though subjects had never seen it during learning.? Finally, the items that were
made from small distortions were learned better than items made from large dis-
tortions. And when subjects were tested on new items that they had not specifically
been trained on, they were more accurate on the smaller distortions. Figure 2.2
illustrates this nicely: If you had learned that a category looked generally like the
pattern in 2.2a (the prototype), you would find it easier to classify 2.2b into that
category than you would 2.2¢. In summary, the smaller the distortion, the more
typical an item was, and the more accurately it was classified.

This example illustrates in a very concrete way how prototypes might be thought
of in natural categories. Each category might have a most typical item—not neces-
sarily one that was specifically learned, but perhaps an average or ideal example
that people extract from seeing real examples. You might have an idea of the pro-
totypical dog, for example, that is average-sized, dark in color, has medium-length
fur, has a pointed nose and floppy ears, is a family pet, barks at strangers, drools
unpleasantly, and has other common features of dogs. Yet, this prototype may be
something that you have never specifically seen—it is just your abstraction of what
dogs are most often like. Other dogs vary in their similarity to this prototype, and so
they differ in their typicality. Miniature hairless dogs are not very similar to the
prototype, and they are considered atypical; St. Bernards are not very similar, albeit
in a different way, and so they are also atypical; a collie is fairly similar to the pro-
totype, so it is considered fairly typical; and so on. As items become less and less
similar to the prototype, it is more and more likely that they won’t be included in
the category. So, if you saw a thing with four legs but a very elongated body, no
hair, and whiskers, you might think that it was somewhat similar to a dog, but not
similar enough to actually be a dog. However, this is the point at which different
people might disagree, and you might change your mind. That is, as similarity gets
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lower, there is no clear answer as to whether the item is or isn’t in the category.
Furthermore, as the item becomes more similar to other categories, the chance in-
creases that it will be seen as an atypical member of that other category. You might
decide that your friend’s exotic, hairless pet is a weird cat instead of a weird dog.

In short, typicality is a graded phenomenon, in which items can be extremely
typical (close to the prototype), moderately typical (fairly close), atypical (not close),
and finally borderline category members (things that are about equally distant from
two different prototypes). This sort of description summarizes the range of typicality
that is often seen in categories. Researchers of all theoretical persuasions talk about
category prototypes, borderline cases, and typical and less typical items in this way.
However, this way of thinking about typicality should not make us assume that
people actually represent the category by a single prototype, like Posner and Keele’s
original dot pattern, or the best possible dog. There are a number of other ways that
they could be representing this information, which I will discuss in the next section
and next chapter.

Theoretical Explanations of Prototype Phenomena

What Makes Items Typical and Atypical
What makes something typical or atypical? Why is penguin an atypical bird but
sparrow a typical bird? Why should a desk chair be typical but a rocking chair less
typical? One possible answer is simple frequency. In North America and Europe
(where most of the research on this topic has been done), penguins are seldom if
ever seen, whereas sparrows are often seen; there are a lot more desk chairs than
rocking chairs, perhaps. This is one part of the answer, but things are not so simple.
For example, there are some quite frequent items that are still thought to be atypical
of their category. For example, chickens are a very frequently talked-about kind of
bird, but they are not considered as typical as some infrequently encountered and
discussed birds, such as the oriole or catbird (Rosch 1975) (e.g., I cannot say for
certain that I have ever seen an oriole or catbird, but I see chickens fairly often).
Similarly, handball is a much more typical sport than car racing (Rosch 19735), even
though racing is more popular, is reported in the media, and so on. Mervis et al.
(1976) found that simple frequency of an item’s name did not predict its typicality.
In fact, in the eight common categories they examined (birds, tool, fruit, etc.), none
of the correlations of name frequency with typicality was reliably different from 0.
The best answer to the question of what makes something typical is related to the
frequency of the item but is a bit more complex: Rosch and Mervis (1975) argued
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that items are typical when they have high family resemblance with members of the
category: ... members of a category come to be viewed as prototypical of the cate-
gory as a whole in proportion to the extent to which they bear a family resem-
blance to (have attributes which overlap those of) other members of the category.
Conversely, items viewed as most prototypical of one category will be those with
least family resemblance to or membership in other categories” (p. 575).3 That is,
typical items (1) tend to have the properties of other category members but (2) tend
not to have properties of category nonmembers. For example, an oriole is of the
same size as many birds, perches in trees, flies (common bird behaviors), has two
wings (universal among birds), and so on. Therefore, even though orioles are not
very frequent in my experience, I can recognize them as typical birds because they
have frequent bird properties. In contrast, chickens, which I see much more often,
are large for birds, white (not a very usual color), do not fly (not common among
birds), are eaten (not common), and so on. So, even though chickens themselves are
fairly common, their properties are not very common as properties for birds, and so
they are atypical birds.

Rosch and Mervis (1975) supported this claim in a number of ways. Because their
study is so important, I will discuss it in some detail. First, they examined a number
of different natural categories* to see if they could predict which items would be
typical or atypical. Rosch and Mervis selected twenty members of six general cate-
gories. Two examples are shown in table 2.1. They had subjects rate each item for
how typical it was of its category, and that is reflected in table 2.1 in the order
the items are listed (e.g., chair is the most typical furniture, and telephone the least
typical). Then Rosch and Mervis had new subjects list the attributes of each of the
items. The question was whether typical items would have more of the common
attributes than would atypical items. However, there is a problem with just listing
attributes, which is that people are not always very good at spontaneously produc-
ing attributes for items. If you were to look at such data, you would see that some
subjects have produced an attribute for an item, but others have not. Is this because
the latter just forgot, or weren’t as careful in doing the task? In some cases, that
seems likely. Furthermore, it is often the case that attributes listed for one item seem
to be equally true for another item, for which it was not listed. For example, people
might list “has four legs” for chair but not for bed. Because of this kind of problem
(see Tversky and Hemenway 1984 for discussion), Rosch and Mervis asked judges
to go through the list of attributes and to decide whether the attributes were true of
all the items. So, if some subjects listed “has four legs” for chairs, the judges would
decide whether it was also true for the other items of furniture. The judges also elimi-
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Table 2.1.

Examples of items studied by Rosch and Mervis (1975), ordered by typicality.
Furniture Fruit

chair orange

sofa apple

table banana
dresser peach

desk pear

bed apricot
bookcase plum
footstool grapes
lamp strawberry
piano grapefruit
cushion pineapple
mirror blueberry
rug lemon
radio watermelon
stove honeydew
clock pomegranate
picture date

closet coconut
vase tomato
telephone olive

nated any features that were clearly and obviously incorrect. This judge-amending
process is now a standard technique for processing attribute-listing data.

Finally, Rosch and Mervis weighted each attribute by how many items it occurred
in. If “has four legs” occurred in ten examples of furniture, it would have a weight
of 10; if “is soft” occurred in only two examples, it would receive a weight of 2.
Finally, they added up these scores for each feature listed for an item. So, if chair
had eighteen features listed, its score would be the sum of the weights of those
eighteen features. This technique results in the items with the most common features
in the category having the highest scores. Rosch and Mervis found that this fea-
ture score was highly predictive of typicality (correlations for individual categories
ranged from .84 to .91). That is, the items that were most typical had features that
were very common in the category. The less typical items had different features. This
result has been replicated by Malt and Smith (1984). Rosch and Mervis illustrated
this in a clever way by looking at the five most typical items and five least typical
items in each category and counting how many features they each had in common.
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They found that the five most typical examples of furniture (chair, sofa, table,
dresser, and desk) had thirteen attributes in common. In contrast, the five least typical
examples (clock, picture, closet, vase, and telephone) had only two attributes in
common. For fruit, the five most typical items had sixteen attributes in common, but
the least typical ones had absolutely no attributes in common.

This result gives evidence for the first part of the family-resemblance hypothesis,
but what about the second part, that typical items will not have features that are
found in other categories? This turns out to be much more difficult to test, because
one would have to find out the attributes not just of the target categories (say, fruit
and furniture), but also of all other related categories, so that one could see which
items have features from those categories. For example, if olives are less typical fruit
because they are salty, we need to know if saltiness is a typical attribute of other
categories, and so we would need to get feature listings of other categories like veg-
etables, meats, desserts, grains, and so on, which would be an enormous amount of
work. (If I have not made it clear yet, attribute listings are very time-consuming and
labor-intensive to collect, as individual subjects can list features of only so many
concepts, all of which then must be transcribed, collated, and judge-amended by
new subjects.) So, this aspect of the hypothesis is not so easy to test. Nonetheless,
Rosch and Mervis were able to test it for two more specific categories (chair and car,
Experiment 4), and they found evidence for this hypothesis too. That is, the more
often an item had features from a different category, the less typical it was (correla-
tions of —.67 and —.86).

Both of these studies are correlational. Like most studies of natural categories, the
underlying variables that were thought to be responsible for the phenomenon (typi-
cality) were simply observed in the items—the researchers did not manipulate them.
As is well known, this leads to the correlation-causation problem, in which there
could be some other variable that was not directly measured but was actually re-
sponsible for the typicality. Perhaps the most typical items were more familiar, or
pleasant, or ... (add your favorite confounding variable). Thus, Rosch and Mervis
(1975) also performed experimental studies of family resemblance that were not
subject to this problem. They used lists of alphanumeric strings for items, such as
GKNT]J and 8SJ3G. Each string was an exemplar, and subjects had to learn to place
each exemplar into one of two categories. The exemplars were constructed so that
some items had more common features (within the category) than others. Rosch and
Mervis found that the items with higher family-resemblance scores were learned
sooner and were rated as more typical than were items with lower scores. For these
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artificial stimuli, there is little question of other variables that might explain away
the results for natural stimuli. In a final experiment, Rosch and Mervis varied
the amount of overlap of an item’s features with the contrast category. So, one item
had only features that occurred in Category 1; another item had four features
that occurred in Category 1, and one that occurred in Category 2; a different item
had three features that occurred in Category 1, and two that occurred in Cate-
gory 2; and so on. They found that the items with greater overlap with the other
category were harder to learn and were rated as much less typical after the learning
phase.

In summary, Rosch and Mervis’s (1975) study provided evidence for their family-
resemblance hypothesis that items are typical (1) if they have features common in
their category and (2) do not have features common to other categories. Unfortu-
nately, there is some confusion in the field over the term “family resemblance.” 1
have been using it here as indicating both parts of Rosch and Mervis’s hypothesis.
However, other writers sometimes refer to “family resemblance” as being only the
within-category component (1 above).’ In fact, the between-category aspect is often
ignored in descriptions of this view. It is important to note, though, that what-
ever name one uses, it is both having features common within a category and the
lack of features overlapping other categories that determine typicality according to
this view, and Rosch and Mervis provided support for both variables influencing
typicality.

This view of what makes items typical has stood the test of time well. The major
addition to it was made by Barsalou (1985), who did a more complex study of what
determines typicality in natural categories. Using most of the same categories that
Rosch and Mervis did, such as vehicles, clothing, birds, and fruit, Barsalou measured
three variables. Central tendency was, roughly speaking, the family-resemblance
idea of Rosch and Mervis, though only including within-category resemblance. The
items that were most similar to other items in the category had the highest central
tendency scores. Frequency of instantiation was the frequency with which an item
occurred as a member of the category, as assessed by subjects’ ratings. Barsalou felt
that the simple frequency of an item (e.g., chicken vs. lark) was probably not as
important as how often an item was thought of as being a member of the category,
and frequency of instantiation measured this. Ideals was the degree to which each
item fit the primary goal of each category. Here, Barsalou selected, based on his
own intuitions, a dimension that seemed critical to each category. For example, for
the category of vehicle, the dimension was how efficient it was for transportation.
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Subjects rated the items on these dimensions and also rated the typicality of each
item to its category. The results, then, were the correlations between these different
measures and each item’s typicality.

Barsalou’s results provided evidence for all three variables. Indeed, when he sta-
tistically controlled for any two of the variables (using a partial correlation), the
remaining variable was still significant. Strongest was the central tendency measure.
The items that were most similar to other category members were most typical—the
partial correlation was .71. This is not surprising, given Rosch and Mervis’s results.
More surprising was the reliable effect of frequency of instantiation (partial cor-
relation of .36). Consistent with Mervis et al. (1976), Barsalou found that the pure
frequency of any item (e.g., the familiarity of chicken and lark) did not predict typi-
cality. However, the frequency with which an item occurred as a category member
did predict typicality. This suggests that thinking of an item as being a category
member increases its typicality, perhaps through an associative learning process
(though see below).

Finally, the effect of ideals was also significant (partial correlation of .45). For
example, the most typical vehicles were the ones that were considered efficient
means of transportation, and the most typical fruit were those that people liked (to
eat). This effect is not very consistent with the Rosch and Mervis proposal, since it
does not have to do with the relation of the item to other category members, but
with the relation of the item to some more abstract function or goal. Barsalou
(1985) presented the results for each category separately, and an examination of the
results shows that ideals were quite effective predictors for artifact categories like
vehicles, clothing and weapons, but less so for natural kinds like birds, fruit and
vegetables.® As Barsalou himself notes, since he only used one ideal per category,
and since he derived them based on his own intuitions, it is possible that ideals are
even more important than his results reveal. If more comprehensive testing for the
best ideals had been done, they might have accounted for even more of the typicality
ratings. Indeed, a recent study by Lynch, Coley, and Medin (2000) found that tree
experts’ judgments of typicality were predicted by ideal dimensions of “weediness”
and height, but not by the similarity of the trees. Weediness refers to an aesthetic
and functional dimension of how useful trees are for landscaping. Strong, healthy,
good-looking trees are typical based on this factor. The importance of height is not
entirely clear; it may also be aesthetic, or it may be related to family resemblance, in
that trees are taller than most plants, and so tall trees are more typical. Surprisingly,
the variable of centrality—that is, similarity to other trees (Rosch and Mervis’s
1975 first factor)—did not predict typicality above and beyond these two factors.



Typicality and the Classical View of Categories 37

These results suggest the need for further exploring how important ideals are rela-
tive to family resemblance in general.

The importance of ideals in determining typicality is that they suggest that the
category’s place in some broader knowledge structure could be important. That is,
people don’t just learn that tools are things like hammers, saws, and planes, but they
also use more general knowledge about what tools are used for and why we have
them in order to represent the category. Category members that best serve those
functions may be seen as more typical, above and beyond the specific features they
share with other members.

As mentioned above, correlational studies of this sort, although important to
carry out, can have the problem of unclear causal connections. In this case, the fre-
quency of instantiation variable has a problem of interpreting the directionality of
the causation. Is it that frequently thinking of something as being a category mem-
ber makes it more typical? Or is it that more typical things are likely to be thought
of as being category members? Indeed, the second possibility seems more likely to
me. For example, Barsalou found that typical items are more likely to be generated
first when people think of a category. When people think of examples of weapons,
for example, they hardly ever start with spears or guard dogs; they are more likely
to start with typical items like guns and knives. Frequency of instantiation, then,
could well be an effect of the typicality of items, rather than vice versa. Similarly, the
effect of ideals might also have come after the category’s typicality was determined.
That is, perhaps the ideal of vehicles came about (or occurred to Barsalou) as a re-
sult of thinking about typical vehicles and what their purposes were. It is not clear
which is the chicken and which is the egg.

Barsalou addressed this problem in an experimental study of the importance of
ideals. He taught subjects new categories of kinds of people. Subjects in one cate-
gory tended to jog (though at different frequencies), and subjects in another tended
to read the newspaper (at different frequencies). Barsalou told subjects that the two
categories were either physical education teachers and current events teachers, or
else that they were teachers of computer programming languages Q or Z. His idea
was that the joggers would tend to be perceived as fulfilling an ideal dimension
(physical fitness) when the category was physical education teachers but not when
the category was teachers of language Q; similarly, the newspaper readers would fit
an ideal (being informed) when they were current events teachers but not when they
were teachers of language Z. And indeed, amount of jogging influenced typicality
ratings for the categories described as physical education teachers, but not for the
category labeled teachers of language Q even though both categories had the exact
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same learning items. That is, the family-resemblance structures of the items were
identical—what varied was which ideal was evoked.

This experiment, then, confirms part of the correlational study that Barsalou
(1985) reported for natural categories. Ideals are important for determining typi-
cality above and beyond any effects of family resemblance. A number of later studies
have replicated this kind of result, and are discussed in chapter 6 (Murphy and
Allopenna 1994; Spalding and Murphy 1996; Wattenmaker et al. 1986; Wisniewski
1995). Studies of experts have found even more evidence of the use of ideals
(Medin, Lynch, Coley, and Atran 1997; Proffitt, Coley, and Medin 2000).

These studies do not show that family resemblance is not a determinant of typi-
cality, but that there are also other determinants that Rosch and Mervis (1975)
would not have predicted. Thus, I am not suggesting that their view is incorrect but
that it is only a partial story, for some categories at least. They are clearly correct,
however, in saying that frequency in and of itself does not account for typicality to
any great degree (see also Malt and Smith 1982). Whether frequency of instantia-
tion is an important variable is less clear. Barsalou’s results do give evidence for its
being related to typicality. However, since this variable has not been experimentally
tested, the result is subject to the counterargument raised above, that it is a function
of typicality rather than vice versa. This, therefore, is still an open issue.

End of the Classical View?

The classical view appears only very sporadically after this point in the book. To a
considerable degree, it has simply ceased to be a serious contender in the psychology
of concepts. The reasons, described at length above, can be summarized as follows.
First, it has been extremely difficult to find definitions for most natural categories,
and even harder to find definitions that are plausible psychological representations
that people of all ages would be likely to use. Second, the phenomena of typicality
and unclear membership are both unpredicted by the classical view. It must be
augmented with other assumptions—which are exactly the assumptions of the
nonclassical theories—to explain these things. Third, the existence of intransitive
category decisions (car seats are chairs; chairs are furniture; but car seats are not
furniture) is very difficult to explain on the classical view. The classical view has not
predicted many other phenomena of considerable interest in the field, which we will
be discussing in later chapters, such as exemplar effects, base rate neglect, the exis-
tence of a basic level of categorization, the order in which children acquire words,
and so on. In some cases, it is very difficult to see how to adapt this view to be
consistent with those effects.
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In summary, the classical core has very little to do, as most of the interesting and
robust effects in the field cannot be explained by cores but must refer to the charac-
teristic features. This is true not only for speeded judgments, but even for careful
categorizations done without time constraints.

In spite of all this, there have been a number of attempts to revive the classical
view in theoretical articles, sometimes written by philosophers rather than by psy-
chologists (Armstrong et al. 1983; Rey 1983; Sutcliffe 1993). This is a bit difficult to
explain, because the view simply does not predict the main phenomena in the field,
even if it can be augmented and changed in various ways to be more consistent with
them (as discussed in the core-plus-identification procedure idea). Why are writers
so interested in saving it? To some degree, I believe that it is for historical reasons.
After all, this is a view that has a long history in psychology, and in fact has been
part of Western thinking since Aristotle. (Aristotle!) If this were a theory that you or
I had made up, it would not have continued to receive this attention after the first 10
or 20 experiments showing it was wrong. But our theory would not have this his-
tory behind it. Another reason is that there is a beauty and simplicity in the classical
view that succeeding theories do not have. It is consistent with the law of excluded
middle and other traditional rules of logic beloved of philosophers. To be able to
identify concepts through definitions of sufficient and necessary properties is an ele-
gant way of categorizing the world, and it avoids a lot of sloppiness that comes
about through prototype concepts (like the intransitive category decisions, and un-
clear members). Unfortunately, the world appears to be a sloppy place.

A final reason that these revivals of the classical view are attempted is, I believe,
because the proponents usually do not attempt to explain a wide range of empirical
data. The emphasis on philosophical concerns is related to this. Most of these writers
are not starting from data and trying to explain them but are instead starting from a
theoretical position that requires classical concepts and then are trying to address
the psychological criticisms of it.” In fact, much of the support such writers give for
the classical view is simply criticism of the evidence against it. For example, it has
been argued that typicality is not necessarily inconsistent with a classical concept for
various reasons, or that our inability to think of definitions is not really a problem.
However, even if these arguments were true (and I don’t think they are), this is a far
cry from actually explaining the evidence. A theory should not be held just because
the criticisms of it can be argued against—the theory must itself provide a compel-
ling account of the data. People who held the classical view in 1972 certainly did not
predict the results of Rips et al. (1973), Rosch (1975), Rosch and Mervis (1975),
Hampton (1979, 1988b, or 1995), or any of the other experiments that helped to
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overturn it. It was only after such data were well established that classical theorists
proposed reasons for why these results might not pose problems for an updated
classical view.

As T mentioned earlier, there is no specific theory of concept representation that
is based on the classical view at the time of this writing, even though there are a
number of writers who profess to believe in this view. The most popular theories of
concepts are based on prototype or exemplar theories that are strongly unclassical.
Until there is a more concrete proposal that is “classical” and that can positively
explain a wide variety of evidence of typicality effects (rather than simply criticize
the arguments against it), we must conclude that this theory is not a contender.
Thus, although it pops up again from time to time, I will not be evaluating it in
detail in the remainder of this book.



3

Theories

As described in the previous chapter, the classical view has taken a big fall. Into this
vacuum other theories developed that did not assume that concepts were repre-
sented by definitions and so were not subject to the problems the classical view suf-
fered. This chapter will consider the three main kinds of theories that arose after the
downfall of the classical view. The goal here is not to comprehensively evaluate
these theories, as that can be done only over the course of the entire book, after the
complete range of relevant data has been presented. Instead, this chapter will intro-
duce the three general approaches that are most current in the field and explain how
they deal with the typicality phenomena that caused such a problem for the classical
view.

The Prototype View

One of the main critics of the classical view of concepts was Eleanor Rosch, who
provided much of the crucial evidence that revealed the shortcomings of a defini-
tional approach to concepts. Rosch’s writings also provided the basis for a number
of the early alternatives to the classical view, all under the rubric of the prorotype
view.

A number of readers interpreted Rosch as suggesting that every category is rep-
resented by a single prototype or best example. That is, perhaps your category of
dogs is represented by a single ideal dog, which best embodies all the attributes
normally found in dogs. I gave such an interpretation in the previous chapter as one
way of understanding the existence of typicality. For example, very typical items
would be those that are similar to this prototype; borderline items would be only
somewhat similar to this prototype and somewhat similar to other prototypes as
well. (The dot-pattern experiments of Posner and Keele 1968, 1970, encouraged this
interpretation as well, as their categories were constructed from a literal prototype.)
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Rosch, however, explicitly denied that this was her proposal (Rosch and Mervis
1975, p. 575), though it must be said that her writing often encouraged this inter-
pretation. She preferred to be open-minded about how exactly typicality structure
was represented, focusing instead on documenting that it existed and influenced
category learning and judgments in important ways.

The idea that a single prototype could represent a whole category is questionable.
For example, is there really an “ideal bird” that could represent all birds, large and
small; white, blue, and spotted; flightless and flying; singing, cackling, and silent;
carnivorous and herbivorous? What single item could pick out penguins, ostriches,
pelicans, hummingbirds, turkeys, parrots, and sparrows? It seems unlikely that a
single representation could encompass all of these different possibilities (Medin and
Schwanenflugel 1981). Furthermore, a single prototype would give no information
about the variability of a category. Perhaps some categories are fairly narrow,
allowing only a small amount of variation, whereas others have very large variation
(e.g., compare the incredible variety of dogs to the much smaller diversity of cats).
If each category were represented by a single “best example,” there would be no
way to represent this difference (see Posner and Keele 1968, for an experimental
demonstration).

In short, the notion of a single prototype as a category representation, which TI’ll
call the best example idea, has not been very widely adopted. Instead, the prototype
view proposed by Rosch has most often been interpreted as a summary representa-
tion that is a description of the category as a whole, rather than describing a single,
ideal member. The view I’ll discuss was proposed by Hampton (1979) and was
fleshed out by Smith and Medin (1981), although its roots lie in Rosch and Mervis
(1975).

A critical component of the prototype view is that it is a summary representation
(just why this is critical will be apparent when the exemplar view is discussed): The
entire category is represented by a unified representation rather than separate rep-
resentations for each member or for different classes of members. This may sound
just like the single best example idea that I have just criticized, but you will see that
this representation is considerably more complex than that.

The representation itself could be described in terms much like Rosch and Mervis’s
(1975) family-resemblance view. The concept is represented as features that are
usually found in the category members, but some features are more important than
others. It is important for weapons that they be able to hurt you, but not so impor-
tant that they be made of metal, even though many weapons are. Thus, the feature
“can do harm” would be highly weighted in the representation, whereas the feature
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“made of metal” would not be. Where do these weights come from? One possibility
is that they are the family-resemblance scores that Rosch and Mervis derived (see
previous chapter). That is, the more often a feature appears in the category and does
not appear in other categories, the higher its weight will be. Unlike a best-example
representation, this list of features can include contradictory features with their
weights. For example, the single best example of a dog might be short-haired. How-
ever, people also realize that some dogs have very long hair and a few have short
hair. These cannot all be represented in a single best example. The feature list would
represent this information, however. It might include “short hair,” and give it a high
weight; “long hair,” with a lower weight; and ““hairless” with a very low weight. In
this way, the variability in a category is implicitly represented. Dimensions that have
low variability might have a single feature with high weight (e.g., “has two ears”
might have a high weight, and “has three ears” would presumably not be listed at
all). Dimensions with high variability (like the colors of dogs) would have many
features listed (“white,” “brown,” “black,” “orange-ish,” “spotted”’), and each one
would have a low weight. Such a pattern would implicitly represent the fact that
dogs are rather diverse in their coloring. This system, then, gives much more infor-
mation than a single best example would.

One aspect of this proposal that is not clearly settled yet is what to do with con-
tinuous dimensions that do not have set feature values. So, how does one represent
the size of birds, for example: as “small,” “medium,” and “large,” or as some con-
tinuous measurement of size? If it is a continuous measurement, then feature count-
ing must be somewhat more sophisticated, since items with tiny differences in size
should presumably count as having the same size feature, even if they are not iden-
tical. Perhaps for such continuous dimensions, what is remembered is the average
rather than the exact features. Another idea is that features that are distinctive are
counted, whereas those that are close together are averaged. So, for categories like
robins, the size differences are small enough that they are not represented, and we
only remember the average size for a robin; but for categories like birds as a whole,
we do not average the size of turkeys, hawks, robins, and wrens, which are too di-
verse. There is some evidence for this notion in category-learning experiments (e.g.,
Strauss 1979), but it must be said that a detailed model for how to treat such fea-
tures within prototype theory seems to be lacking.

If this feature list is the concept representation, then how does one categorize new
items? Essentially, one calculates the similarity of the item to the feature list. For
every feature the item has in common with the representation, it gets “credit” for
the feature’s weight. When it lacks a feature that is in the representation, or has a
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feature that is not in the representation, it loses credit for that feature (see Smith and
Osherson 1984; Tversky 1977). After going through the object’s features, one adds
up all the weights of the present features and subtracts all the weights of its features
that are not part of the category.! If that number is above some critical value, the
categorization criterion, the item is judged to be in the category; if not, it is not.
Thus, it is important to have the highest weighted features of a category in order to
be categorized. For example, an animal that eats meat, wears a collar, and is a pet
might possibly be a dog, because these are all features associated with dogs, though
not the most highly weighted features. If this creature does not have the shape or
head of a dog, does not bark, does not drool, and does not have other highly
weighted dog features, one would not categorize it as a dog, even though it wears a
collar and eats meat. So, the more highly weighted features an item has, the more
likely it is to be identified as a category member.

This view explains the failure of the classical view. First, no particular feature is
required to be present in order to categorize the item. The inability to find such
defining features does not embarrass prototype theory the way it did the classical
view. So long as an item has enough dog features, it can be called a dog—no par-
ticular feature is defining. Second, it is perfectly understandable why some items
might be borderline cases, about which people disagree. If an item has about equal
similarity to two categories (as tomatoes do to fruit and vegetable), then people may
well be uncertain and change their mind about it. Or even if the item is only similar
to one category, if it is not very similar—in other words, right near the catego-
rization criterion—people will not be sure about it. They may change their mind
about it on a different occasion if they think of slightly different features or if there’s
a small change in a feature’s weight. Third, it is understandable that any typical item
will be faster to categorize than atypical items. Typical items will have the most
highly weighted features (see Barsalou 1985; Rosch and Mervis 1975), and so they
will more quickly reach the categorization criterion. If you see a picture of a German
shepherd, its face, shape, size, and hair all immediately match highly weighted val-
ues of the dog concept, which allow speedy categorization. If you see a picture of a
sheepdog, the face, length of hair, and shape are not very typical, and so you may
have to consider more features in order to accumulate enough weights to decide that
it is a dog.

Recall that Hampton (1982) demonstrated that category membership judgments
could be intransitive. For example, people believe that Big Ben is a clock, and they
believe that clocks are furniture, but they deny that Big Ben is furniture. How can
this happen? On the prototype view, this comes about because the basis of similarity
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changes from one judgment to the other. Big Ben is a clock by virtue of telling time;
clocks are furniture by virtue of being objects that one puts in the home for decora-
tion and utility (not by virtue of telling time, because watches are not considered
furniture). However, Big Ben is not similar to the furniture concept, because it isn’t
in the home and is far bigger than any furniture. Thus, concept A can be similar to
concept B, and B can be similar to C, and yet A may not be very similar to C. This
can happen when the features that A and B share are not the same as the features
that B and C share (see Tversky 1977). On the classical view, this kind of intransi-
tivity is not possible, because any category would have to include all of its superset’s
definition, and so there is no way that deciding that something is a clock would not
also include deciding that it was furniture.

Smith and Medin (1981) discuss other results that can be explained by this feature-
listing model. Most prominent among them are the effects of false relatedness: It
is more difficult to say “no” to the question “Is a dog a cat?” than to “Is a dog a
mountain?” I will leave it as an exercise for the reader to derive this result from the
feature list view.

More Recent Developments

Unlike the other views to be discussed in this chapter, the prototype view has not
been undergoing much theoretical development. In fact, many statements about
prototypes in the literature are somewhat vague, making it unclear exactly what the
writer is referring to—a single best example? a feature list? if a feature list, deter-
mined how? This lack of specificity in much writing about prototype theory has
allowed its critics to make up their own prototype models to some degree. As we
shall see in chapter 4, many theorists assume that the prototype is the single best
example, rather than a list of features, even though these models have very different
properties, for real-life categories, at least.

Feature combinations. The view taken by Rosch and Mervis (1975), Smith and
Medin (1981), and Hampton (1979) was that the category representation should
keep track of how often features occurred in category members. For example, people
would be expected to know that “fur” is a frequent property of bears, “white” is a
less frequent property, “has claws” is very frequent, “eats garbage” of only mod-
erate frequency, and so on. A more elaborate proposal is that people keep track not
just of individual features but configurations of two or more features. For example,
perhaps people notice how often bears have claws AND eat garbage, or have fur
AND are white—that is, combinations of two features. And if we propose this, we
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might as well also propose that people notice combinations of three features such
as having claws AND eating garbage AND being white. So, if you saw a bear with
brown fur eating campers’ garbage in a national park, you would update your
category information about bears by adding 1 to the frequency count for features

LRI

“brown,” “has fur,” “eats garbage,” “brown and has fur,” “brown and eats gar-
bage,” “has fur and eats garbage,” and “brown and has fur and eats garbage.” This
proposal was first made by Hayes-Roth and Hayes-Roth (1977) and was made part
of a mathematical model (the configural cue model) by Gluck and Bower (1988a).

One problem with such a proposal is that it immediately raises the question of
a computational explosion. If you know 25 things about bears, say (which by no
means is an overestimate), then there would be 300 pairs of features to be encoded.
(In general, for N features, the number of pairs would be N * (N — 1)/2.) Further-
more, there would be 2,300 triplets of features to encode as well and 12,650 quad-
ruplets. Even if you stopped at triplets of features, you have now kept track of not
just 25 properties, but 2,635. For any category that you were extremely familiar
with, you might know many more features. So, if you are a bird watcher and know
1,000 properties of birds (this would include shapes, sizes, habitats, behaviors, colors,
and patterns), you would also know 499,500 pairs of features and 166,167,000
feature triplets. This is the explosion in “combinatorial explosion.” Not only would
this take up a considerable amount of memory, it would also require much more
processing effort when using the category, since every time you viewed a new cate-
gory member, you would have to update as many of the pairs, triplets, and quad-
ruplets that were observed. And when making a category decision, you couldn’t just
consult the 1,000 bird properties that you know about—you would also have to
consult the relevant feature pairs, triplets, and so on.

For these reasons, this proposal has not been particularly popular in the field at
large. Models that encode feature combinations have been able to explain some data
in psychology experiments, but this may in part be due to the fact that there are
typically only four or five features in these experiments (Gluck and Bower 1988a,
pp. 187-188, limited themselves to cases of no more than three features), and so it is
conceivable that subjects could be learning the feature pairs and triplets in these
cases. However, when the Gluck and Bower model has been compared systemati-
cally with other mathematically specified theories, it has not generally done as well
as the others (especially exemplar models), as discussed by Kruschke (1992) and
Nosofsky (1992). In short, this way of expanding prototype theory has not caught
on more generally. The question of whether people actually do notice certain pairs
of correlated features is discussed at greater length in chapter 5.
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Schemata. One development that is tied to the prototype view is the use of schemata
(the plural of schema) to represent concepts. This form of representation has been
taken as an improvement on the feature list idea by a number of concepts researchers
(e.g., Cohen and Murphy 1984; Smith and Osherson 1984). To understand why,
consider the feature list view described above. In this view, the features are simply
an unstructured list, with associated weights. For example, the concept of bird might
have a list of features such as wings, beak, flies, gray, eats bugs, migrates in winter,
eats seeds, blue, walks, and so on, each with a weight. One concern about such a list
is that it does not represent any of the relations between the features. For example,
the features describing a bird’s color are all related: They are different values on the
same dimension. Similarly, the features related to what birds eat are all closely con-
nected. In some cases, these features are mutually exclusive. For example, if a bird
has a black head, it presumably does not also have a green head and a blue head
and a red head. If a bird has two eyes, it does not have just one eye. In contrast,
other features do not seem to be so related. If a bird eats seeds, this does not place
any restriction on how many eyes it has or what color its head is, and vice versa.

A schema is a structured representation that divides up the properties of an item
into dimensions (usually called slots) and values on those dimensions (fillers of the
slots). (For the original proposal for schemata, see Rumelhart and Ortony 1977. For
a general discussion of schemata see A. Markman 1999.) The slots have restrictions
on them that say what kinds of fillers they can have. For example, the head-color
slot of a bird can only be filled by colors; it can’t be filled by sizes or locations, be-
cause these would not specify the color of the bird’s head. Furthermore, the slot may
place constraints on the specific value allowed for that concept. For example, a bird
could have two, one or no eyes (presumably through some accident), but could not
have more than two eyes. The slot for number of eyes would include this restriction.
The fillers of the slot are understood to be competitors. For example, if the head
color of birds included colors such as blue, black, and red, this would indicate that
the head would be blue OR black OR red. (If the head could be a complex pattern
or mixture of colors, that would have to be a separate feature.) Finally, the slots
themselves may be connected by relations that restrict their values. For example, if a
bird does not fly, then it does not migrate south in winter. This could be represented
as a connection between the locomotion slot (which indicates how the bird moves
itself around) and the slot that includes the information on migration.

Why do we need all this extra apparatus of a schema? Why not just stick with the
simpler feature list? The answer cannot be fully given here, because some of the evi-
dence for schemata comes from the topics of other chapters (most notably chapter
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12). However, part of the reason is that the unstructured nature of the feature list
could lead to some peculiar concepts or objects being learned. Any features can be
added to the list, and there are no restrictions on one feature’s weights depending on
what other features are. So, if I told you that birds are generally carnivorous, and
you read somewhere that birds were generally vegetarian, you could simply list the
features in your concept, say, carnivorous, weight = .80; and vegetarian, weight =
.80. The fact that these two features both having high weights is contradictory
would not prevent a feature list from representing them. Similarly, if I represented
both the features “flies” and “doesn’t fly” for birds (since some do and some don’t),
there is nothing to stop me from thinking that specific birds have both these fea-
tures. The intuition behind schema theory is that people structure the information
they learn, which makes it easier to find relevant information and prevents them
from forming incoherent concepts of this sort (for evidence from category learning
in particular, see Kaplan 1999; Lassaline and Murphy 1998).

Another argument often made about feature lists is that they do not have the
kinds of relations that you need to understand an entire object. For example, a pile
of bird features does not make a bird—the parts need to be tied together in just the
right way. The eyes of a bird are above the beak, placed symmetrically on the head,
below the crest. This kind of information is critical to making up a real bird, but it
usually does not appear in feature lists, at least as produced by subjects in experi-
ments. Subjects may list “has eyes,” but they will not provide much relational in-
formation about how the eyes fit with the other properties of birds. Nonetheless,
people clearly learn this information, and if you were to see a bird with the beak and
eyes on opposite sides of its head, you would be extremely surprised. Schemata can
include this information by providing detailed relations among the slots.

In short, a feature list is a good shorthand for noting what people know about a
category, but it is only a shorthand, and a schema can provide a much more com-
plete picture of what people know about a concept. For some purposes, this extra
information is not very relevant, and so it may be easier simply to talk about fea-
tures, and indeed, I will do so for just that reason. Furthermore, in some experi-
ments, the concepts have been constructed basically as feature lists, without the
additional relational information that a schema would include. In such cases, talk-
ing about feature lists is sufficient. However, we should not make the mistake of
believing too much in the concepts we make up for experiments, which probably
drastically underestimate the complexity and richness of real-world concepts. Sche-
mata may be a better description of the latter, even if they are not required for the
former.
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The Exemplar View

The theory of concepts first proposed by Medin and Schaffer (1978) is in many
respects radically different from prior theories of concepts. In the exemplar view, the
idea that people have a representation that somehow encompasses an entire concept
is rejected. That is, one’s concept of dogs is not a definition that includes all dogs, nor
is it a list of features that are found to greater or lesser degrees in dogs. Instead, a
person’s concept of dogs is the set of dogs that the person remembers. In some sense,
there is no real concept (as normally conceived of), because there is no summary rep-
resentation that stands for all dogs. However, as we shall see, this view can account
for behaviors that in the past have been explained by summary representations.

To explain a bit more, your concept of dogs might be a set of a few hundred dog
memories that you have. Some memories might be more salient than others, and
some might be incomplete and fuzzy due to forgetting. Nonetheless, these are what
you consult when you make decisions about dogs in general. Suppose you see a new
animal walking around your yard. How would you decide that it is a dog, according
to this view? This animal bears a certain similarity to other things you have seen in
the past. It might be quite similar to one or two objects that you know about, fairly
similar to a few dozen things, and mildly similar to a hundred things. Basically,
what you do is (very quickly) consult your memory to see which things it is most
similar to. If, roughly speaking, most of the things it is similar to are dogs, then
you’ll conclude that it is a dog. So, if I see an Irish terrier poking about my garden,
this will remind me of other Irish terriers I have seen, which I know are dogs. 1
would conclude that this is therefore also a dog.

As in the prototype view, there must also be a place for similarity in this theory.
The Irish terrier in my yard is extremely similar to some dogs that I have seen, is
moderately similar to other dogs, but is mildly similar to long-haired ponies and
burros as well. It has the same general shape and size as a goat, though lacking the
horns or beard. It is in some respects reminiscent of some wolves in my memory as
well. How do I make sense of all these possible categorizations: a bunch of dogs, a
few goats, wolves, and the occasional pony or burro? Medin and Schaffer (1978)
argued that you should weight these items in your memory by how similar they are
to the item. The Irish terrier is extremely similar to some of my remembered dogs, is
moderately similar to the wolves, is only slightly similar to the goat, and only barely
similar to the ponies and burro. Therefore, when you add up all the similarities,
there is considerably more evidence for the object’s being a dog than for its being
anything else. (I will describe this process in more detail later.) So, it is not just the
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number of exemplars that an item reminds you of that determines how you catego-
rize it; just as important is how similar the object is to each memory.

How does this view explain the phenomena that the prototype view explained?
First, this theory does not say anything about defining characteristics, so the prob-
lems for the classical view are not problems for it. Second, the view has a natural
explanation for typicality phenomena. The most typical items are the ones that are
highly similar to many category members. So, a German shepherd is extremely simi-
lar to many dogs and is not so similar to other animals. A dachshund is not as sim-
ilar to other dogs, and it bears a certain resemblance to weasels and ferrets, which
count against it as a dog. A chihuahua is even less similar to most dogs, and it is
somewhat similar to rats and guinea pigs, and so it is even less typical. Basically, the
more similar an item is to remembered dogs, and the less similar it is to remembered
nondogs, the more typical it will be. Borderline cases are items that are almost
equally similar to remembered category members and noncategory members. So, a
tomato is similar to some fruit in terms of its having seeds, being round with edible
skin, and so forth, but is similar to some vegetables in terms of its taste and how it is
normally prepared.

Typical items would be categorized faster than atypical ones, because they are very
similar to a large number of category members, and so it is very easy to find evidence
for their being members. When you see a German shepherd, you can very quickly
think of many dogs you have seen that are similar to it; when you see a chihuahua,
there are fewer dogs that are similar to it. Thus, the positive evidence builds up more
quickly when an item is typical (Lamberts 1995; Nosofsky and Palmeri 1997). The
case of category intransitivity is explained in a way similar to that of the prototype
view. For example, Big Ben is similar to examples of clocks you have seen in many
respects. Clocks are similar to furniture exemplars in different respects. But Big Ben
is not very similar to most furniture exemplars (beds, dressers, couches, etc.), and so
it does not reach the categorization criterion. Whenever the basis for similarity
changes, the exemplar model can explain this kind of intransitivity.

In short, the exemplar view can explain a number of the major results that led to
the downfall of the classical view. For some people, this view is very counterintuitive.
For example, many people don’t consciously experience recalling exemplars of dogs
in deciding whether something is a dog. However, conscious experience of this sort
is not in general a reliable guide to cognitive processing. Indeed, one typically does
not have conscious experience of a definition or a list of features, either. Access to
the concept representation is often very fast and automatic. Second, some people
point out that they feel that they know things about dogs, in general, not just about



Theories 51

individual exemplars. This is a concern that will come up later as well. However,
note that what you know about dogs in general may be precisely what is most
common in the remembered exemplars. So, when you think of such exemplars, these
general characteristics are the ones that come to mind. Finally, when you first learn
a category, exemplar information may be all you encode. For example, if you went
to the zoo and saw a llama for the first time, all you know about llamas would be
dependent on that one exemplar. There would be no difference between your mem-
ory for the whole category and your memory for that one exemplar. If you saw an-
other llama a few months later, you could now form a generalization about llamas
as a whole (though the exemplar view is saying that you do not do this). But you
would clearly also remember the two llama examples as separate items. When you
saw the third llama, you might still remember parts of the first two llamas, and so
on. The question is, then, when you have seen a few dozen llamas, are you forming
a general description of llamas—as the prototype view says—or are you just getting
a better idea of what llamas are like because you have more memories to draw on—
as the exemplar view says? But at the very initial stages of learning, it seems that any
theory would have to agree that you remember the individual exemplars, or else you
would have no basis on which to form generalizations (see Ross, Perkins, and Ten-
penny 1990, for a clever twist on this idea).

A final point is that the exemplar model requires that you have specifically cate-
gorized these memories. You can easily recognize a German shepherd as a dog be-
cause it is similar to other things you have identified as dogs. If you had just seen a
lot of other German shepherds without knowing what they were, they couldn’t help
you classify this similar object. This requirement of explicit encoding will come up
again later.

Similarity calculation. Medin and Schaffer (1978) were the first to propose an
elaborate exemplar model of concepts. In addition to the exemplar aspect itself, they
also introduced a number of other ideas that were taken up by the field. One aspect
was the nature of the similarity computation used to identify similar exemplars. In
the past, most researchers had considered similarity to be an additive function of
matching and mismatching features (Tversky 1977). Medin and Schaffer, however,
proposed a multiplicative rule, which had a number of important effects on how
their model operated.

The first part of this rule (as for additive versions) requires us to identify which
aspects of two items are shared and which are different. For example, consider
Ronald Reagan and Bill Clinton. They share many aspects: Both are men, are
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Americans, were born in the twentieth century, were Presidents of the United States,
attended college, are married, and so on. They also differ in a number of aspects:
Where they were born, their ages, their political philosophies, their presidential
actions, whether they have been divorced, what kinds of clothes they wear, and so
on. For each of these matching and mismatching features, we need to decide two
things. First, how important is this dimension to determining similarity? So, how
important is it for two people to have the same or different sex? How important is
age or marital status? How important is political philosophy? We need to decide this
so that trivial differences between the two men don’t swamp our decision. For exam-
ple, perhaps neither man has been to Nogales, Arizona, but this should not count as a
very important similarity. Perhaps Ronald Reagan has never played bridge, but Bill
Clinton has. This does not seem to be an important difference. Second, for the mis-
matching features, we need to decide just how mismatching they are. For example,
the political philosophies of Clinton and Reagan are very different. Their ages are
pretty different (Reagan was the oldest president, and Clinton one of the youngest),
though both are adults, and so the difference in age is not as large as it could be.
However, their typical clothes are not so different. Clinton differs from Reagan a
great deal on political beliefs, then, moderately on age, and only a little on clothing.

In order to calculate similarity, we need to quantify both of these factors: the
importance of the dimension and the amount of similarity on a given dimension.
Medin and Schaffer suggested that the amount of mismatch of each feature should
be given a number between 0 and 1. If two items have matching features, they get a
1; if they have mismatching features, they get a number that is lower, with 0 indi-
cating the greatest possible difference on that dimension (this score is typically not
given, for reasons that will become apparent). However, the importance of the di-
mension would be represented by raising or lowering that number. For example,
suppose that Reagan’s favorite color is yellow, and Clinton’s is blue. These are very
different colors, but this dimension is not very important. Therefore, Medin and
Schaffer (1978, p. 212) suggest that we could still give this item a difference score
near to 1. By not paying attention to a difference, you are effectively acting as if the
items have the same value on that dimension. So, Medin and Schaffer’s rule combines
the importance of the dimension and the difference on that dimension in one score.

How similar are Clinton and Reagan, then? If we were to use a similarity rule like
the one used by the prototype model described above, we would take the mismatch
score of each feature and add it up for all the features (hence, an additive rule).
Things that are similar would have many matches and so would have higher scores.
Medin and Schaffer, however, suggested that we should multiply together the scores
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for each feature. Because the mismatch scores range between 0 and 1, a few mis-
matches will make overall similarity quite low. For example, suppose that Reagan
and Clinton were identical on 25 dimensions but differed on 3 dimensions. And sup-
pose that their differences on those dimensions were moderate, so that they received
mismatch scores of .5 each. The overall similarity of Clinton and Reagan would
now be only .125 on a 0-1 scale (25 scores of 1 x .5 x .5 x .5 for the three mis-
matching dimensions). This does not seem to be a very high number for two items
that are identical on 25 out of 28 dimensions. If you work through a few examples,
you will see that any mismatching feature has a large effect on diminishing similarity
when a multiplicative rule is used. That is, mismatching features actively lower simi-
larity on a multiplicative rule, but they simply do not improve it on an additive
view. (You can now see why a similarity score of 0 is seldom given. If a dimension
were given a 0, then the entire similarity of the two items is 0, since 0 multiplied by
any number is always 0. That single mismatch would result in the two items being
as different as possible.)

So far, we have been discussing how to decide the similarity of an item to a single
other item. But what if you are comparing an item to a set of exemplars in a cate-
gory? If you see an animal run across the road, and you want to decide whether to
apply the brakes to avoid hitting it with your car, you might first try to identify
what kind of animal it is (no point in risking an accident for a squirrel, you might
feel) by comparing it to exemplars of other animals you have seen. So, you would
compare it to cat exemplars, dog exemplars, raccoon exemplars, skunk exemplars,
possum exemplars, and so on. Medin and Schaffer (1978) suggested that you add up
the similarity scores for each exemplar in a category. So, if you have 150 exemplars
of dogs in memory, you add up the similarities of the observed animal to these 150
items, and this constitutes the evidence for the animal being a dog. If you have 25
possums in memory, you add up the 25 similarity scores to get the evidence for
possums, and so on. Loosely speaking, the category with the most similarity to the
item will “win” this contest. If the item is similar to a number of categories, then
you will choose each category with a probability that is proportional to the amount
of similarity it has relative to the others. So, you might decide that such an animal is
a raccoon on 60% of such cases but a skunk on 40% of the cases. For mathematical
details, see Medin and Schaffer (1978) or Nosofsky (1984).

Because of the multiplicative nature of the similarity score, the Medin and Schaffer
rule has an important property: It is best to be very similar to a few items, and it is
unhelpful to be somewhat similar to many items. Imagine for example, that this
animal was extremely similar to two other dogs you have seen, but not at all similar
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to any other dogs. The animal will have high similarity to these two items (near to
1.0), which would make the dog category have an overall similarity of almost 2.0.
Now imagine that the animal shared three features with every possum you know
(25 of them) and was different on three features with every possum. If the three
mismatching features each have mismatch values of .25, then the animal would have
a similarity of 1 x 1 x 1 x .25 x .25 x .25 to each possum, which is only .015625.
When this is added up across all 25 possums, the total similarity for the category
is only about .39—considerably less than the 2.0 for the dogs. Perhaps counter-
intuitively, the two highly similar dogs beat out the 25 somewhat similar possums.
This is because the mismatching features result in very low similarities, which
cannot easily be made up by having many such examples. In short, the Medin and
Schaffer model says that it is better to have high overlap with a few items than to
have moderate overlap with many items. This property turns out to be a critical one,
as the next chapter will reveal.?

Prototype advantages. Some empirical results initially discouraged researchers from
seriously considering exemplar approaches. One such result was the prototype ad-
vantage that was found by Posner and Keele (1968, 1970) and others. When sub-
jects learned categories by viewing distortions of a prototype (see above), they were
often better at categorizing the prototype than another new item. (Though they were
not initially better at identifying the prototype than the old items, as is commonly
repeated.) This suggested to many researchers that subjects had actively abstracted
the prototype from seeing the distortions. That is, they had learned what the items
had in common and stored this as a representation of the whole category. (Because
Posner and Keele 1968, actually started with a prototype to make the category
members, it is natural to think of subjects who are exposed to the category members
doing the same process in reverse.) But from the above discussion, you can see that
an exemplar model could easily explain this result. Perhaps the prototype is more
similar to the learned exemplars than a new, nonprototypical item is. Since the pro-
totype was the basis for making all the other items, it must be similar to all of them
to some degree, but this is not true for an arbitrary new item.

Another result was more of a problem for the exemplar view. Posner and Keele
(1970) examined categorization for items immediately after category learning and
after a one-week delay. When tested immediately, subjects were most accurate for
the specific items that they had been trained on (old items), next most accurate for
the prototype, and less accurate for new items they had not seen in training. But
when tested a week later, memory for the old items declined precipitously, whereas
the prototype suffered only a slight decrement. Posner and Keele argued that if the
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prototype advantage were due to memory for old exemplars, it should have shown
the same kind of decrement after a delay. They concluded that subjects formed a
prototype during learning, and this prototype is somehow more insulated against
memory loss than are memories for individual exemplars (perhaps because the pro-
totype is based on many presented items, not just one). A similar effect was reported
by Strange, Keeney, Kessel, and Jenkins (1970), and Bomba and Siqueland (1983)
found the same effect in infants. There are other variables that have similar effects.
For example, as more and more exemplars are learned for a category, the memory
for old items decreases, but the prototype advantage generally increases (e.g., Knapp
and Anderson 1984). If prototype performance is caused by memory for specific
exemplars, how could performance on the prototype and old exemplars go in dif-
ferent directions?

An explanation for this kind of result was given by Medin and Schaffer (1978).
First, consider why it is that in many cases with immediate testing, old exemplars
are remembered best of all. This must be because when the item is presented at test,
it results in the retrieval of itself. That is, when item 9 is presented at test, you re-
member having seen it before, and this makes you particularly fast and accurate at
categorizing it. If you forgot this particular item, then it would no longer have this
good performance, because it must be less similar to any other item than it is to
itself. Over time, however, this loss of memory is just what happens. So, perhaps
item 9 was a red circle over a green square. Even though you learned this item dur-
ing the first part of an experiment, after a week’s delay, this memory would be
degraded. Perhaps you would only remember that it was a red circle over something
green. Now when you get item 9 at test, it is not so very similar to its own memory,
because that memory has changed. Similarly, if you learned 25 items as being in
category A, your memory for each individual item will not be as good as if you only
learned 4 items in this category. As you learn more and more, there is interference
among the items which causes the exemplar memory for any one of them to be less
accurate. This explains the decrements obtained in performance on old items.

What happens when you present the prototype (which was never seen during
learning) at test? If it is an immediate test, the prototype is fairly similar to many
items in the category, and so it is easy to categorize. However, it is not identical to
any individual item, and so it is still not as fast as the old exemplars are. So, the
advantage of old items over prototypes on immediate test is, according to the ex-
emplar model, caused by the fact that the former has a perfect match in memory but
the latter does not. (Note that this explanation relies on the exemplar model’s
weighting close similarity to one item more than moderate similarity to many items.)
At delayed testing, the prototype is still very similar to a number of items. In fact,
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Chapter 3

Calculating Similarity According to the Context Model

Imagine that you have been learning categories made up of geometric figures printed on
cards. Each figure is defined by shape, color, size, and position (left or right on the
card). After you’ve learned the categories, suppose you’re shown a new item, a large,
green triangle on the left of the card. How do you calculate its similarity to the other
items in order to decide its membership? The discussion in the main text gives the gen-
eral outline of how this would be done. This box describes in a bit more detail how this
is actually calculated in experiments that attempt to derive exact predictions for the
context model.

Given the large green triangle on the left, one would have to compare it to each
remembered exemplar. Suppose that you also remember seeing a large blue triangle on
the right. We need to decide the matching and mismatching value for each dimension to
see how similar it is. The two stimuli match on two dimensions, size and shape, and so
these will be given values of 1.0. The two stimuli mismatch on two dimensions, and so
these will be given values of s (for color) and s, (for position). The s. indicates how
similar the green of one stimulus is to the blue of the other stimulus. If these are con-
sidered fairly similar, the value will be close to 1; if they are considered rather different,
then the value would be closer to 0. The s, correspondingly indicates how similar the
left and right positions are. By using the multiplicative rule, we can calculate the entire
similarity of these two stimuli as 1 x 1 X s, X sc. The problem is, how do we know
exactly what s, and s. are so that we can come up with an actual number? In general,
the answer is that these numbers will be calculated from the results of the experiment
itself. For example, we can see how likely people are to categorize an item that is just
like a learned item but differs in color; and we can see how likely people are to catego-
rize an item that is just like a learned item but differs in shape; and so on. By using a
mathematical modeling program, researchers in this area can put in the expected for-
mulas for each item (i.e., how similar each test item is to each learned item according to
the multiplication rule), and the program will provide the values of s, s., and the other
similarities that make the model perform as well as possible. These are called free
parameters of a model, because they are estimated from the data, rather than being
stated by the theory in advance. (Other theories also have free parameters. For exam-
ple, I said that prototype theory often has weights on how important each feature is for
a category. These could be estimated from the data as free parameters, though they
could also be directly measured through means analogous to those described in the next
paragraph.)

Unfortunately, this is not entirely the end. Recall that Medin and Schaffer also dis-
cussed the possibility that some dimensions might be attended to more than others.
Suppose, for example, that subjects never paid attention to the position of the figures
for some reason, perhaps not thinking that it was relevant. Now, the value for s, that
we calculate by the above procedure would include both the intrinsic similarity of the
items and the attention that subjects give to it. If subjects really ignored position, then
sp would equal 1—suggesting that the right and left positions were viewed as identical.
That is, there is no way to separate the mismatch score from the amount of attention
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continued

that people pay to that dimension, because both are being used by subjects to make
categorization decisions. This is not necessarily a problem, but sometimes one does
wish to know what the real similarities are, separately from knowing which dimensions
subjects paid more attention to.

One way to handle this concern is to choose the stimulus differences so that they are
known to be equally different in different dimensions. For example, by asking different
subjects to provide similarity ratings, it might be possible to choose a size difference
(values for the large and small items) that is psychologically the same size as the color
difference (between the particular values of blue and green), which is also equal to the
shape difference, and so on. The experimenter can ask subjects to rate the similarity of
all the stimuli before doing a categorization experiment. Then he or she can choose
stimulus values that are equated, or at least the relative values of s, s, and the rest can
be measured. Unfortunately, this technique cannot tell us how much attention people
pay to each dimension during learning—only how similar the stimulus values are per-
ceptually. To discover any attentional differences, one must still estimate the s parame-
ters from the main experiment.

Calculating the exact predictions for these models is not something that can easily be
done with paper and pencil, as can be seen by this description. The actual calculations
of the s values and therefore the model’s precise predictions is almost always done in
conjunction with a mathematical modeling program. In other cases, the properties of
the models can be illuminated by proofs using the general form of the similarity rule
(e.g., Nosofsky 1984; 1992). But these are not tasks for beginners.

because some of the specific information about the old items has been lost, they may
now seem even more similar to the prototype than they did before. For example,
suppose that the prototype was a red circle over a green triangle. This matched item
9 to a large degree, since the two differed only in the shape of the bottom figure.
After forgetting, though, the memory for item 9 actually matches the prototype
more than before, because there is no longer a conflict between the square in item 9,
which has been forgotten, and the triangle in the prototype. In short, the effect of
forgetting is to make the old test items less similar to their own memories, but it has
less effect (or even the opposite effect) on the prototype.

Hintzman and Ludlam (1980) performed simulations of an exemplar model
showing that the above explanation could in fact explain why exemplar memory
and prototype memory have separate time courses. They showed that as forgetting
occurred, old items became steadily less similar to the remembered exemplars, but
prototypes retained their similarity to exemplars for the most part. (See also Hintz-
man 1986, for a more complete modeling effort.) In short, even if performance is
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based only on remembered exemplars, prototype effects will occur because proto-
types are quite similar to a number of exemplars. One does not need to propose a
summary representation of a category in order to explain prototype effects.

What Is an Exemplar?

For some time now, I have been discussing “exemplars” and the view of concepts
based on them. However, I have not yet precisely said what these entities are. To
some degree, this question has been left open by the proponents of this view. For
example, suppose that I see a squirrel run across a lawn while I walk in to work
today. Does this brief glimpse of a squirrel constitute an exemplar, even if I don’t
pay much attention to it? I have seen hundreds, perhaps thousands of squirrels in
this way. Are all these exemplars stored in memory? (And are they stored as squir-
rels? As explained above, encoding the exemplar’s category is required for it to in-
fluence categorization.) The exemplar view of concepts does not necessarily have an
answer to this question, which is in part an issue of memory in general (not just
concepts). It would have to say that if I did notice and remember that squirrel, then
it could have an effect on the way I identify later animals as squirrels. If the squirrel
is not encoded into memory or is forgotten, then it clearly can have no effect. But a
theory of concepts cannot say exactly what everyone will and will not remember.

There is another, deeper question about exemplars, namely how an exemplar is to
be defined. Consider this example. Suppose that I know a bulldog that drools a
great deal named Wilbur. In fact, this bulldog lives next door to me, and so I have
many opportunities to see him drool. I have seen other bulldogs, some of which
appear to be drooling, and some of which do not. How do I decide, now, whether a
friend of mine, who is complaining about her new dog’s drooling, has a bulldog?
According to the exemplar view, I would have to retrieve all the dog exemplars that
I know that drool (no small number), and then essentially count up how many of
them are bulldogs. But in retrieving these exemplars, how do I count Wilbur? Does
he count once, because he is only one dog, or does each encounter with Wilbur
count separately? Put in more formal terms, do I count types (Wilbur) or tokens
(Wilbur-encounters)?

In terms of making an accurate decision, it seems clear that I should only count
Wilbur as a type—he should only count as one dog. If I count up every Wilbur
encounter as another exemplar, then the fact that a (drooling) bulldog lives next to
me is having a large effect on my decision; if a labrador lived next to me, I would
have many, many fewer such exemplars. However, which kind of dog happens to be
living next door is not relevant to the question of whether a drooling dog is a bull-
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dog. Or, to put it another way, how often I happen to see one particular bulldog
should not greatly influence my decisions about bulldogs in general.

Nosofsky (1988) addressed this question in an experiment using colored patches as
stimuli. The patches varied in how saturated and bright the colors were: The more
saturated and bright colors tended to be in one category, and the less saturated and
bright colors in another. He varied the frequency with which items were presented:
One of the items was presented five times as often as the other items during learning.
If each exemplar is considered as a type, then this frequency manipulation should
not influence later category decisions. The fact that one color keeps reappearing
would be like the fact that I live next door to Wilbur, not a relevant indication of the
category in general. But if exemplars are defined as tokens, then stimuli that were
like the more frequent item would be better category examples than stimuli that
were like other, less frequent items, because there would be “more exemplars”
remembered for the more frequent one. This is exactly what Nosofsky found. After
learning, he showed subjects the items and asked them to rate their typicality. The
more frequent item and other items that were close to it were rated as being more
typical than the less frequent items. By this result, then, an exemplar is not an actual
thing but rather the encounter with a thing. So, if I encounter Wilbur a hundred
times, this creates 100 exemplars, not just one. Nosofsky also provided a simulation
of the exemplar model, showing that it accounted for the results much better if it
considered each presentation of the stimulus as an exemplar, rather than each type
as being an exemplar.

Barsalou, Huttenlocher, and Lamberts (1998) raised a possible problem with this
interpretation of Nosofsky’s experiment. They pointed out that we do not know
what subjects thought about the reappearing colors. Perhaps they thought that the
stimuli were somehow different objects even if they looked identical. (It is difficult
to know how to interpret the reappearance of these items, since they were color
patches rather than objects.) Furthermore, as color patches are difficult to remember
precisely, perhaps people did not realize that exactly the same item was being shown
so often. Perhaps they thought that the colors were slightly different. If so, then they
would naturally count them as separate exemplars.

Barsalou et al. performed a clever experiment in which they showed two groups
of subjects the exact same stimuli during learning, but they varied whether subjects
thought that each stimulus was unique, or whether they were seeing some of the
items multiple times. Under most conditions, they found that this manipulation had
virtually no effect on the concepts people formed; the very frequent exemplar had
a strong effect in both conditions. That is, to return to my example, it makes no
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difference whether I think ’'m seeing 100 different bulldogs or one bulldog 100
times—the effect on my concept of bulldogs is the same.? As Barsalou et al. point
out, this has implications for prototype models as well as for exemplar models of
concepts. In both cases, the theory needs to specify how units are counted up (how
many featuresfexemplars have been viewed), and the empirical results suggest that it
is encounters with objects that are most important, rather than the objects themselves.

The Knowledge Approach

The discussion of the final major theory is actually a bit premature for the present
chapter. The prototype and exemplar models arose from the ashes of the classical
view, and they were designed to account for the data that were so problematic for
that view. The knowledge approach in contrast arose as a reaction to the two other
approaches, and it is in some sense built upon them. As a result, we have not yet
discussed the experimental results that led to this view, nor are we ready to do so
now. A later chapter (chapter 6) provides a more detailed exposition of this account.
Nonetheless, it will be useful to have this approach in mind when reading the next
few chapters, and so I will give a somewhat brief description of this view now,
without providing much of the experimental evidence.

The knowledge approach argues that concepts are part of our general knowledge
about the world. We do not learn concepts in isolation from everything else (as is
the case in many psychology experiments); rather, we learn them as part of our over-
all understanding of the world around us. When we learn concepts about animals,
this information is integrated with our general knowledge about biology, about be-
havior, and other relevant domains (perhaps cuisine, ecology, climate, and so on).
This relation works both ways: Concepts are influenced by what we already know,
but a new concept can also effect a change in our general knowledge. Thus, if you
learn a surprising fact about a new kind of animal, this could change what you
thought about biology in general (e.g., if you learn that snails are hermaphrodites,
your knowledge about sexual reproduction in general could be affected); and if
something you learn about a new animal doesn’t fit with your general knowledge,
you may have cause to question it or to give it less weight. (Could snails really be
hermaphrodites? Maybe you just misunderstood. Best to say nothing and hope they
go away.) In general, then, the knowledge approach emphasizes that concepts are
part and parcel of your general knowledge of the world, and so there is pressure for
concepts to be consistent with whatever else you know (Keil 1989; Murphy and
Medin 1985). In order to maintain such consistency, part of categorization and



Theories 61

other conceptual processes may be a reasoning process that infers properties or
constructs explanations from general knowledge.

Let me just give a simple example of the kind of knowledge involved here. One
area of knowledge that is often studied in research from this perspective is that of
biology. We know things about evolution, reproduction, physiology, and ecology,
part of which we have just learned “naively” (on our own or informally from
parents), and part of which we learned through more formal study. However, even
young children seem to have basic ideas about biology (Gelman and Wellman 1991;
Keil 1989) that they use in making judgments of the following sort. If a child sees a
fuzzy, gray, tiny animal paddling around after a large, white, goose, the child may
conclude that the animal must be a goose as well, even though it looks very different
from other geese it has seen. Apparently, the child is using the logic: “Babies are
smaller than their parents, and they often stick close to their parents. Any baby of a
goose must itself be a goose. So, this much smaller animal could well be a baby,
even though it looks rather different from the goose, and so it is also a goose.” Of
course, the child doesn’t say this out loud, but there is reason to think that children
are sensitive to notions of inheritance and parentage—basic biological properties
that then influence their categorizations. In general, this approach says that people
use their prior knowledge to reason about an example in order to decide what cate-
gory it is, or in order to learn a new category.

In one description, this aspect of concepts was referred to as “mental theories
about the world” (Murphy and Medin 1985), which is accurate enough if one
understands that people’s naive theories are incomplete and in some cases contra-
dictory, given our incomplete knowledge and understanding of the things around
us. The child in the above example doesn’t have a complete theory of biology but
does know some basic facts and principles that are partly integrated. Thus, this
approach is sometimes called the theory view (or even the theory theory by those
less easily embarrassed than I am). However, the term theory suggests to many
something more like an official scientific theory, which is probably not an accurate
description of people’s knowledge (see, e.g., Gentner and Stevens 1983). This has
caused some confusion about exactly what the approach is claiming, so I will tend
to use the term knowledge rather than theory, to avoid this potential confusion.

Some of the discussion of schemata discussed in the prototype view is relevant
here as well. For example, one reason given for using schemata for representing
concepts was that they can represent relations between features and dimensions.
This is just one way of representing knowledge about the domain. For example, we
may know that animals without wings cannot fly, and so there may be a relation
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between the schema slot describing body parts and the slot describing behaviors that
manifests this relation.

One of the studies on typicality described in some detail in the previous chapter
was also a motivation for the knowledge view, namely, Barsalou (1985). Recall that
Barsalou found that ideals are important to determining typicality. For example,
something might be considered a good example of a weapon to the degree that it
was an efficient way to hurt or kill people. This “ideal” weapon is not the average
value of all weapons, because most weapons are less than ideal on this account (e.g.,
a knife requires close distance, accurate handling, and can only cut one person at a
time). Barsalou found that items that were closer to the ideal were more typical than
items that were farther away, and this was true even when family resemblance was
first factored into the typicality judgment. This influence of ideals cannot, then, re-
flect just pure observation of the category, as a prototype or exemplar approach
might claim. If people relied on the weapons they had seen or heard about, they
would find only moderately effective devices to be the most typical weapons. Simi-
larly, they would expect only moderately efficient people-movers to be good vehicles,
since on average, vehicles are by no means ideal people-movers.

Where do these ideals for categories come from, then? Most likely they come
from our knowledge of how each category fits in with other parts of our lives—its
place in our greater understanding of the world. We know that vehicles are made so
that people can be moved from place to place. Therefore, the most typical vehicles
would do this in the best possible way. We know that weapons are created in order
to hurt (or threaten to hurt) other people. Therefore, the most typical ones are the
ones that do this in an effective way. Furthermore, we can apply our general
knowledge to evaluate how well different vehicles and weapons actually fulfill these
functions.

The importance of such knowledge can be illustrated even more by a kind of cat-
egory that Barsalou (1985) called goal-derived categories. These are categories that
are defined solely in terms of how their members fulfill some desired goal or plan,
for example, things to eat on a diet, things to take from one’s house during a fire,
good birthday presents, and so on. For goal-derived categories, very little of the
category structure is explained by family resemblance. For example, things to eat on
a diet might include celery, sugar-free jello, diet soda, baked potatoes, baked fish,
and skim milk. These items differ in many respects. They are much less similar to
one another than normal food categories such as dairy products or meats, yet, they
are all within the same category by being things that people eat while on a diet.
Here, the ideal is something like having the smallest number of calories or the least
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fat. So, celery is an excellent example of things to eat on a diet, because it has vir-
tually no fat and is extremely low in calories. Bread is a fairly good example, though
it has somewhat more calories and fat. Fruit juice might be a moderate example,
since it is low in fat but not particularly low in calories. And ice cream would be a
bad example. Barsalou found that the most typical examples of goal-derived cate-
gories were the ones that were closest to the ideal. Family resemblance did not ex-
plain a significant portion of the variance. This is an extreme case in which an item’s
place in a larger knowledge structure is perhaps the most important aspect of cate-
gory membership, and the “average” properties of the category members count for
little. For example, the best food to eat on a diet would be a filling food with no
calories, fat or other bad ingredients. However, these properties are by no means the
most frequent ones of foods that people actually eat while on diets. So, this ideal
seems to be imposed by our understanding of what the category is supposed to be,
which is in turn driven by our understanding of how it fits into the rest of what we
know about foods and their effects on our bodies. The ideal cannot be derived from
just observing examples and noting the features that occur most. Although the goal-
derived categories are an extreme example of this (because the members have very
little in common besides the ideal), Barsalou found evidence for the importance of
ideals in common categories as well (see previous chapter). Also, recall that Lynch
et al. (2000) found a similar pattern for the category of trees; many other related
examples will be described in chapter 6.

One of the themes of the knowledge approach, then, is that people do not rely on
simple observation or feature learning in order to learn new concepts. They pay at-
tention to the features that their prior knowledge says are the important ones. They
may make inferences and add information that is not actually observed in the item
itself. Their knowledge is used in an active way to shape what is learned and how
that information is used after learning. This aspect of the theory will be expounded
in greater detail in chapter 6.

One clear limitation of the knowledge approach should already be apparent:
Much of a concept cannot be based on previous knowledge. For example, you
might have previous knowledge that helps you to understand why an airplane has
wings, how this relates to its ability to fly, what the jets or propellers do, and so on.
However, it is probably only by actual observation of planes that you would learn
where propellers are normally located, what shape the windows are, that the seats
usually provide no lower back support, and so on, because these things are not
predictable from your knowledge before learning the category. Or, in other cases,
it is only after observing some category members that you know what knowledge
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is relevant and can only then use it to understand the category (see Murphy 2000,
for a discussion). So, the knowledge approach does not attempt to explain all of
concept acquisition by reference to general knowledge; it must also assume a
learning mechanism that is based on experience. However, this approach has not
incorporated any empirical learning mechanism. This may be seen as a shortcoming
of the knowledge approach, or one can view the empirical learning process as sim-
ply being a different problem. That is, proponents of the knowledge approach are
pointing out the ways that prior knowledge influences the learning of a new con-
cept, and other aspects of learning are not part of the phenomena they are trying to
explain. However, it should be clear that a complete account requires an integrated
explanation of all aspects of concept learning. Furthermore, we should not neces-
sarily assume that the empirical and knowledge-based learning components will be
easily separable modules. It is possible that the two interact in a complex way so
that one must study them together to understand either one (Wisniewski and Medin
1994). However, that discussion must await a later chapter.

Conclusions

It is too early in this book to evaluate these different approaches. However, it is
worth emphasizing that none of them suffers from the problems of the classical
approach. All of them actively predict that categories will have gradations of typi-
cality and that there will be borderline cases. Unlike the later revisions of the classical
model (discussed in the previous chapter; e.g., Armstrong, Gleitman, and Gleitman
1983), these theories claim category fuzziness as an integral part of conceptual pro-
cessing, rather than an unhappy influence of something that is not the “true” con-
cept. This is because similarity of items is inherently continuous. Category members
will be more or less similar to one another and to their prototype, and this gradation
of similarity leads to typicality differences, RT differences in judgments, and learning
differences. Similarly, whether an item is consistent with one’s knowledge in a com-
plex domain is not an all-or-none matter but often a question of relative consistency.
Thus, unlike for the classical view, typicality phenomena are not a nuisance to be
explained away, but are rather inherent to the working of these approaches.
Another point to be made about each of these approaches is that they are not as
entirely self-sufficient as one might like. For example, the prototype view does not
deny that people learn and remember exemplars. Clearly, if Wilbur, the bulldog,
lives next door to me, and I see him many times per week, I will be able to identify
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him and his peculiar attributes. And, as already mentioned, the first time one
encounters a category member, the only prototype one can form would be based on
that single exemplar. Thus, exemplar knowledge and prototype knowledge must
exist side by side to at least some degree, according to prototype theory. The general
claim of that theory, however, is that for mature categories, people rely on summary
representations of the entire category rather than specific exemplars in making judg-
ments about the concept.

Similarly, I pointed out that the knowledge approach focuses on one important (it
claims) aspect of learning and representing concepts. However, it must admit that
there is an empirical learning component to concepts, if only to explain the results
of psychological experiments that use artificial stimuli that are removed from any
knowledge. It is likely, then, that this view will have to be combined with one of the
other views in order to form a complete theory of concepts. Finally, exemplar theo-
rists might also agree that there must be a level of general knowledge that is separate
from exemplar knowledge and that affects concepts and their use (though in fact
most have not addressed this issue). For example, one could argue that facts such as
whales being mammals are school-learned general facts, rather than something one
learns from seeing many whale exemplars. But of course one does see whale exem-
plars occasionally too. So, in answering questions about whales, some information
might come from the exemplars and some from general knowledge.

This mixture of different kinds of conceptual knowledge makes it difficult to
evaluate the different theories. The result in the field has been to focus on certain
experimental paradigms in which such mixtures would be expected to be less likely.
However, for real-life concepts, we would do best not to assume that a single form
of conceptual representation will account for everything.

APPENDIX: THE GENERALIZED CONTEXT MODEL

The body of this chapter has discussed the Context Model, proposed by Medin and
Schaffer (1978), as the most influential version of the exemplar approach. However,
in more recent times, Robert Nosofsky’s enhancement of this, the Generalized
Context Model or GCM, has been more widely cited and tested. This model has a
number of different forms, as it has developed over years of investigation. The pur-
pose of this appendix is to describe it in more detail and to give an idea of how it

works. For more formal descriptions, see Nosofsky (1992) or Nosofsky and Palmeri
(1997).
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Overview

Recall that exemplar models argue that you categorize objects by comparing them
to remembered exemplars whose categories you have already encoded. The more
similar the object is to exemplars in a given category, the more likely it is to be cate-
gorized into that category. The categorization process can be thought of as having
three parts. First, one must calculate the distance between the exemplar of interest
and all the other exemplars. In the Medin and Schaffer (1978) model, this was done
by the multiplicative rule described in the main chapter. In the GCM, this is done
by a more general distance metric. Second, this distance metric is scaled in a way
that has the effect of weighting close similarity much more than moderate similarity.
Third, once one has all these similarities of the object to known exemplars, one must
decide which category the object is in. This involves a fairly simple comparison of
the exemplar similarities of the different categories involved.

The formulas involved in the GCM can be difficult if you aren’t familiar with
them. I personally am not a math modeling expert, and it has taken me some time to
understand them (to the degree that I do). This chapter will help you begin to under-
stand the model. However, to reach a fuller appreciation, I would recommend that
when you read individual papers that describe this or other models, you resist the
very natural temptation to skip over all the formulas. If you read these formulas and
the authors’ explanations of them in four or five different papers, you will eventually
find (perhaps to your amazement) that you understand what they are talking about.
So, don’t give up just because it all seems so complicated here. I describe the three
parts of the GCM in the following sections.

Distance Calculations

The basic idea of exemplar models is that an object brings to mind other similar
exemplars. To measure this, the model calculates the psychological distance between
the object to be categorized (usually called i below) and all the known exemplars, in
order to identify which exemplars are going to be brought to mind.

In order to compare various stimuli, the GCM assumes that they have been broken
into dimensions of some kind. This could be because they are items that have been
constructed according to certain dimensions (color, size, position on a card, etc.) that
subjects would be sensitive to. In other cases, one may have psychological dimen-
sions of the stimuli that are derived from a scaling program, such as multidimen-
sional scaling. For example, using multidimensional scaling, Rips, Shoben, and
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Smith (1973) discovered that animals were thought to be similar based on their size
and predacity. The scaling program provided the values of each item on each di-
mension, and these would be used to calculate similarity. The distance between any
two objects is a function of how far apart they are on each dimension.

Equation (1) shows how the GCM calculates the distance between two items, i
and j, when the dimensions of the objects are known. (Think of i as being the object
to be categorized, and j one of the remembered exemplars.) It is essentially the same
as the Euclidean distance between two points in space, from high-school geometry.

dij = \/Zwm|ximx/m2 (1)

For each dimension m of the items (either a physical dimension or one from a multi-

dimensional scaling solution), you calculate the difference between the items (x; — x;)
and square it. Then this number is multiplied by the weight for that dimension
(). So, important dimensions will be counted more heavily than less important
dimensions. (In the original context model, this was reflected in the mismatch values.
The GCM more clearly separates psychological similarity from dimensional impor-
tance in categorization.) These numbers are added up for all the 2 dimensions, and
the square root is taken. The main difference between this and simple Euclidean
distance is the weighting of the dimensions. In calculating real distances, no spatial
dimension is weighted more than any other. In the GCM, the w values for each di-
mension are a free parameter—that is, they are calculated from the data themselves
rather than being specified by the model. Kruschke’s (1992) influential ALCOVE
model (based on the GCM to a large degree) provides a connectionist mechanism
that actually learns which dimensions are important.

I should note that this particular form of the distance metric can vary in different
studies. (Those who are just trying to get the basic idea of this model should defi-
nitely skip this paragraph.) Note that we squared the differences on each dimension
and then took the square root of the sum. That is, we raised the distance to the
power 2 and then raised the sum to the power 1/2 (that’s a square root). Distance
metrics in general raise the separation by some power and then the sum to one over
that power. The number 2 is only one such number that could be used. We could
have used the number 1—that is, raise the distances to the power of 1 (i.e., do
nothing) and taken the sum to the power of 1/1 (i.e., do nothing again). This would
give us the “city block” metric, in which the distance between two points is the sum
of their distances on each dimension. This is called the city block metric, because
one does not form hypotenuses for distances—one cannot cut through a city block.
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To get from 40th Street and Second Avenue to 43rd Street and Sixth Avenue, one
must walk three blocks north and four blocks west, resulting in seven total blocks
(let’s assume the blocks are squares). By Euclidean distance, the shortest distance
connecting these points (cutting across) would be only five blocks. For some stimu-
lus dimensions, the city block metric seems most appropriate, whereas for others,
Euclidean distance works best.* And for still others, some number in between is
most appropriate. Thus, this difference between dimensions can be made into a
variable (usually called Minkowski’s 7), which is altered depending on the nature of
the stimuli. So, you may see something like equation (1) with rs and 1/rs in it.

Turning Distances into Similarity

Unfortunately, we are still not done with deciding the psychological distance be-
tween two items. Research has shown that behavioral similarity between items is
an exponentially decreasing function of their psychological distance (Shepard 1987).
For example, if rats learn to produce a response to a certain colored light, other
lights will elicit the same response as a function of the exponential distance between
the test light and the original. The exponential function has the effect that things
that are extremely close to the object have a large effect, which falls off very quickly
as things become moderately and less similar. Recall that Medin and Schaffer (1978)
used a multiplicative rule so that objects that are moderately different would have
little effect on categorization decisions. The exponential function does the same
thing.

As shown in equation (2), the distance scores derived from equation (1) are input
to the exponential function, producing a similarity score, s.

Sij = exp(—c . di/‘) (2)

Note that exp(x) means to raise e to the xth power, e*, and that exp(—x) = 1/e*.
Therefore, the bigger x gets, the smaller exp(—x) gets. In equation (2), this means
that the greater the distance between i and j, the smaller the similarity, since the
distance is being negated. When distance is O (i.e., two stimuli are identical), s would
equal 1.0; otherwise, s falls between 0 and 1. The variable ¢ basically determines the
spread of similarity by modulating the effect of distance. Sometimes people seem to
pay attention to only very close similarity, and other times people take into account
even fairly weak similarity. A high value of ¢ corresponds to the former situation,
and a low value corresponds to the latter. If ¢ is very high, then the exemplar model
is essentially requiring that an item be identical to a known exemplar, because any
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distance between i and j would be multiplied by a high number, resulting in a low
similarity. If ¢ is very low, then the similarity to all known items is used. Usually, c is
a free parameter estimated from the data.

Making the Decision

In order to make a categorization decision, one has to decide which category exem-
plars are most like the object being categorized, i. If the object is similar to many
dogs, a few cats, and one burro, then it is probably a dog. The GCM does this by
looking at the object’s similarity to all objects in every category, and then comparing
the similarity of one category to that of all the others. In the previous sections, we
calculated the similarity of the object to every other exemplar. If you were to add up
all these similarity scores, you would know the total pool of similarity this object
has to everything. The GCM uses something called the Luce Choice Axiom to turn
this similarity into a response. The Luce Choice Axiom basically asks how much of
the total pool of similarity comes from dogs, how much from cats, and how much
from burros, and then turns those answers into response probabilities. Equation (3)
calculates the probability that the object, 7, will be placed into each category, J.

P(T1i) = s / [Z Zsik] 3)
jel K keK

The numerator is the similarity of i to all the members ; of category J (as calculated
in equation (2)). The more similar the item is to known exemplars in J, the higher
this probability. The denominator is the similarity of i to members of all known
categories (K), the total pool of similarity mentioned above. In English, then, equa-
tion (3) is the ratio of the similarity of i to all the things in J to the total similarity
pool.’ Continuing the previous example, if i is mostly similar to dogs, then perhaps
P(dog|i) = .75, because dogs have 75% of the total similarity for this object. And
perhaps P(cat|i) = .20, because the object is similar to a few cats. And because you
once saw a very strange burro, P(burro | i) = .05. What the Luce Choice Axiom says
is that you should call this object a dog 75% of the time, a cat 25% of the time, and
a burro 5% of the time.

Note that this formula is probabilistic. It doesn’t say that people will always cate-
gorize i into the category with the highest score. Instead, it says that their catego-
rization will match the probability score. This behavior is not entirely rational. If it
is 75 percent likely that 7 is a dog, then I should obviously categorize it as a dog
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whenever I see it, because it is much more likely to be a dog than a cat or a burro,
based on my own experience. Any other response is much less likely. However,
people tend to do probability matching in these situations, in which they give less
likely responses a proportional number of times, rather than always choosing the
most likely answer. This behavior is found in many choice tasks in both humans and
other animals.

Later versions of the GCM have sometimes incorporated another parameter pro-
posed by Ashby and Maddox (1993), called gamma, which relates to the probability
matching phenomenon. To do this, the numerator of (3) is raised to the gamma
power, and the inside term of the denominator (>, g si) is also raised to that
power. (The exact value of gamma is usually a free parameter.) That is, once one
has calculated the total similarity of i to a category, that similarity is raised to the
power gamma. Gamma has the effect of varying the amount of determinacy in sub-
jects’ responses. When gamma is 1, the categorization rule has the characteristics
mentioned earlier: Subjects respond proportionally to the probability. When gamma
is higher, they respond more deterministically: They tend to choose the most likely
category more. This is because the similarity values are less than 1, so raising them
to a high power tends to decrease the small values almost to 0, thereby benefiting
the larger values.

See how simple it all is? No? Well, you are not alone. Although all this may be
confusing on first reading, if one simply focuses on one variable or equation at a
time, one can usually understand how it works. Attempting to keep the entire GCM
in one’s head at a time is pretty much impossible, so do not be too discouraged if
you don’t feel that you get it. Especially at the beginning, you can probably only
understand it piece by piece.

Although the GCM has been extremely successful in modeling results of catego-
rization experiments, one criticism of it has been that it is too powerful. The com-
plexity of the model and the number of parameters it has makes it very good at
fitting data, even if the data are exactly what would be predicted by a prototype
model (Smith and Minda 2000). Perhaps because it is a rather late addition to the
model, gamma has struck some in the field as being a dubious construct. Some crit-
ics feel that it is simply a free parameter that lets the GCM account for data that
could not previously be accounted for, without any clear psychological evidence
that determinacy of responding is a variable that changes systematically. However,
this level of argument is far beyond that of the present discussion. See the inter-
change between Smith and Minda (2000) and Nosofsky (2000) for discussion and
references.
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Whatever the criticisms of it, the GCM has been an extremely influential catego-
rization model. What should now be obvious is that there is a lot more to the GCM
than simply saying that people remember exemplars. There are many assumptions
about how similarity is calculated, how decisions are made, and what variables af-
fect performance that go far beyond the simple claim of exemplar representations of
concepts. Thus, the model’s successes and failures cannot be taken as direct evidence
for and against exemplars alone.
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4

Exemplar Effects and Theories

Seeing a striking similarity between a new dog and my golden retriever, I would be confident
(if asked) that it was a dog, be hesitant to give it food that my dog (atypically for dogs) does
not like, and slow to think of the possibility of it chasing cars, which my virtuous dog never
does. Upon reflection I would acknowledge that a sample of one is a bit small, but this voice
of rationality would, under many circumstances, come decidedly second.

—Brooks (1987), p. 142

Perhaps the most basic assumption of traditional views of concepts is that they are
summary representations of a class of entities. The Classical View clearly embraced
this assumption by proposing that concepts are represented as necessary and suffi-
cient properties of the entire class. If all dogs have some features in common that are
not in turn shared with other animals, then we can obviously give a summary de-
scription of this potentially infinite set of entities. When Prototype Theory criticized
the Classical View, it attacked the necessity and sufficiency of the class’s properties,
but it did not question the notion that the representation of the dog concept is a
description that applies to dogs in general. Indeed, a summary representation view is
probably necessary in order to make sense of quantified statements (much beloved
of philosophers and other proponents of the classical view) like ““all dogs have four
legs” or “no dog has lungs.” How can such statements be represented within one’s
conceptual system except by a summary representation of dogs? Prototype theorists
would argue that there are few features that all members of a category have, but
their representations involve a general listing of features that most or many of the
members have. And this list is a description of the category as a whole, rather than
of particular members.

In this context, the proposal of Medin and Schaffer (1978) that concepts may be
represented in terms of remembered exemplars was truly radical. Although propo-
nents of this view may not, when pressed on the issue, claim that there are no sum-
mary representations (e.g., Smith and Medin 1981, p. 160), they do argue strongly
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that many phenomena usually ascribed to prototype representations can be explained
by exemplar memories. The power of their arguments is often not fully appreciated
outside of the field. To some people, the fact that children, say, can learn a word
from one example and then apply it to a novel example shows that they must have
formed a general representation of the word meaning rather than an exemplar-
based representation. However, as reviewed in chapter 3, this is not correct. In fact,
what is impressive about exemplar theory is how well it can explain generalization
to novel examples and situations. And what is unique to exemplar theory is how it
explains the limitations of that generalization—how properties learned of a class or
set of exemplars are sometimes not extended to all category members. These limi-
tations (discussed in the exemplar effects section below) are not part of our naive
thinking about concept and word use, and the research revealing them is an impor-
tant contribution to our understanding of concepts.

Chapter Organization

This chapter will discuss two rather different approaches to this issue. The first tra-
dition, which I call exemplar effects, is the attempt to show that when people cate-
gorize an item, they use a particular remembered exemplar to make this decision.
So, when I go to a store and identify something as a portable compact disc player, I
may do so by accessing the memory of my own portable CD player, or another one
that I’ve seen before that is particularly similar to this new one. My identification
may be greatly influenced by even unimportant similarities, such as a manufacturer’s
label on the cover. Research on exemplar effects has generally not been formalized
in mathematical or computational models. The second tradition, which I call exem-
plar models, involves the comparison of formal, usually mathematical models of
category representation and the categorization process. Here, specific instantiations
of exemplar theory are tested and compared to other instantiations or to prototype
models. These models were introduced in the previous chapter.

The reason I separate these two traditions is twofold. First, the kind of experiment
that is carried out in the two is quite different. In the exemplar effect tradition,
experiments examine variables that influence the access of specific exemplars. The
general goal is to show that the categorization of stimulus X involves retrieving
a remembered exemplar Y. Exemplar model experiments usually do not show that
one exemplar in particular was used to make this decision (in fact, they may claim
that multiple exemplars were remembered). Instead, they attempt to compare the
predictions of various models for how difficult it was to learn (or categorize) each
stimulus in the set. Thus, the main dependent measure of interest is how well each
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model fits the results as a whole. This abstract description is no doubt somewhat
difficult to follow at this point. However, the descriptions of experiments in the
main sections of this chapter will illustrate the difference between the two.

Second, I separate these traditions because the most popular exemplar models
contain many other assumptions about categories and processing than the use of
instances. Indeed, the empirical success of exemplar models depends on both their
assumption of exemplar memories and the multiplicative (or exponential) similarity
rule that they use (Medin and Schwanenflugel 1981; Nosofsky 1992). Thus, an
evaluation of exemplar models requires much more than a consideration of whether
people use remembered exemplars—the models contain many more assumptions
and claims about representation and processing. In fact, a full comparison of all
these models is beyond the scope of this book, as it would quickly become extremely
technical. However, the present coverage should give the reader sufficient back-
ground to read articles that make these comparisons.

Having said all this, it is still the case that demonstrations of exemplar effects
should be taken as supporting exemplar models in general. Nonetheless, there is
surprisingly little connection made between these two traditions in their respective
papers. Although authors proposing specific models do tend to cite the papers show-
ing exemplar effects, there is little attempt to model their results or to discuss the
implications of the variables that have been shown to influence specific exemplar
usage. This, then, is an area for future work to address.

Exemplar Effects

Work in other areas of cognitive psychology has shown the importance of remindings
of specific instances in the development of cognitive skills. For example, Ross (1984)
showed that when people learn how to solve a new kind of mathematical problem,
they rely heavily on their memories for past examples in solving new problems.
Often this memory is based on irrelevant properties of the problem. For example,
we all remember algebra problems of the sort in which one train left a station at
noon and travelled half an hour before meeting another train that had been travel-
ling for an hour in order to reach the same point. Then we would have to answer
questions such as when train 2 would reach the station or how fast train 1 was
travelling, and so on. As a result, when we hear a new problem about trains leaving
stations, we are likely to start writing down formulas like Distance = Speed x Time.
If it turns out that the question is n#ot of the sort requiring this formula, we may
spend considerable time trying to answer it this way first, because of our memories
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for past train problems. Ross showed that the memory of specific learning examples
can have deleterious effects on the performance of later problems, if that later
problem is superficially similar to an example of the “wrong” type (for a review, see
Ross 1989).

This logic underlies many of the experiments on exemplar effects in categorization.
The idea is that by manipulating how similar an item is to a remembered exemplar—
even similarity that is irrelevant to the classification task—one may be able to in-
fluence which category subjects think the item is in. Exemplar reminding could have
two effects on category use. First, it might occur during learning. When you are
learning about a new kind of animal, you might be reminded of other animals you
have seen. This reminding could influence what you think this kind of animal is
generally like. That is, the reminding could influence the category representation
you initially form. Second, reminding may occur in categorization. So, if you see a
curled-up animal in your neighbor’s chair that looks just like your curled-up cat,
you may very quickly identify it as a cat (even though when it uncurls, it turns out
to be a ferret). Here you already know all about cats; the effect is not on forming
new generalizations about cats but on identifying them. I discuss these two kinds of
effects in order.

Exemplar Effects in Learning
In the very early stages of learning, often all that you know are a few exemplars. If
someone points at an animal and says “That’s a zebra,” and if you’ve never heard of
a zebra before, you have little else to go on than this single exemplar. (Of course,
you do have your more general knowledge of animals and mammals, which you are
likely to access when thinking about this category—see chapter 6.) When you’ve
seen two or three exemplars, you are in a better position to form an idea of the
category as a whole, rather than relying on the possible idiosyncracies of just one
zebra. Nonetheless, given that you have only seen three zebras, you are also likely to
remember all three of them fairly well. Even theories that do not talk about exem-
plars agree that people have episodic memories of encountering objects and events,
and these memories can be a source of conceptual inference and judgment.
However, theories that focus primarily on summary representations (see chapter
3), like prototype theory, have little to say about how specific exemplars might
be the basis for judgments about the category as a whole. There have been a few
experiments looking at this process during learning itself. Before describing some of
the more interesting such studies, it is important to remind ourselves not to take an
overly simplistic view of exemplar effects. It was common in the 1970s and early
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1980s to view exemplar effects as being essentially the advantage of old items over
new ones. That is, the degree to which people were faster at categorizing exemplars
that they had studied over those they had not (assuming the items had been equated
for typicality, and so on) was assumed to reflect exemplar knowledge. This reason-
ing was used to predict that when the difference between old and new items dis-
appeared, categorization could not be proceeding via exemplars. However, as we
have already discussed (in chapter 3), the difference between old and new items can
disappear even in exemplar models. As Hintzman and Ludlam (1980) pointed out,
exemplars are forgotten over time, in bits and pieces. When part of an exemplar is
forgotten, it may no longer have an advantage over a new item, even if both items
are categorized by being compared to what is remembered of previously viewed
exemplars. As a result, the old-new difference, which was the focus of considerable
early attention (Homa, Sterling, and Trepel 1981; Posner and Keele 1968) is no
longer considered to be a valid measure of whether exemplars are used. (More
specifically, the presence of such an advantage is not necessary to indicate use of
exemplars.)!

Ross, Perkins, and Tenpenny (1990) carried out an ingenious study of exemplar
reminding in learning. They taught subjects two categories: two social clubs, each of
which had different members. Initially, subjects learned only about two members of
each club, to ensure that they had detailed information about each exemplar. Then
subjects were tested on new items. These items were constructed so that they would
be likely to remind subjects of one of the old items. Furthermore, the test item
shared a feature with both of the members of its category. Ross et al. reasoned that
if subjects were in fact reminded of one original exemplar, then they would notice
the shared feature with that item, but not the feature that was shared with the other
item.

Let’s go through a more detailed example. Imagine that you learned about the
following two members of Club X:

Shirley Julia
likes ice cream likes Westerns
bought nails bought a swimsuit

Now you are presented with a new person to categorize. Different groups received
slightly different items here:

likes sherbet/likes cowboys and Indians
bought wood
bought towels
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If you received the version that had “likes sherbet,” you would be reminded of
Shirley. Then you might also notice that Shirley bought nails, and this person bought
wood. Apparently, Club X members like carpentry. However, if you received the
version that had “likes cowboys and Indians,” you might be reminded of Julia, who
likes Westerns, and then you might notice that Julia bought a swimsuit, and this
person bought towels. Apparently, Club X members like to swim or go to the beach.
Of course, both statements about Club X are equally true, given the exemplars you
have seen.

In the third phase, Ross et al. (1990) gave their subjects new items to rank on how
much they would be liked by Club X members. Among the items were “chisel”” and
“sunglasses.” They found that subjects who read the “likes sherbet” item (and were
reminded of Shirley) ranked chisel above sunglasses; subjects who read the “likes
cowboys and Indians” item (and were reminded of Julia) ranked sunglasses above
chisel. This is surprising, because the rest of the features were the same across the
two groups: All subjects read an item that had both “bought wood” and “bought
towels.” Nonetheless, by manipulating a feature that made one or another exemplar
memorable, Ross et al. showed that subjects made different generalizations about
the category. They argued that when one exemplar reminds you of another, you pay
attention to their common properties and may start to think that these properties
are characteristic of the category as a whole. That is, it’s not just that the test item
reminded some people of Shirley, but that in being reminded of Shirley, certain
commonalities were reinforced. Other items had different commonalities with this
test item, but because those items were not brought to mind, their commonalities
were not noticed.

Ross et al. argued that these effects are not consistent with most prototype or
exemplar models. The only difference between the two conditions was one feature
(likes sherbet/cowboys and Indians) that was unrelated to the critical comparison
(like chisels/sunglasses). Thus, the same number of total features that were related to
chisels or to sunglasses was presented in the two cases. If subjects had represented
the two clubs as a list of features, weighted by their frequency, there is no clear
reason why changing the unrelated feature should have an effect on features that
were not varied (chisels and sunglasses). Similarly, if subjects made their judgment
by examining the remembered exemplars, they would have found equal numbers of
exemplars that contained information related to chisels and to sunglasses. Although
reminding of specific exemplars is necessary to explain these results, Ross et al. say,
one needs to assume that this reminding led to a generalization about the whole
category. So, when the test items reminded subjects of Shirley, they thought some-



Exemplar Effects and Theories 79

thing like “this club is interested in carpentry.” Thus, both exemplar information (in
the reminding) and summary information about the entire category (the generaliza-
tion) is used. These conclusions were reinforced by follow-up experiments of Spald-
ing and Ross (1994).

A different technique was used by Medin and Bettger (1994). They presented a
set of seven items to subjects and then asked for recognition judgments. The items
varied on four dimensions, and across the items there was a most frequent or typical
value on each dimension. Furthermore, during the recognition test, items that had
many typical values were recognized (even in some cases if they had never been
seen) more often than items that had few typical values. (Past research has also found
that category typicality predicts recognition in memory experiments; e.g., Franks
and Bransford 1971.) Thus, although only one category was involved, this may be a
form of category learning.

In their Experiment 2, Medin and Bettger varied the order in which the items were
presented so that different similarities would become apparent. In the adjacent con-
dition (I’ve changed their names), the items were presented so that three items in a
row had two particular features. For example, all three might be green and large. In
the separated condition, these items were separated, with other items between them.
In the test, a new item that had the two critical features was quite often falsely rec-
ognized as having been seen in the adjacent condition, but less so in the separated
condition. This effect was found even though the adjacent group was more accurate
in general than the separated group was. When similar patterns occur in adjacent
items, people apparently notice them and encode them as part of the category rep-
resentation. But since the same exemplars were involved in both conditions, this
result is puzzling to exemplar theories.

This effect of adjacency of exemplars cannot be explained by prototype models
that assume that a category representation is a list of features weighted by their fre-
quency (Hampton 1979; see chapter 3). At the end of an experiment, the prototype
would have no information about the order in which the exemplars had been viewed,
and both groups received the exact same exemplars. Similarly, exemplar models do
not worry about the order of items. Although forgetting occurs for exemplars over
time, that would not explain the greater weight given to items appearing together.
This effect, then, is similar to the Ross et al. (1990) finding that when one exemplar
reminds you of another, you are more likely to weight its common features. Adja-
cent items are by their nature reminiscent of one another: A subject may still have
the earlier item in working memory when the next item is encountered. As a result,
any commonality between them is more likely to be encoded and thought of as
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relevant to categorization. However, this commonality is apparently connected to a
more general category representation, since it is not a property of any single exem-
plar. In short, such exemplar effects in category learning are a challenge to most
theories of concepts.

Exemplar Effects in Categorization

According to exemplar models of categorization, people decide what a new item is
by accessing already-known examples and relying on them. In some sense, this can
be thought of as relying on analogy (Brooks 1987): Although I don’t know for sure
that this object is a pen, I know that I have something that looks just like it, which I
have used as a pen for some weeks, and so I can infer that it also is a pen, will write,
probably has blue ink, and so on. In most formal models of exemplar learning,
though, the use of one particular exemplar is not the focus. When I see a pen, I access
a large number of remembered entities (not just one), and it is the sum total of their
categories (weighted by their similarity to the item) that predicts my categorization.
Nonetheless, there has been considerable empirical interest in the importance of one
or two closely related exemplars, and how they might affect categorization. This is
the topic of the current section—how one or two very similar exemplars might
influence categorization.

The emphasis on very similar or “close” exemplars has both a theoretical and a
methodological purpose. First, Brooks (1987) has argued that when a known item is
almost identical to the test item, one cannot help but be reminded of it. Further-
more, such remindings are almost always going to be valid and helpful, even if they
are based on superficial features. So, if I see an animal that looks almost exactly like
Wilbur, a bulldog I am familiar with, I can be extremely sure that this is also a
bulldog, with typical bulldog properties, even though to be completely certain of my
categorization I would have to verify the animal’s parentage. Extremely close simi-
larity is very difficult to achieve with things that are in different categories, and so it
is an excellent cue for category membership even when it is not a very principled
basis for decision. Of course, Brooks notes (pp. 163f), it is possible for somewhat
similar items to be in different categories, as in cases such as whales and sharks.
However, it would be extremely surprising to see something that looked just like a
particular sperm whale but turned out not to be a whale at all.

The methodological reason for focusing on close similarity is that it allows us to
know exactly which item is responsible for the categorization. So, if a test item has
been manipulated so that it is in one condition very similar to exemplar 1 and in
another condition very similar to exemplar 2, then the difference between the con-
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ditions in categorizing the item may be attributed to the access of exemplar 1 vs. 2
(assuming other variables are held constant, of course). This approach to evaluating
exemplar use is more direct than the modeling approach to be discussed in the sec-
ond part of this chapter.

The most prominent studies of exemplar effects have included a series of experi-
ments done by Lee Brooks and his colleagues. I will only discuss a couple of these
demonstrations, but there is considerably more evidence of the same sort. Brooks’s
approach combines work from the memory literature (especially work on implicit
memory and the memory for surface details) with categorization research. As a re-
sult, a number of the studies that he and his colleagues have carried out have not
been categorization studies per se, even though they related the results to catego-
rization theory (e.g., Jacoby, Baker, and Brooks 1989; Whittlesea 1987), and I will
not be focusing on these.

To demonstrate the basic effect that these studies have shown, I begin with a
study using a real-world set of categories and subjects. Brooks, Norman, and Allen
(1991) studied how physicians categorized skin diseases based on slides of exam-
ples, taken from the photographic files of actual dermatologists. The subjects were
advanced residents or general practitioners, rather than dermatologists, but these
doctors see many cases of skin problems, and the diseases chosen for study were all
among the 20 most common skin disorders.

In the study phase, subjects were shown slides of various skin diseases, which were
correctly labeled with their diagnoses. The subjects merely had to rate how typical
each item was of its category (to ensure that they examined each one closely). Then
in the test phase, subjects were shown slides of examples from the same categories
and had to select which disease it represented from a 3-choice set of options. Some
of these slides were the previously studied items; others were from the same cate-
gories but did not look superficially similar to the studied item; still others were from
the same categories but did look superficially similar. By varying the precise item
shown during learning, this variable was not confounded with item differences. That
is, for one subject, picture 10 would be similar to the studied example of psoriasis,
say, but for another subject, picture 10 would be dissimilar to the studied example.
So, the overall typicality of the picture was controlled for in this comparison.

Quite surprisingly, Brooks et al. found a consistent 10-15% difference between
the similar and dissimilar items in their experiments: The doctors were significantly
more accurate in identifying the slides that were superficially similar to a studied
slide. Furthermore, this difference held up when the study and test phases were sep-
arated by a week and was found for both general practitioners and residents. The
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effect was also found when the experimenters took steps to slow down subjects’
judgments and make them actively consider all the alternatives in the multiple-
choice test. Perhaps less surprisingly, there was also a noticeable advantage in cate-
gorizing the slides that had been viewed during study, compared to new ones. This
also may indicate some exemplar memory. What is particularly impressive about
this study is that it involves actual categories, as identified by their everyday users,
and it shows an effect size that is “clinically important” (p. 284) rather than just
statistically significant. Indeed, on first reaction one might be somewhat concerned
about these results: Will you be totally misdiagnosed by your physician, simply be-
cause your skin looks similar to that of a recent patient with a different problem?
Probably not: In a full medical diagnosis, the physician would have other informa-
tion besides the visual appearance of part of your skin, such as your medical history,
any events that coincided with the problem, whether it itches, how long it has been
present, and so on. In many cases, this would distinguish cases that are borderline
from the perspective of purely visual information.

Theoretically, Brooks et al.’s (1991) study seems to show that subjects are using
similar exemplars in order to categorize items. Thus, slides that were quite similar to
a previously studied item activated the memory of that item and its categorization,
and this information was difficult to ignore.

Other studies have used the more typical artificial materials, with more carefully
controlled dimensions. Allen and Brooks (1991), for example, used pictures of car-
toon animals presented against an environmental background (e.g., a desert or an
arctic scene). In this study, subjects were taught a rule by which items could be
categorized. Although items varied on five features, only three of them were rele-
vant: One category was associated with angular bodies, spots and long legs; the
other with rounded bodies, lack of spots and short legs. If an item had at least two
of the three critical features for a category, then it belonged in that category. Sub-
jects were explicitly told this rule (in the condition I’ll be discussing), so there was no
need for them to rely on exemplars.

Allen and Brooks first taught the subjects eight items, giving considerable infor-
mation to individuate each item. For the test phase, they constructed items that were
very similar to the test items and that were either in the same or a different category.
For example, by keeping the background environment and noncritical features the
same but changing one critical feature, a new item could be extremely similar to a
test item but be in a different category. (The backgrounds themselves were not pre-
dictive of category membership but were used to vary similarity among exemplars.)
Such items were bad matches, because they were similar to something in a different
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category. By changing a different feature, the test item could be very similar to a test
item but in the same category—a good match. The results showed that even though
subjects knew a rule by which to categorize the items, they made more than 20%
more errors on the bad matches than on the good ones. That is, subjects seemed to
be relying on the learned exemplars. Allen and Brooks found that this effect per-
sisted even when subjects were warned about the bad matches, and when they were
asked to be very careful in their decisions. Similar results were found in RTs to
categorize the items. When subjects were confronted with these results, they did
not show much awareness that they had been fooled by similar items. Similar results
were found with a slightly different stimulus construction by Regehr and Brooks
(1993).

In order to obtain this effect of the bad vs. good matches, it is necessary that the
test item immediately bring to mind a learned exemplar. If the item is presented as a
list of verbal features, the effect essentially disappears (Allen and Brooks 1991, Ex-
periment 2), in part because every list of features looks much like any other, and so
there is no specific reminding. Especially when subjects know the category rule, they
can focus on some features and ignore the others. However, when a stimulus is a
complex visual scene, it is difficult to ignore irrelevant properties that might bring to
mind a very similar exemplar. More generally, it seems to be necessary that each
item be a coherent individual (Regehr and Brooks 1993), rather than a mere collec-
tion of properties. To the degree that one item is holistically like another, it is likely
to bring the other to mind. This phenomenon is often not present in many catego-
rization experiments, which use stimuli such as strings of letters and numbers, circles
with diameter lines, cards with a number of colored geometric shapes on them, or
any kind of list. Most effective in inducing reminding is a picture of a whole object
or scene, in which a complex item is globally similar or different to another item. See
Regehr and Brooks (1993) for detailed discussion.

A very different kind of methodology was used by Malt (1989) in her study of
exemplars in categorization. Her reasoning was that if people are using a close ex-
emplar to categorize items, then there should be some effect of this on the exemplar
itself. If T categorize something as a dog because it reminds me of Wilbur, this
should result in activation of my Wilbur exemplar. Therefore, Malt used a priming
technique in which she looked to see if there was such activation after an item was
categorized. First, she constructed categories of items using pictures of animals from
wildlife books. She selected the items in pairs, so that one item would be considered
to be very close to another item. During learning, subjects learned categories with
only one of these paired items. They had to learn the items’ names, to ensure that
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they had encoded each exemplar fully. At test, they had to categorize pictures of the
old items as well as new ones that were similar to one of the old ones. In the critical
trials, subjects first categorized a new item (e.g., a sperm whale) and then catego-
rized its similar, already-learned item (e.g., a sei whale). If subjects had accessed the
old item when categorizing the new one (e.g., if they thought “this looks like that
other whale, which was in category 1”°), then they would be faster to respond to the
old item when it appeared. In a control condition, the new item was unrelated to the
old one (e.g., a jackrabbit preceded the sei whale), and so no priming would be
expected.

In her first experiment, Malt (1989) made up categories that were essentially
arbitrary. Her reasoning was that these categories could only be learned by memo-
rizing the exemplars; furthermore, she told subjects to classify new items by putting
them in the same category as the most similar learned item. In these circumstances,
Malt found large exemplar priming effects. When subjects classified a new item, the
most similar old item was classified much faster, compared to the control condition.
This experiment served to validate the measure. The question is whether the same
priming would occur with more realistic categories and without these special in-
structions. In later experiments, Malt found evidence for such priming, though it
was considerably smaller than when exemplar use was forced. Malt proposed that
the weaker effects resulted from the mixture of different strategies: Some subjects
were using similar exemplars to make their decisions, and others were using proto-
type information. In one experiment (using artificial categories), she separated sub-
jects based on how they said they performed this task in a postexperiment interview.
Subjects who claimed to use exemplars had 562 ms of priming, whereas those who
reported a prototype strategy had a —16 ms priming effect.

In short, Malt’s study gives some evidence for exemplar usage but also evidence
for different processes of categorization. Why were her effects apparently weaker
than those of Brooks’s studies described earlier? One reason is probably that the
level of similarity between the old and new items was less in her studies. For exam-
ple, a sperm whale and a sei whale are clearly similar, but they are not nearly iden-
tical. This seems to be true of most of her natural categories (e.g., raccoon-badger;
moose-caribou; musk ox-mountain goat) and is clearly true of her artificial stimuli
(similar items were created by making one item smaller, changing the features
slightly, and mirror-reversing the old item). It seems likely that if the pairs had been
extremely similar, more exemplar usage could have been found. Of course, this
raises the question of just how similar different exemplars typically are in real life,
which will be addressed in the evaluation of the exemplar effect approach. Another



Exemplar Effects and Theories 85

reason for the somewhat weaker findings of exemplar usage may be that Malt’s
learning procedure emphasized the category prototypes as well as exemplar learn-
ing. In one case, she told subjects what the prototypes of the two categories were,
and she also asked subjects to judge the typicality of each item as part of the learn-
ing phase, which might have emphasized the prototype structure of the category.

A related reason for Malt’s mixed results is that the categories she used probably
had a greater amount of perceptual commonality than in the Brooks studies. She did
not include the large number of irrelevant features (and background) used in Allen
and Brooks (1991) or Brooks et al. (1991), which probably resulted in less percep-
tual resemblance within their categories, and the items in Malt’s naturalistic cate-
gories had a holistic similarity (the prototype of one category was like a river otter,
and of the other was like a buffalo) that may have been more compelling than the
featural overlap (two out of three features) in Allen and Brooks’s study. So, proto-
type learning could have been more successful in her categories.

I mention all these possible factors, because they all bear on the question of when
and why exemplars will be used in categorization. As Brooks et al. (1991) discuss,
the holistic similarity of old to new items is probably very important. But by the
same token, when members of a category are all holistically similar, there may be
less reliance on memory of individual exemplars and greater reliance on a summary
prototype. Brooks’s results showing extremely strong exemplar effects may reflect in
part a difference between perceptual resemblance and rule application: Subjects may
prefer to rely on perceptual resemblance whether it is to a particular exemplar, or to
a prototype that represents the category as a whole. In Allen and Brooks (1991) and
Brooks et al. (1991), the perceptual resemblance was strongest to a particular ex-
emplar, but in Malt’s case, resemblance to a prototype was also fairly strong. These
speculations have not yet been systematically tested.

Explanation of Exemplar Effects

The results of Brooks’s studies give quite strong evidence for the use of exemplars in
classification. Although Malt’s (1989) results were more equivocal, they nonetheless
did suggest that subjects are using exemplars in making categorizations, at least a
substantial proportion of the time. How are we to interpret these effects? One way is
within the normal confines of exemplar models of categorization. That is, Category
A is represented by a set of exemplars that have been learned to be its members, and
similarly for Category B. These learned exemplars are accessed in order to make a
decision about new items. There is a somewhat different way of looking at these
results, however, which I would like to propose. It is not a model of categorization
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per se, but a connection between the findings summarized above and another mem-
ory phenomenon, namely implicit memory.

I will not give anything like a review of the implicit memory literature here (see
Roediger 1990). In a nutshell, implicit memory is a usually unconscious and long-
lasting memory for the precise details of a stimulus, often acquired as part of some
activity carried out on it. Implicit memory is a particularly important aspect of skill
learning, in which particular ways of processing stimuli and carrying out actions
may be acquired without conscious awareness that they have been learned (e.g.,
Kolers and Ostry 1974; Poldrack, Selco, Field and Cohen 1999). The exemplar
effects documented by Brooks and his colleagues are very reminiscent of these im-
plicit memory effects. Indeed, this is not surprising, because he and those colleagues
have published other papers that have been important demonstrations of implicit
memory (most notably, Jacoby 1983). In addition to the research described above,
this group has published other related experiments on how category structure
affects the perception of briefly presented stimuli (Jacoby, Baker, and Brooks 1989;
Whittlesea 1987), which is a standard test of implicit memory.

First, let me say why I think that the exemplar effects are examples of implicit
memory, and then I will discuss the implications of this interpretation for a theory
of concepts. The findings of exemplar effects are similar to implicit memory in a
number of ways. First, the exemplar effects are not necessarily conscious. Allen and
Brooks (1991) found that over half of their subjects did not identify exemplar simi-
larity as a variable influencing their performance, and those who did often did so
only after considerable prompting by the experimenters. Second, the effects are long-
lasting. Brooks et al. (1991) found effects of similarity of items a week after initial
learning. Homa and Vosburgh (1976, as reported in Homa 1984) found an advan-
tage of old over new items (in dot pattern categories) that persisted for 10 weeks
after initial learning. Third, the effects are often based on apparently “irrelevant,”
perceptual information. For example, Allen and Brooks varied the background en-
vironment that an item was depicted in, which was irrelevant to categorization (the
same background occurred once in each category); Brooks et al. varied features that
were not related to category membership. These irrelevant properties nonetheless
influenced categorization, analogously to the way typeface or voice influences im-
plicit memory in word completion or identification tasks (Church and Schachter
1994; Roediger and Blaxton 1987). Fourth, there is apparently an independence
between exemplar effects and more “analytic” category memory. For example, even
though they showed exemplar effects, Allen and Brooks also showed that subjects
learned the category rule and that this influenced their categorizations. So, use of
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similar exemplars did not mean that other information was not also used. (This is
likely also true for Malt’s results, though it is not clear that individual subjects used
both.) This result is analogous to findings that explicit memory and implicit memory
can be present in the same items (indeed, this is usually the case shortly after learn-
ing). In the implicit memory literature, it is common to demonstrate that implicit
memory is present even after explicit memory (e.g., recognition) has decreased to
chance levels, but that does not seem to have been done here. Finally, implicit
memory is often described as a kind of perceptual or motor tuning: As a result of
processing a stimulus, people get better at processing stimuli of that sort. Speeded
categorization is clearly consistent with that description, and the results there are
similar to results when the task is simple identification of the stimulus (Whittlesea
1987).

These parallels are not all equally strong. There needs to be further evidence for
the independence of exemplar effects and other category knowledge, for example.
The reference to perceptual tuning is at this point more analogical than empirical.
Nonetheless, there is an overall similarity of these exemplar effects to implicit mem-
ory phenomena that is striking. If this similarity stands up to further examination,
what would it mean?

In implicit memory, much of the theory has to do with input and output process-
ing (the final similarity noted above). One can think of these phenomena as ex-
tremely specific practice effects. For example, if you hear a list of words, you become
more practiced at understanding those words when spoken by that speaker, and
this ability can long outlast your propositional memory of which words were on the
list (Church and Schachter 1994; Roediger and Blaxton 1987). It is your speech-
processing and comprehension processes that have become altered implicitly, not
your knowledge of which words were spoken (which is explicit). By the same token,
then, perhaps it is not the concept representation that is being manipulated by these
effects, but your access to the representation. When you have categorized a given
item a number of times as being in Category A, you have practiced a certain way of
making Category A categorizations. When a new item appears that is strikingly
similar to this old one, your practiced categorization takes over. A new item that is
not so similar does not benefit from the specific practice on the old item.

If this view is correct, it suggests a possible distinction between the content of the
concept and the access to the concept that may not be entirely keeping with exem-
plar theory, or, indeed, most theories. That is, the exemplar effect, in spite of its
name, may reflect tuning of the classification process rather than storage of a spe-
cific exemplar. The content of the concept may or may not include things like the
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irrelevant background information of Allen and Brooks, or the irrelevant features of
Brooks et al. (1991), even though those features affect the access of the concept—
just as one does not consciously remember or use the typeface of a book when
talking about the plot or characters. Although memory of the typeface does affect
our reading processes (Kolers and Ostry 1974), it is not part of the propositional
content of the book. Similarly, if T get extremely good at recognizing a particular
dog, Wilbur, in a particular context (say the back seat of his owner’s car), through
having considerable experience in categorizing Wilbur in this setting, this does not
mean that I will necessarily use that setting or specific properties of Wilbur in mak-
ing inferences about dogs, or in talking about dogs, or in other, higher-level concept
uses. It does mean that if I see a similar kind of animal in the back seat of the same
model automobile, I will be faster to think it is a dog. But such implicit effects may
not affect more conscious concept usage.

In saying this, I am not trying to downplay the importance of exemplar effects.
They are striking and counterintuitively strong, as Brooks (1987) discusses. How-
ever, if the interpretation I am giving is correct, then their importance may be pri-
marily about the access to concepts rather than the content or use of concepts once
categorization is achieved. If this view is correct, then exemplar effects may not be
coming about through a representation of stored exemplars. (Indeed, it seems rather
unlikely that specific exemplars are still explicitly represented a week after learning
the concepts in an experiment, much less after 10 weeks as in Homa and Vosburgh’s
1976 study.) What I am suggesting is a somewhat novel distinction between the
access to concepts and their content, which is not something that is recognized by
either prototype or exemplar theories as traditionally proposed, and so this proposal
needs further development and test.

Theoretical Evaluations: Exemplar Effects

Because these effects are empirically distinct from the many tests of exemplar models
to be considered in the second main part of this chapter, I will address how the dif-
ferent models address these results before going on.

Exemplar Models

Given the name, one would not be surprised at the conclusion that exemplar models
are highly consistent with exemplar effects. However, this seems to be more true for
the effects on categorization than for the effects on learning. The learning effects are
somewhat difficult for exemplar models to explain, Ross et al. (1990) point out,
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because virtually the same exemplars are presented in their different conditions. The
only difference between the conditions is one feature that does not figure in the
critical feature being questioned. However, depending on which exemplar the
manipulated item is most similar to, different generalizations about the category
are made. This shows that exemplars are used, Ross et al. argue, but that subjects
are also forming more abstract descriptions of the category, such as “Club X mem-
bers do carpentry work” or “Club Y members go to the beach,” which is not con-
sistent with exemplar models. One might think that the manipulated items are
simply strengthening all the items that are thought of as similar to it, but Ross et al.
rule out this explanation.

Although T have been focusing in this book on the most popular exemplar models,
those based on Medin and Schaffer’s (1978) context model, a different kind of
model, Hintzman’s (1986) MINERVA 2, may be more successful. Although this
model stores individual exemplars, it does not just compare a test exemplar to them
and then calculate the probability of its being in a given category. Instead, the
model’s output is a sort of generalization of the stimulus, based on which items it is
most similar to. Part of the output is the category name, which is used to determine
categorization. Hintzman argues that this output is the sort of category abstraction
that prototype models talk about (p. 422), and he suggests that such abstractions
might indeed be separately stored as facts about the category (though MINERVA
does not actually have any capability for doing this).2 If correct, this proposal would
include both the exemplar reminding and generalization mechanisms that Ross et al.
argue are needed. Whether this version of his model would actually produce the
Ross et al. generalizations is not yet known, however.

Similarly, Medin and Bettger (1994) point out that simple exemplar models can-
not explain their effects, because the same exemplars are used in both conditions—
only the order has changed. However, more elaborate models that allow attention
to be focused on specific dimensions might be able to explain their results if atten-
tion is drawn to properties that are repeated in adjacent items. (Note that exemplar
theories that we’ve been considering, such as that of Nosofsky 1986, do not make
use of attention in this particular way. However, it would not be a very great change
to their models to do so. A more recent article by Kruschke and Johansen 1999,
does incorporate rapid shifts of attention, though it does not address the data we are
considering.) I am not so sure that this mechanism would explain Medin and Bett-
ger’s results, however. In their experiment, only three adjacent items had the critical
subpattern that was repeated. If attention were drawn to this subpattern by this
repetition, subjects would then notice that it did not recur in the subsequent stimuli.
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This might in fact cause inhibition of the pattern. Obviously, exact predictions
would depend on how quickly attention was drawn to the critical dimension, how
this affected learning of subsequent items, and how attention would shift as a func-
tion of new items that do not follow the pattern. It is certainly possible that some
setting of these parameters would be consistent with the results. It does not seem so
easy to me to explain why it was that subjects were better in old-new recognition of
the adjacent than the separated conditions. Here, all of the dimensions were relevant
to performance, and so shifting attention across dimensions would not explain the
results. Medin and Bettger found this effect simultaneously with the subpattern
preference just discussed, so both effects would have to be handled simultaneously.
In summary, exemplar reminding in learning has not, to my knowledge, been ade-
quately explained by any exemplar model.

In terms of exemplar effects in categorization, exemplar models are in very good
shape. So long as the exemplar storage includes irrelevant information as well as the
features predictive of categorization, the effects of exemplar similarity found by Malt
and by Brooks and colleagues can be readily explained. That is, the test item will
evoke similar exemplars in memory, and their categories will determine the classifi-
cation decision. However, it is also possible that a simpler proposal would explain
these results. In the usual exemplar model, a test stimulus is compared to all stored
exemplars, which all have an effect (however tiny) on the categorization decision. A
simpler idea is that only the closest stimulus or highly similar stimuli influence cate-
gorization. Because the Brooks and Malt experiments generally manipulated only a
single similar stimulus, there is no particular need to incorporate a comparison to
other stimuli in the model. Recent criticisms of exemplar models have also suggested
that single-exemplar retrieval is a more plausible alternative to the more elaborate
exemplar models (J. D. Smith and Minda 2000; and see Malt et al. 1999).

I have suggested above that there is a different possible explanation, based on
implicit memory. Perhaps the main weakness of exemplar theory is its claim that
exemplars are remembered for rather long periods of time (which it must claim in
order to explain the long-lasting old-new or similarity effects). Of course, people
do remember single episodes or objects for very long periods of time when they are
particularly compelling, unusual, or interesting. However, it seems more doubtful
that people have an explicit memory of dot patterns seen in an experiment that were
not seen or used for 10 intervening weeks. This is more an intuition than an empiri-
cal argument, however, and it is possible that some weak exemplar memory does
persist for weeks at a time, even for rather uninteresting stimuli used in psychology



Exemplar Effects and Theories 91

experiments. However, there is no evidence for this separate from the old-new item
difference, so it is also possible that some form of nonpropositional skill-learning is
accounting for this kind of exemplar effect.

Prototype Theory

Prototype models have the opposite problem from exemplar models when faced
with the Ross et al. (1990) and Medin and Bettger (1994) data. They do not
have any problem accepting generalizations like “Club X members like carpentry,”
but they find it difficult to explain how subjects form such generalizations if they
don’t remember individual exemplars. For example, if subjects simply added up
the features presented for Club X, both conditions would have equal numbers of
carpentry-related properties. The difference comes about because two items are
similar on an unrelated feature, which causes their carpentry-based similarity to be-
come more salient. However, if people did not remember these separate exemplars,
this reminding could not occur.

As I have pointed out numerous times, prototype models do not claim that people
never remember exemplars. Clearly, they do have episodic memory for individual
items. The claim is, however, that the category-level information is stored as an ab-
straction separate from exemplar memory. So, it is not that prototype theory does
not have the representations to explain these effects: It admits of both exemplar
memory (which it says little about) and category knowledge (which is where the
generalization would be stored). The problem is that prototype theory has not
talked about the kind of reminding effects that Ross and colleagues have demon-
strated. But if it is recognized that even prototype theory does not insist on amnesia
for exemplars, it seems that there is room to incorporate this kind of reminding ac-
count. Prototype theorists have not actually done so, to my knowledge, and so this
is a shortcoming of this view as a learning model.

Prototype theory is less able to be modified to account for the exemplar effects in
categorization, however. The importance of idiosyncratic properties in classifying
items is not predicted, since such properties would be infrequent and have very
low weights in the prototype representation. The fact that the bad matches actually
cause subjects to make the incorrect categorization suggests that these “irrelevant”
properties are having a functionally significant effect, even though they would not be
in the prototype.

The implicit memory story that I proposed earlier is one possible answer for
the prototype view. However, this idea is not without its complications either. By
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suggesting that a classification process is getting tuned by exposure to specific exem-
plars, one is making a distinction between classification, which is a form of skill
learning greatly affected by individual exemplar information, and the propositional
concept representation, which is not. In most prototype and exemplar models, the
representation of the concepts is used both to classify the items (e.g., the feature list
is used to make categorization decisions, as proposed by Hampton 1979, and Smith
and Medin 1981), and as the repository of knowledge about the concept, to be used
in induction, decision making, and so on. By referring to implicit memory, we are
now separating these two functions, to at least some degree. Thus, my experience in
identifying Wilbur in the back seat of a car may change the way I classify similar
objects in similar settings, but it may not change what I think about dogs in general.
Such a modification would be an important change to prototype theory, since some
of the earliest evidence for it involved speeded categorization data (see Smith and
Medin 1981). In part, it would suggest that much of the research done on catego-
rization is not telling us about other aspects of conceptual representation. Clearly,
this all needs to be worked out in a more detailed way if prototype theorists are to
take this route to explaining exemplar effects. However, it is also possible that there
are independent reasons to make the distinction between category access and the
rest of conceptual knowledge.

Finally, it may be useful to defend prototype theory against one interpretation of
the exemplar effects in categorization. Allen and Brooks (1991), it will be remem-
bered, found that exemplar similarity had an effect even when there was a rule that
could be used to classify the stimuli. It would be easy to identify this rule with a
prototype, since it was a kind of family-resemblance rule in which two out of three
critical features had to be present. That is, one could conclude that exemplar effects
were found even with a prototype that could be used. However, prototypes are not
really numerical rules of this sort. For each item in the Allen and Brooks experiment,
subjects had to evaluate all three features and decide which category had the ma-
jority votes. In real life, however, members of a category often have numerous fea-
tures in common. This is not the case in the Allen and Brooks stimuli, in which most
items had a third of their features associated with the wrong category.

For example, imagine that you went to the grocery store, which had both tomatoes
and carrots available in the vegetable section. Let us say that tomatoes are usually
round, red, and about 2 inches in diameter, whereas carrots are orange, long (i.e.,
having a carrot shape) and 5 inches in length. If your grocer followed Allen and
Brooks’s design, then there would also be the following examples available, in ad-
dition to these prototypes. Try to identify each one:
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round, red, 5 inches
round, orange, 2 inches
long, orange, 2 inches
long, red, 5 inches
long, red, 2 inches

AU e

round, orange, 5 inches

You would identify items 1, 2 and 5 as tomatoes (obviously!), because they each
have two of the tomato features, and the other three would be carrots, having two
of the carrot features. However, if you actually tried to categorize these items, even
though you are quite familiar with the features of carrots and tomatoes already, you
probably found it somewhat difficult to decide that “long, red, 2 inches” indicates a
tomato, because it has two tomato features. I did, anyway.

I mention all this in part because there seems to be an assumption in the field at
large that any rule of this sort is like a category prototype, as will be seen in the next
section. Although the “best two out of three” rule sounds something like the proto-
type model we have been discussing, it appears to be significantly more difficult
than the prototypes of many natural categories. Thus, although these researchers
intended to pit prototype and exemplar effects against each other, these prototype
effects may not have been as strong as those to be found in real-life categories (see
later discussion of category structure in exemplar model experiments), or even as
those in the experiments of Malt (1989), which found a more balanced use of
exemplars and prototypes.

One might also question how much close similarity of exemplars there are in the
world. For some categories, such as kinds of insects, say, we might be hard pressed
to tell any difference between category members, and so close similarity would likely
be the rule. For other categories, such as personality types, paintings, or faces, close
similarity could be very infrequent. Clearly, people can identify novel items that are
not extremely similar to any previously known exemplar, and so showing that close
similarity can have a very strong effect does not mean that it is the typical way that
items are classified.

Knowledge Approach

The knowledge view has little to say about exemplar effects of either variety. As
has already been pointed out, it needs to be augmented by a number of memory
and learning components in addition to its focus on knowledge effects. It seems
likely that the effects discussed in the present chapter will come from those other
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components. However, one could also point out that even these effects of specific
exemplars sometimes reveal the use of knowledge. For example, consider the Ross
et al. (1990) demonstration that subjects use remindings to rate the typicality of new
features. If the critical item reminded subjects of one person, subjects concluded that
the club members like carpentry, and if the item reminded them of another person,
subjects concluded that club members like the beach. These generalizations, how-
ever, were knowledge-based ones. In the dependent measure, subjects rated the typi-
cality of new features that they had never seen before, so the effects were not caused
by empirical observation alone. Instead, subjects appear to be drawing inferences
about why people in a club like certain things. If one club member buys a swimsuit,
and another buys a towel, then these people may be going to the beach or a swim-
ming pool. Subjects reasonably infer that such a person would need sunglasses (the
critical feature rated at the end of the experiment), even though this feature was not
present for any of the observed club members. Although not requiring great intel-
lectual insight, this is still an inference based on prior knowledge. Of course, people
made this generalization based on activating similar exemplars during learning.
However, it would be wrong to think of these generalizations as mere collections of
observed features, since they require inference to a novel feature.

In short, although the knowledge approach does not have much to say about
these effects, the learning effects at least may require world knowledge for a com-
plete explanation.

Tests of Exemplar Models

The second main part of this chapter will consider the voluminous literature on
comparisons of exemplar models and (usually) prototype models of categorization.
Indeed, such comparisons have formed the bulk of published research on adult
concepts in the past twenty years or so, though there seems to be a welcome lessen-
ing of the flow recently. Ever since the seminal paper of Medin and Schaffer (1978),
researchers have done numerous experiments attempting to tell whether people are
using a summary representation (some form of prototype) or are relying on learned
exemplars instead. The review here must be highly selective. In particular, I do not
discuss most work within the tradition of exemplar theory that addresses the details
of models, comparing different learning rules, similarity parameters, tasks, and so
on. Instead, I will focus on studies that compared different approaches.

It may be thought that in summarizing and evaluating this work, I will now be
telling which model is correct. After all, these experiments were designed specifically
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to compare the two approaches. Although the results discussed here will certainly be
probative in regard to choosing a model, these experiments are not the be-all and
end-all. A problem of this whole field is that there has been such an emphasis on this
kind of critical experiment in category learning that the models are not tested in
other areas, such as the basic level, conceptual development or word meaning. As
will be seen in other chapters, the theories that do best within the range of experi-
ments presented here do not always seem to be fully adequate in other domains.

Thus, I am not giving away the end of the story by placing this chapter early in the
book.

How to Tell the Difference between the Models

There is clearly an enormous difference between prototype and exemplar models.
One says that people learn a summary representation of the whole category and use
that to decide category membership. Category learning involves the formation of
that prototype, and categorization involves comparing an item to the prototype
representation. The other view says that people’s category knowledge is represented
by specific exemplars, and categorization involves comparing an item to all (or many)
such exemplars. Thus, conceptual representations and the processes of learning and
categorization all differ between these two models.

Nonetheless, it is not that easy to tell the models apart. The reason for this is that
under many circumstances, the models make similar predictions. To understand the
reason for this, let us return to the findings of Rosch and Mervis (1975). They dis-
covered that the natural categories they studied had a family-resemblance structure.
The most typical items were similar to other category members and were dissimilar
to nonmembers. The less typical items were not as similar to other members and
were somewhat similar to nonmembers. If we were to develop categories like this
and use them in an experiment, the exemplar and prototype views would make
identical predictions: The typical items should be learned more easily, and atypi-
cal items less easily. A prototype should be categorized quite fast during test, even
if it had not been seen during learning. Why is this?> Roughly speaking, the ex-
emplar view predicts it because the typical test items are similar to more learned
exemplars—and this is most true for the prototype. Atypical items are similar to
fewer category members and are more similar to nonmembers. Thus, the pairwise
similarity of exemplars predicts the usual effects of category structure. Prototype
models explain these results by noting that typical items are more similar to the pro-
totype (by virtue of having more of the typical features), and so are learned faster
and categorized more easily after learning.
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In general, it is very difficult to develop family-resemblance categories that will
distinguish the two models in a simple learning experiment. The differences between
their predictions are often so small that they cannot be empirically distinguished.

To avoid this problem, most of the experiments testing these two approaches use
unusual category structures, in which the models’ predictions deviate considerably.
The result of this strategy, however, is that the structures no longer look like the
natural categories described by Rosch and Mervis. (Whether this is seen as a draw-
back or not depends on which view one subscribes to.) One way to do this is to
create specific items that are not very similar to the (putative) category prototype
but that are nonetheless similar to one of the items in that category. Thus, prototype
theory would predict that these items should be quite difficult to learn or categorize,
whereas exemplar theory may not, since they are similar to a category member.
Another way to test the two theories is to see whether people’s learning seems sub-
ject to a constraint that is found in one but not the other theory. In particular, as
will be discussed in detail, prototype models require that every item be more similar
to its category’s prototype than to the other category’s prototype, but exemplar
theory does not. This difference can allow a critical test of the two theories. How-
ever, the emphasis on atypical items or unusual category structures carries a cost in
ecological validity that concerns some.

Linear Separability

Perhaps the main constraint that has been studied is that of linear separability,
which applies to prototype models. As described in chapter 2, the generic prototype
theory suggests that items are compared to a category description, the matching
features identified, the weights of those features added up, and the item categorized
positively if that sum is greater than some criterion. This process of adding up the
weights and comparing the result to a criterion means that it doesn’t make any dif-
ference which particular features are in an item, so long as their weights are large
enough.

Let’s take a hypothetical example. If as a young child, I only saw pigeons on the
grass and robins flying, and I learned that these were both birds, what would I think
when I first saw a flying pigeon? According to prototype theory, I should be very
glad to categorize it as a bird, because both the pigeon shape and flying have been
associated to the bird concept, and both would have fairly strong weights. Accord-
ing to exemplar theory, though, this should be a less typical bird, because it is not
that similar to either the walking pigeons or flying robins that I’ve seen in the past
(never having seen a flying pigeon before). So, prototype theory allows me to treat
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each feature as independent, and to associate it with the category separately from
the others. In contrast, an exemplar-based concept doesn’t store information about
category features per se, but about specific individuals. Therefore, an item might not
be very similar to a known individual even if it has “typical” features. Such items
should be relatively difficult to categorize using exemplars.

Let’s consider another example. Suppose that I am learning about mammals.
Typically, mammals are land animals, often with four legs, usually larger than
insects but smaller than trees. However, there are exceptions, such as whales, which
can be extremely large, are water animals, have no arms nor legs, and so on.
According to prototype theory, such exceptions should be very difficult to learn and
categorize, because they don’t have the typical mammal features. According to ex-
emplar theory, however, such items may not be so difficult to categorize if they are
similar to a few other items known to be in the category (e.g., seals and dolphins).

In short, the concept of linear separability holds when a category can be deter-
mined by a summing of the evidence of independent features. So, if I say “It’s got
wings, it looks like a pigeon, and it’s flying” and add up those facts independently, I
will identify the item as a bird, because these features are all typical of birds. This
may be contrasted with nonlinearly separable categories, which are often said to
involve relational coding. Here, the separate features are not considered—instead, it
is the configuration of a specific set of features (in our case, an exemplar) that is
important. So, in the bird example above, it isn’t good enough for something to
look like a pigeon and to be flying, because I had never seen that particular configu-
ration of properties before. Instead, it is pigeon features plus walking on the grass,
or robin features plus flying that are learned and used.

The following description will not focus too much on the mathematical instan-
tiations of these models (though some discussion is inevitable) but will attempt to
give a qualitative understanding of why they act the way they do. For a more formal
description, see Medin and Schwanenflugel (1981) or Nosofsky (1992).

Let’s start by asking why it is that exemplar models predict that relational coding
is more important than linear separability. Recall that the Medin and Schaffer
(1978) model used a multiplicative similarity rule to identify similar exemplars. As I
described, this means that very similar exemplars are weighted very heavily, and
moderately similar exemplars are not weighted much at all. Therefore, if a test item
is very similar to an atypical member of a category, it can be categorized quite reli-
ably, even if its features are not generally found in the category. Conversely, an item
with very typical features would not necessarily be categorized easily if it is not
similar to some specific items—that is, if its particular configuration of features had
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Table 4.1.
Medin and Schwanenflugel (1981) Category Structure for Experiment 1.

Linearly Separable Categories

Category A Category B

D1 D2 D3 D4 D1 D2 D3 D4
1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 0

1 1 0 1 0 1 0 0
0 1 1 0 0 0 0 1
Nonlinearly Separable Categories

Category A Category B

D1 D2 D3 D4 D1 D2 D3 D4
1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1

1 1 1 0 0 0 0 0

1 0 1 1 0 0 0 1

not been seen before. To put it simply, because the similarity rule is multiplicative
rather than additive, exemplar models do not rely on the summation of independent
features and so do not require that categories be linearly separable. Prototype theory
does rely on this summation, and so it does require linear separability.

This difference may be better understood in the context of an example, taken
from Medin and Schwanenflugel (1981), who first discussed linear separability in
regard to human concept learning. Consider the top two categories in table 4.1. As
before, D1-D4 indicate stimulus dimensions (like shape, color, etc.), and 1 and 0
indicate values on those dimensions (like square and triangle; red and green; etc.).
So, 1011 might indicate a square, red, small figure on the left, and 0100 a triangular,
green large figure on the right. The top two categories are linearly separable, be-
cause it is possible to give a weight to each feature (the 1 or 0 on each dimension) so
that all the items in Category A have a higher score than all the items in Category B.
In particular, if we ignore D4 (i.e., give it a weight of 0), and equally weight the
value of 1 on all the other dimensions as 1.0, the items in Category A would all have
sums of 2, and the items in Category B would have sums of 1. Or to put it another
way, members of Category A have two out of three 1s on D1-D3, whereas Cate-
gory B has two out of three 0s. Medin and Schwanenflugel’s stimuli were geometric
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figures, so to learn these categories would be to learn that Category A generally was,
for example, green triangles on the left, and Category B generally was blue squares
on the right, with size being irrelevant. Each stimulus would have two of these three
properties, as the table shows.

In contrast, the bottom two categories in table 4.1 are not linearly separable.
How do we know this? It turns out to be somewhat difficult to ascertain that cate-
gories are not separable in general, because one must prove that no way of weight-
ing the dimensions will result in higher scores for Category A than for Category B.
And how is one to know that no possible way of weighting the dimensions would
lead to this result? There are complex mathematical analyses that could be done, but
in practice, researchers in the area take the following approach. Consider the first
two items in Category A: On every dimension, they are opposite. Similarly, consider
the first two items in Category B: These are also opposite in every respect. By put-
ting these opposites in the same category, the experimenters are ensuring that no
way of weighting the features could lead to a high score for both stimuli. For ex-
ample, Category A tends to have the 1 features, but the first item in the category has
only one such feature, a 1 on D1. Therefore, if we wish to include this item in the
category, we must give a fairly high weight to D1. But as we weight D1 more and
more, the second item is going to suffer, because it does not have a 1 on this di-
mension. Suppose then that we weight D2 more to make up for this. Although this
will help the second item, it will hurt the first item, which is opposite on that di-
mension. In short, if you find weights that will help one item (i.e., ensure that it is in
the category), they will of necessity hurt its opposite. So, there is no way to assign
weights to features that will result in both the first and second items being in the
same category. (One could use a very low criterion that would admit both items, but
then one would not be able to exclude the members of the other category.)

Consider the nonlinear categorization problem from the perspective of prototype
theory. Presumably, the (best-example) prototype of Category A would be 111? and
that of Category B would be 000? (the question mark indicates that the last dimen-
sion is uninformative, since the values are equal in the two categories). However, the
first item in Category A is actually more similar to the prototype of Category B,
and the first item in B is more similar to the A prototype. As a result, if subjects
are forming prototypes, these categories should be very difficult to learn, whereas it
should be considerably easier to learn the linearly separable categories. Of course,
subjects might eventually learn the nonlinearly separable categories, but this would
presumably be through memorization of the stimuli or some other less preferred
strategy, after prototype formation had failed.
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The question, then, is whether linearly separable categories are easier to learn, as
prototype theory predicts. Before revealing the results, it is important to point out
that Medin and Schwanenflugel controlled for many irrelevant differences between
the two structures. Both structures had eight stimuli, divided into two categories and
used the same stimulus dimensions and values on those dimensions. Furthermore,
the overall number of shared features was constant across the two structures. For
example, notice that in D1 of the linearly separable categories, Category A had three
1s and one 0; Category B had three Os and one 1. This is also true of the nonlinearly
separable categories. That is, the same number of 1s and Os is found in each cate-
gory on each dimension in the two structures. Clearly, it would have been possible
to make a very easy structure of one kind and compare it to a difficult structure of
the other kind. The comparisons made here, however, hold constant the number of
shared features in each category.

Medin and Schwanenflugel (1981) found no difference between these two struc-
tures. Subjects went through the items 16 times, and 66% learned them in the
linearly separable condition, and 72% in the nonlinearly separable condition. The
overall numbers of errors during learning were also nearly equal.

In their second experiment, Medin and Schwanenflugel varied the instructions
given to subjects. They were told either to try to learn what the categories were like
in general (a prototype approach) or to try to learn each individual item’s category
(an exemplar approach). They also used a new category structure that they thought
would make the nonlinearly separable categories even easier. In this structure, there
were a number of pairs of very similar items (differing only on one feature) in the
nonlinearly separable categories, but fewer such items in the linearly separable cate-
gories. If similarity to exemplars aids in learning, then it should actually be easier
to learn the nonlinearly separable categories. This is in fact what was found. The
instructions did not influence the difference in learning difficulty between the two
categories, though subjects told to focus on exemplars did make fewer errors overall.

Medin and Schwanenflugel achieved similar results (typically little difference be-
tween the two structures) in two further experiments. In addition, the experiments
of Wattenmaker et al. (1986) and Murphy and Kaplan (2000) found very similar
results in their comparable conditions. (As will be discussed in chapter 6, they also
found a way to reverse this effect, though it is premature to discuss that here.) In
short, it seems clear that subjects were not particularly sensitive to the constraint of
linear separability. If they had been trying to form prototypes, then they should have
learned the linearly separable categories sooner than the nonlinearly separable cate-
gories, yet this result was never found. If anything, the results seemed to slightly favor
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the nonlinearly separable categories. Clearly, this is very bad news for prototype
theory.

More recent research has put this finding in a different light, however. J. D. Smith
and Minda (1998) examined learning of linearly separable and nonlinearly separable
categories in individual subjects, across the entire learning period. After each seg-
ment of learning (56 trials), they fit an exemplar model and a prototype model to
each subject’s data, and they mapped the success of these models across the learning
process. Perhaps surprisingly, they discovered that prototype models generally had
an advantage in the first few blocks of learning. With further experience, prototype
models tended to do less and less well, with exemplar models having a substantial
advantage when learning was complete. Smith and Minda argued that subjects
began the task attempting to form prototype representations of the two categories
they were learning. However, over blocks, this strategy turned out to be less than
optimal (especially for the nonlinearly separable categories). Furthermore, with
repeated exposures of a small number of stimuli, subjects were eventually able to
memorize the items, which was always a successful strategy. Thus, exemplar models
may be correct in the final representation of the categories, but this representation
may only be reached after an initial, unsuccessful attempt at prototype learning, and
exemplar learning (for these stimuli) may only be possible when the stimuli are seen
over and over again.

Smith and Minda (1998) proposed an interesting model that combines proto-
type and exemplar ideas. They suggest that in addition to prototype learning, sub-
jects may be memorizing individual exemplars. When they recognize an exemplar as
being familiar, they use its stored category to help them respond. The exemplar por-
tion is different from the context model (and many successor models), because it
does not say that an individual exemplar is compared to all the category members in
a rather complex way. Instead, if that particular exemplar has been stored, then it
affects its own categorization but not the categorization of the other items. Smith
and Minda (1998, 2000) argue that such a model accounts for the full range of
learning data better than the usual exemplar models, and that the memorization
process is simpler and psychologically more plausible than the usual exemplar-
comparison process.>

Generic Exemplar vs. Prototype Experiments

I have focused on the question of linear separability because it has received much
attention and because it is a principled way of distinguishing prototype and exem-
plar models (though I should emphasize that it is specifically exemplar models like
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the context model that are supported here, because they emphasize relational simi-
larity). However, there have been many other contrasts of exemplar and prototype
models in the literature, which differ in the specific models they consider. An early
example is that of Reed (1972), who compared eighteen different models of category
learning in his experiments. Unfortunately, he did not include an exemplar model
like the ones discussed here, as the context model had not yet been developed. In
their seminal paper, Medin and Schaffer (1978) constructed a number of category
pairs for subjects to learn. They then derived predictions for the context model and
a prototype model for how difficult it would be to learn each item in the learning
set, and how subjects would categorize new transfer items after learning. In partic-
ular, they predicted that items similar to other items in the same category should be
easy to learn. Prototype theory predicted that items with the most typical features
should be easy to learn. Each theory was fit to the data so that optimal stimulus
weights could be derived. (Recall that prototype theory weights each feature on its
importance, and the context model has values for each mismatching feature in its
similarity computation.) Overgeneralizing somewhat, the results tended to show
that exemplar theory fit the overall data better than prototype theory (e.g., correla-
tions between models and data of .99 vs. .81 in Experiment 2 and .98 vs. .92 in
Experiment 3). The context model also made some predictions about which specific
transfer items should be easiest, and these predictions often held ordinally but were
not always reliable. Overall, though, the paper showed that the exemplar model
could do quite well in predicting the data, with the prototype model alway a bit
worse, even if not significantly so.

A good summary of other attempts to compare the two models can be found in
Nosofsky (1992), who fits these models (as well as others) to 13 different experi-
ments. The context model provides a better fit to the data than the prototype model
we have been discussing (the “additive prototype” in his terms) in 10 out of these 13
cases. Other experiments were not specifically designed to contrast prototype and
exemplar models but to investigate a more specific phenomenon (such as base-rate
neglect or frequency effects; see chapter 5). However, many such papers have com-
pared exemplar and prototype models to attempt to account for their data, and
generally—though not always—prototype theory comes out second best (see, e.g.,
Estes 1986; Kruschke 1992; Medin, Dewey, and T. Murphy 1983; Medin and
Smith 1981; Nosofsky 1986, p. 55; Nosfosky 1988—though not all of these have
considered exactly the same versions of the models discussed here). In short, pro-
totype theory has not done very well in explaining the results of these kinds of
experiments.
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Evaluation of Exemplar vs. Prototype Experiments

Since the two models are so directly contrasted in these studies, I will consider the
implications for them together, rather than in separate sections as in most chapters.
When taken as a whole, the contrasts of exemplar and prototype models favor the
exemplar models fairly heavily. There are exceptions, but in many of those, the two
are quite close. For example, in Estes’s (1986) Experiment 1, the prototype model
(what he calls the feature model) accounted for virtually the same amount of vari-
ance as the exemplar model (actually slightly less). However, it had one advantage,
namely that the parameters of the feature model could be used in all the conditions
he tested, whereas the exemplar model’s parameters had to be fit to the particular
condition. Thus, Estes felt that prototype formation was probably occurring to some
degree in this experiment. However, in his Experiment 2, Estes used categories that
could not be learned by independent feature associations (i.e., they were extremely
nonlinear). Here the feature model could not begin to explain the results. This kind
of result is typical: Prototype models do well on occasion, but in other conditions
they are dreadful.

Clearly, the exemplar approach is strongly supported by this kind of finding. And
although I am going to criticize these kinds of experiments, let us not lose track of
the fact that criticism of support for the exemplar approach is not the same as sup-
port for prototypes. Exemplar models do well in these situations, and they deserve
credit for it.

That said, there are some serious questions that can be raised about the kinds of
experiments discussed here. Let us consider, for example, the Medin and Schwa-
nenflugel (1981) design shown in table 4.1. There are two rather troublesome
aspects of this design. First, the categories are quite small (which is true of many
experiments using artificial categories—not just the ones under discussion). It seems
likely that exemplar learning would be greatly enhanced under these conditions.
Many natural categories are very numerous (just to pick some examples out of the
air: book, table, doctor, tree, store, house, lecture, mother), and it is not entirely
clear whether one can generalize from these artificial experiments to the learning of
real categories that are orders of magnitude larger.

Second, and of potentially more theoretical interest, the category structure in this
experiment is extremely weak. (J. D. Smith, Murray and Minda 1997, have made
a very similar point, though I will be attacking it in a different way.) Let us first
consider the linearly separable category. Medin and Schwanenflugel (1981) point
out that there is a prototype for each category: 1112 and 000? (the question mark
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indicating that there is no typical feature on D4). However, these prototypes are
not particularly strong. In any single example, a third of the features are “wrong”
(typical of the incorrect category). Furthermore, although it is easy for us to point
out that D4 is not diagnostic of category membership, subjects do not know this
when they start (and they don’t get to look at table 4.1 as we do). Thus, from their
perspective, the categories overlap quite a bit: Half of any item’s features are irrele-
vant or misleading.

The nonlinearly separable categories are, if anything, less realistic. Clearly, there
is something very peculiar about having items that are opposite in every respect being
in the same category. What kind of category has items in it that are—literally—
totally different? Now, one could respond to this by saying “This is only your intu-
ition about what kinds of categories are good. However, the results show that the
nonlinear categories are perfectly good—just as good as the linear ones, if not better.
So, perhaps your idea about what is a good category is not correct.” Although this
answer is very polite, it is not totally convincing in light of the overall results of
Medin and Schwanenflugel’s Experiment 1.# Although they did not find much dif-
ference between the two structures, subjects had great difficulty learning the catego-
ries. Keeping in mind that there are only eight items to be learned, it is remarkable
that 34% of the subjects did not learn the linearly separable categories and 28 % did
not learn the nonlinearly separable categories after 16 blocks (16 blocks is a lot). In
their Experiment 2, with a different structure, and more learning blocks (20), almost
all subjects reached criterion. However, Medin and Schwanenflugel’s later experi-
ments again led to very poor learning. In Experiment 3 there were only six items,
and 47% and 28% did not learn the linearly and nonlinearly separable categories.
In Experiment 4, fewer than 40% learned the categories, each with only three items.
(Nonetheless, the Experiment 4 structure was later modeled by Kruschke 1992.) To
be fair, there were a number of aspects of these experiments that could have led to
difficulty in learning—not just the category structure.® However, the point stands
that these categories were not learned even though they were extremely simple, with
three item types apiece. This horrible performance is not characteristic of real-world
category learning. The question, then, is whether results obtained under these cir-
cumstances tell us about category learning and representation more generally. T will
address this point more completely later. In the meantime, I would like to note that
the literature has generally not worried very much about the great difficulty in learn-
ing such categories. This problem has only seldom been mentioned at all (Murphy
and Allopenna 1994; J. D. Smith et al. 1997), and some of the references to the
linear separability findings have in fact been somewhat inaccurate in their descrip-



Exemplar Effects and Theories 105

Table 4.2.

Category Structure from Medin and Schaffer (1978), Experiment 2.

Category A Category B

D1 D2 D3 D4 D1 D2 D3 D4
1 1 1 0 1 1 0 0

1 0 1 0 0 1 1 0

1 0 1 1 0 0 0 1

1 1 0 1 0 0 0 0
0 1 1 1

tion of the nondifferences. For example, rather than concluding that “humans have
little trouble with categories that systems employing linear generalization functions
cannot learn (Medin and Schwanenflugel, 1981),” as Hintzman (1986, p. 425) did,
one might have concluded instead that humans cannot learn either linearly or non-
linearly separable categories.

Let me take another example. Medin and Schaffer’s (1978) paper was the original
impetus for the exemplar view, and its procedures have been borrowed heavily.
Their first experiment used categories that contained opposites (and only three items
per category), as in the bottom structure in table 4.1. The authors themselves
pointed out that these categories may be rather artificial, given that they contained
such opposites (and again, not all subjects learned to categorize the six items within
20 blocks). As a result, they constructed a new category structure for their later
experiments, shown in table 4.2. This structure has been extremely popular in the
literature. It was also used by Medin and Smith (1981), Medin, Dewey, and T.
Murphy (1983), and even as recently as Lamberts (2000). (Since I first wrote this
discussion, Smith and Minda 2000, have independently written in detail about this
structure. We made some similar remarks, and I have incorporated some of their
other points here.) It is often noted in this context that the structure is linearly
separable and can be learned by a rule. All you need to do is to ignore D2, and the
other dimensions follow a two-out-of-three rule: If there are two 1s, it’s an A, other-
wise it’s a B. So, like the Medin and Schwanenflugel example, one dimension is
irrelevant, and of the remaining dimensions, a third have atypical features in most
items. (Actually, part of the difficulty here is that D2 is slightly predictive of Cate-
gory A. So, this particular way of weighting the dimensions would be rather difficult
to learn, even according to prototype theory, since it isn’t the case that D2 is irrele-
vant on its own.) It may not be surprising, given all this, that in 16 blocks, only
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56% of Medin and Schaffer’s (1978, Experiment 2) subjects learned the categories.
Lamberts’s (2000) Experiment 1 is even more informative in this regard, because he
did not stop subjects after a set number of blocks, but required them to continue
until they were perfect. It took subjects an average of 38 blocks to reach this per-
formance, which is extremely long for learning to categorize only 9 stimuli into 2
categories.

I am dwelling on the details of these experiments and their results because I think
that it is important to understand the potential problems with the category struc-
tures and in turn with the overall results of the experiments. However, I do not wish
to be taken as saying that these experiments were badly designed or are of little
interest. In fact, their interest is apparent from the literature that has sprung up
around them. I believe that they will continue to be the basis for further work and
ideas. What is less clear, however, is what the results of these experiments tell us
about everyday category learning. Their general finding is that exemplar models do
better than prototype models. However, there are two respects in which these cate-
gories do not seem representative of many real-world categories: 1) They have very
weak structures, and 2) people have great difficulty in learning them, in many cases
not learning them at all.

The issue of weak structure was also addressed by J. D. Smith et al. (1997; and
J. D. Smith and Minda 2000), who performed a quantitative analysis of the within-
category and between-category similarity of items, suggesting that in studies of lin-
ear separability, both of the category structures compared (as in table 4.1) had very
weak structures given the possible category structures that one could have con-
structed with the same number of features. The weak structures may have required
subjects to learn exemplars, given the inefficiency of prototype representations.

A different approach to evaluating the category structure in these experiments is
to refer to studies of natural categories. As discussed in chapter 2, Rosch and Mervis
(1975) and Rosch et al. (1976) obtained information on category structures of
everyday categories through feature listings and ratings. Before briefly reviewing
them, it should be pointed out that such studies tend to underestimate the amount of
information in a category, because people tend not to list “obvious” features (and
the more obvious, the less likely they are to appear), and because many features are
not easily verbalizable. So, although members of the cat family have a distinctive
head shape, this is not easy to put down in words. Writing “cat head” does not seem
very informative, and so one does not tend to find such features in the listing of cat
or tiger, for example.

In spite of these caveats, an examination of feature lists shows that natural cate-
gories have many features listed in common. Rosch and Mervis (1975) describe
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features for superordinate categories, like furniture, vegetable, and clothing, which
are the level of natural categories that have the weakest within-category structure
(see chapter 7). For each of these categories, they sampled 20 items, ranging in typi-
cality from prototypical items to atypical items that many people might not actually
judge as being in the category (e.g., telephone for furniture; elevator for vehicle; foot
for weapon; necklace for clothing). They found that there was sometimes a feature
common to all category members (though not a truly defining one, since it would
also be found in other categories), but more generally there was “a large number of
attributes true of some, but not all, category members” (p. 581). For example, there
was at least one property true of 18, 17, 16, and 15 members of the categories. The
categories had 5 properties on average that were true of 9 of the category members.
In short, although there were many differences among the items, there were also
many commonalities. This was especially true in Rosch and Mervis’s analysis of the
5 most typical items in each category. Here they found an average of 16 properties
that were true of all 5 items. The 5 least typical items had hardly any properties in
common, but these were in some cases dubious category members anyway.

The point I am trying to make here is that even in natural superordinate catego-
ries, which have fairly weak structure, there is considerable commonality among the
items—and a very high degree of commonality among the most typical items. This
is not found in most of the studies described in this chapter (indeed, in many studies
of artificial concepts in general). It is possible, then, that prototype models could
work much better with natural categories in which category members share 9-16
features, rather than 0-3, as in these artificial categories.

Further evidence of category structure can be found in Rosch et al. (1976), who
had their subjects judge which properties are true of an entire category, thereby
producing fewer properties overall, but presumably properties that are nearly uni-
versal. Because these features lists are available (in an unpublished note that was
widely distributed), unlike the complete lists for Rosch and Mervis (1975), we can
also examine how many of the features were found in other categories. For example,
the category tool had three features listed as common to nearly all tools, none of
which was listed as features of clothing or furniture. The category of saws had those
same three tool features but also had seven features that were nearly universal to all
saws—only two of which were found in other tools. Thus, if you found a tool that
has teeth, is sharp and cuts things, you would be pretty sure it was a saw. (Again,
even more telling features like a saw’s shape were not easily verbalizable and were
not listed.) Overall, Rosch et al. (1976) reported 9.4 features common to basic-level
categories on average.® In short, even by what I believe is a conservative measure
(because it depends on easily verbalizable features), there is considerable richness
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to these categories. This is in marked contrast to the categories (whether linearly
separable or not) shown in tables 4.1 and 4.2, which are notable for their within-
category diversity and between-category overlap.

Mervis and Crisafi (1982) took a different approach to measuring the level of
similarity of items within and across categories. They took the category hierarchies
used by Rosch et al. (1976) and gave subjects pictures of items from the same or
different categories. Subjects rated the similarity of the depicted items on a 1-9 scale.
The authors discovered that items from the same basic-level category (e.g., two dif-
ferent kinds of chair) were rated as quite similar, 6.9, whereas items from different
categories in the same superordinate (e.g., chair and table) were rated only 3.3.
Thus, there seemed to be considerable similarity of items within categories and little
between categories, again rather unlike stimuli used in many experiments.

In short, it seems clear that the experiments reviewed in the previous section do
not have the same level of category structure as do most natural categories, as
shown by existing studies that have examined them. Of course, it is not to be taken
for granted that these studies (e.g., Rosch et al. 1976; or Mervis and Crisafi 1982)
have shown us a complete and accurate picture of category structure in the wild. It
is possible that they have stimulus sampling problems, or that their measures have
difficulties, or that there are other kinds of categories that are quite different from
theirs, even if they are accurate within the domains they tested. However, it should
be noted that the literature comparing prototype and exemplar models does not
make this claim, nor does it try to relate the category structures used to real cate-
gories in most cases. There simply seems to be the assumption that the categories
being tested are appropriate. (Recall, however, that these strange structures were not
chosen arbitrarily but because theories generally make the same predictions for cat-
egories with a strong family-resemblance structure, and so weaker or unusual struc-
tures were tested.)

The second problem I raised above is that learning is so poor in many of these
experiments. This is another sign that the categories are not very much like most
natural object categories. Categories like chair, tree, table, dog, cookie, spoon, tele-
vision, and so on, seem to be quite easy to learn compared to the categories in such
experiments. Children do not have to take classes in the difference between chairs,
couches and tables, and few people study examples of these categories over and over
again in order to master them. Indeed, much work in conceptual development uses a
technique in which a single object is indicated to a child along with its category
name, and then the child is tested on what he or she has learned. Although this
method is not really comparable to category learning as discussed in the present
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chapter, what is remarkable is that children do form very good hypotheses about the
categories based on one or two examples (see Carey 1982 and chapter 10). None-
theless, when these same children grow up to take Introductory Psychology and as a
result end up in category-learning experiments, they have inordinate difficulty in
learning categories that have only four or five members (e.g., the ones in tables 4.1
and 4.2). This suggests the possibility that the categories used in such experiments
may be different from the ones that they learned rather more easily as children.

What are the implications of these difficulties? In general, the issue is that it is
difficult to generalize from the learning of categories that have a weak structure to
those that have a much richer structure. It is possible, for example, that one could
very easily learn the category of chairs by forming a prototype of them, which
would be different enough from any table or couch that one would be likely to see.
If so, then perhaps people do form prototypes in such circumstances. It does not
follow from this, however, that the same kinds of strategies will be successful in
learning categories that have weak structures, whose prototypes are not very differ-
ent from one another. In order to learn the categories in these experiments (both the
linearly separable and nonlinearly separable, I would argue), subjects must essen-
tially memorize most of the items. Naturally, one does not find differences between
the two structures in such a situation. It is instructive, for example, that Estes (1986)
found that a feature-based model could predict learning quite well when it was
possible to do so, but not when the features were made independently nonpredictive
of the category (Experiment 2). However, all research on natural object categories
that I know of has found independently predictive features, though no doubt there
are some that have different structures.

Why don’t subjects appear to form prototypes in these experiments when it is
possible to do so, as in the linearly separable categories of table 4.1? First, it should
be pointed out that the prototypes that are discussed in these comparisons are not
exactly the ones that I described in chapter 2. There I said that each feature received
a weight depending on its frequency in the category (which increases the weight)
and outside the category (which decreases the weight). However, the prototypes
used in these experiments are simply the modal value on each dimension within the
category (see Medin and Schaffer 1978; Medin and Schwanenflugel 1981; Nosofsky
1992). For example, in the categories shown in table 4.2, the modal prototypes
would be 1111 in Category A and 0200 in Category B. This is considerably less in-
formation in the category prototype than the weights that were proposed by Smith
and Medin (1981), based on the family resemblance work of Rosch and Mervis.
(Furthermore, if one had the weights, it would be obvious that each feature is only
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weakly associated to its category.) In some cases, this modal prototype turns out to
have the same predictive power as the feature frequency version—if every feature
occurs equally often in its category and for some smaller (but equal) number of
times in the other category, for example. However, in other cases, the modal proto-
type is much less informative than the feature weighting would have been. In short,
it is not obvious that the tests of prototype theory used in these experiments ade-
quately reflect the more elaborate version that prototype researchers have proposed.

However, I suspect that even with a more complex prototype theory, one would
find that in many cases there is little sign of prototype learning. Because the features
are generally so weakly associated to the categories, and some dimensions must be
totally ignored, it is possible that subjects simply conclude that there is little gener-
ality to the items within each category and so use a different strategy. As I men-
tioned earlier, J. D. Smith and Minda (1998) found evidence that subjects start out
trying to learn prototypes but eventually end up using an exemplar strategy in typi-
cal experiments with artificial categories.

Stepping back a moment, I want to reiterate my earlier comment that these criti-
cisms do not themselves provide support for prototype theory. I am suggesting that
it might do better in cases in which there is stronger category structure. However,
that has not in fact been demonstrated, and it is clearly not doing better with these
structures, whatever their problems. Although defenders of prototype theories tend
to complain about the category structures used to support exemplar models, they
need to show that prototype theory will do better with other category structures.
And for the most part, this has not been done (though see below). So, exemplar
theory still has the advantage as of this writing. And it will be difficult to distinguish
the two theories if stronger category structures are used, because they have such
similar predictions about category learning in those cases. This suggests that differ-
ent techniques will need to be applied to cases where the category structures are
more like those involving natural categories. A good example is Malt’s (1989) study
of priming, which used real animals that could be learned moderately easily (3.1
blocks in Experiment 3). Recall that she found that when one could not learn the
categories by using prototypes, there was considerable priming from similar exem-
plars, suggesting an exemplar categorization strategy. When the categories could be
learned with prototypes, however, she obtained much weaker exemplar priming
effects. She argued that some subjects were using exemplars and some were not. In
short, her results suggest first, that the two theories can be distinguished when one
does not rely completely on learning data, and, second, that when category struc-
tures are strong, the evidence for exemplars may be less than in the cases used in the
traditional studies of prototype vs. exemplar learning.
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This second conclusion was also drawn by J. D. Smith et al. (1997), who directly
contrasted strong and weak category structures. In their second experiment, they
used the Medin and Schwanenflugel nonlinearly separable structure as well as
another nonlinearly separable structure with more attributes, which had greater
structure (i.e., more within-category similarity). Contrary to most practice, they fit
the data of their individual subjects rather than just group data. For their new
structure, they found that half of the subjects were best fit by a prototype model
and half by the Medin and Schaffer exemplar model. The prototype subjects were
characterized by an advantage of the prototype over the normal typical items, but
very bad (below chance) performance on the very atypical item. (In order to make
the category nonlinearly separable, there must be at least one atypical item that
cannot be correctly categorized by similarity to a prototype.) The exemplar sub-
jects showed no prototype advantage and moderately good performance on the
very atypical item. For the Medin and Schwanenflugel design, however, Smith et al.
found that 81% of the subjects were best fit by an exemplar strategy. In short,
they replicated the results of the earlier study but argued that they were in part
due to the very weak category structure. When there is a stronger structure, some
subjects appear to be learning prototypes and others appear to be learning exem-
plars. Surprisingly, when the data from all subjects in a condition were combined,
the exemplar model predicted the results much better than the prototype model
did. Even though there were equal numbers of subjects who were best fit by proto-
type and exemplar models, the combined data were fit best by the exemplar
model. Smith et al. suggest that past results almost unanimously in favor of exem-
plar models might have been different if individual subjects had been examined
(Maddox 1999 makes a similar point; and see Hayes and Taplin 1993; Malt
1989).

A final point made by Smith et al. (1997) is that it is quite surprising that some
subjects simply do not seem to learn the atypical items. Subjects who were classified
as prototype learners were making mistakes on the atypical item even at the end of
extensive training. It is unclear why, if exemplar theory were correct, it should be so
difficult to learn which category an item is in, after many blocks of training. It cannot
be that subjects can’t learn the individual exemplars. Medin et al. (1983), using the
categories shown in table 4.2, found that it was easier for subjects to learn a name
for each item than to learn the two categories (as did Malt 1989, with a different
structure). This reinforces the concern that there is something not-very-categorical
about these categories and also makes one wonder why subjects could not just
memorize which exemplars are in which category if exemplar memory is the basis
for normal categorization. It seems likely that they were attempting to form a
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coherent picture of the category, in which there were general properties true of most
category members.

I have noted that exemplar models do not claim that people learn and remember
everything about every example (see Medin et al. 1983, p. 612, for discussion). It is
a concern, then, that most exemplar theories do not incorporate partial encoding or
forgetting into their models. The array-based models of Estes (1994) and Hintzman
(1986) do include forgetting, but the more popular models based on the context
model typically don’t (e.g., Kruschke 1991; Lamberts 1997; Medin and Schaffer
1978; Nosofsky 1984; 1986). How then can they explain the results of category-
learning experiments in which subjects clearly do not always remember the exem-
plars? Usually, the slack is taken up by the weights on the dimensions that are
assigned by the context model (and/or the sensitivity parameter in the GCM). So, if
subjects only learned about or remembered dimensions 1 and 2 in the category, then
the other dimensions would have very low weights, or their mismatch values would
be very close to 1, so that it would have little effect in the multiplicative similarity
computation. Although this is an effective way to model the data, it must be pointed
out that it simply does not seem psychologically accurate: Memory effects are
modeled by a process that does not represent memory. In the most extreme example
of this, Nosofsky and Zaki (1998) modeled the category learning of severe amnesics
without positing any differences in their memory representations of exemplars from
those of normal controls (relying instead on the sensitivity parameter, ¢, described in
the appendix to chapter 3). Exemplar models of this type would be greatly improved
by incorporating more realistic memory assumptions.”

Other Views

The knowledge approach has little to say about the exemplar vs. prototype issue
(which may be one reason that some researchers have preferred to work within that
framework!). However, it is worth pointing out that knowledge in general is usually
thought of as being something like a summary representation. For example, if you
know certain things about animals, why they reproduce, how their physiology is
related to their behavior, how animals relate to their environment, and so on, this is
usually thought of as being knowledge about animals as a whole, or perhaps birds
or mammals, or (if it is quite specific knowledge) about red foxes or chameleons.
Knowledge is not usually thought of as being a fact you know about a particular
chameleon you saw once and a specific dog you noticed, or the set of a dog, a cha-
meleon, a chicken, and two squirrels. Instead, we usually think of knowledge as being
the sort of things you know about mammals in general. If that is correct, then it may
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be harder to integrate the knowledge approach with an exemplar model of specific
category learning.

Conclusion

Some writers have concluded that one cannot readily resolve the exemplar-prototype
question. Most notably, Barsalou (1990) provided a very detailed analysis of differ-
ent possible exemplar and prototype models, concluding that there was no specific
pattern of performance that could be accounted for by only one kind of theory. I
agree with most of Barsalou’s analysis, but I am not sure I draw the same conclu-
sion. One reason is that there are many possible models of each type, but in fact,
only a few of those versions have been seriously suggested. And this is for good
reason. Although one could construct a prototype-like model that acts as if it rep-
resents individual exemplars, why would one do so? Why not just conclude that
people are remembering the exemplars? Furthermore, although two models might
account for categorization data equally well, there could be different kinds of data
that would distinguish them. For example, Barsalou argues that if prototype models
kept track of pairs, triplets, and larger n-tuples of features, they could show certain
exemplar effects. That is, rather than only storing facts about individual features,
like robins usually have red breasts, have beaks, and fly, this model would also store
the frequency of has-beaks-and-flies, red-breasts-and-has-beaks, red-breasts-and-
flies, red-breasts-and-has-beaks-and-flies, and so on. Such a model might be able to
account for some categorization results normally thought to be explainable only by
exemplar models, such as nonlinear category learning, making it difficult to distin-
guish the two approaches. However, we can also test the assumption that learners
encode the pairs and triplets of features—in fact, it seems unlikely that they do so
(see chapter 5; Murphy and Wisniewski 1989). Other measures beyond catego-
rization performance per se, such as exemplar priming (Malt 1989), may also be
able to give independent evidence for the assumptions of different theories.

Another point that Barsalou makes, which is now gaining wider attention, is that
exemplar models are inherently more powerful than traditional prototype models.
Because the exemplar models maintain the representations of all the observed items,
they have all the information about a category that could possibly be used. So, if
they store 40 category members, they have 40 known configurations, on which any
number of operations can be carried out. In contrast, prototype models lose in-
formation by accumulating it into a single summary in which the co-occurrence
of particular features is lost. Thus, exemplar models can easily mimic a prototype
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abstraction process, but not vice versa. This makes any comparison of the two
approaches more complex to carry out, since even if subjects are truly using proto-
types, an exemplar model can often do a very good job of accounting for the data.

As 1 stated earlier, this chapter cannot be the end of the exemplar-prototype de-
bate, as there are many more phenomena in the psychology of concepts that need to
be considered before a final decision can be made. Here I have been focusing on
studies of category learning and categorization that pit the two models against each
other, but a complete model of concepts must also account for phenomena such as
conceptual combination, hierarchical structure in categories, and so on.

Exemplar models have the edge in the current battle of category-learning experi-
ments—certainly so if one just counts up the number of experiments in which ex-
emplar models outperform tested prototype models. With such a preponderance
of evidence, it seems likely that something like exemplar learning may well be going
on in those experiments. The main question about this work arises in attempting to
generalize from it to natural concepts. As I have pointed out, the experimental cate-
gories differ from natural categories in a number of ways that seem very pertinent,
including size (number of exemplars), differentiation (category structure), and ap-
parent difficulty of learning. It is certainly possible that people use exemplars to
learn categories like those presented in table 4.2 but do not do so for larger, well-
differentiated natural categories that do not have a small number of exemplars that
appear over and over again. Although my own intuition is that this is probably the
case, there is little evidence that actually supports this view, and so such criticisms
must be taken with a large grain of salt. However, one can also turn this around and
state it as a goal for exemplar theory—to more convincingly demonstrate that the
principles identified in experiments of this sort hold up in the learning of natural
categories.

It may be significant that the few studies that looked at individual learners have
found that they differ in their learning strategies. Both Malt (1989) and J. D. Smith
etal. (1997) found that some subjects showed a clear prototype pattern of responding
whereas others showed a clear exemplar pattern. J. D. Smith and Minda (1998)
found that individuals seemed to shift from a prototype to an exemplar strategy
within the experiment. This suggests that both kinds of learning may be an option
for people, depending on the category structure (see J. D. Smith et al. 1997) and
probably a variety of task and personal variables. That is, stating this debate as
“prototype vs. exemplar models” may itself be an error. Perhaps the issue should be
discovering when people form generalizations and when they rely on exemplars,
rather than deciding which model is correct and which incorrect.
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Miscellaneous Learning Topics

Readers may wonder why a well-organized book should have a “miscellaneous”
chapter. That is the kind of question that answers itself, I suppose, but nonetheless
there is an answer based on the overall structure I have followed here. The book is
generally organized around major phenomena in the psychology of concepts. How-
ever, there are some topics that have received considerable attention in the field that
do not fit so neatly into the major divisions of this book because they are specific
phenomena that don’t merit their own chapter. Also, there are some interesting
methodological questions that don’t relate to one particular phenomenon but could
be used to address many of them. It seems unwise to omit discussion of all such
topics simply because they don’t fit into the structure of the rest of this book, hence
the present chapter.

There is no particular order or relation between the topics in this chapter, so
readers should feel free to pick and choose among them as they like. Although it
might have been possible to shoehorn these sections into other chapters, there would
have been considerable damage to the cohesion of those discussions, so I feel that
the present organization is a bit more honest, if ungainly.

“Base-Rate Neglect” in Category Learning

Typically, when people learn categories, they are sensitive to the frequencies of both
exemplars and properties within the category. For example, when one item occurs
more than others, it is generally considered to be more typical and is categorized
faster than less frequent items (Nosofsky 1988). As Rosch and Mervis (1975)
showed, when a feature occurs more often in a category, items that possess it are
learned faster and have greater typicality (and see Spalding and Murphy 1999). In
this respect, there is plenty of evidence that people are sensitive to how often things
occur in categories. In fact, category learning in general depends on people noticing
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the base rates of different properties of category members (that birds often fly but
mammals usually don’t, etc.). Nonetheless, there are some systematic exceptions to
this observation that have received a certain amount of attention in the literature.
These exceptions have been called the inverse base-rate effect (Medin and Edelson
1988) or apparent base-rate neglect (Gluck and Bower 1988), and they are the topic
of this section. However, I put the phrase “base-rate neglect” in quotes in the sec-
tion heading, because it should be remembered that this phenomenon occurs only in
specific circumstances, and people are normally quite sensitive to the base rates of
properties in categories.

To illustrate this phenomenon, consider the stimulus structure used by Gluck and
Bower (1988). These categories were diseases, and the exemplars were patients who
had each disease. The exemplars were made up probabilistically. That is, given that
a patient had disease X, there was a given probability that the person would have
symptom 1, a different probability for symptom 2, and so on. One disease was rare,
and one was common, in that the common disease occurred three times as often as
the rare disease. The symptom structures were as follows:!

Rare Disease Common Disease
Symptom 1 .60 .20
Symptom 2 40 .30
Symptom 3 .30 40
Symptom 4 .20 .60

The numbers here represent the probability of each symptom occurring, given the
patient had that disease. For example, patients with the rare disease would have
symptom 3 30% of the time.

This is something of a strange category structure, because it is possible (indeed,
likely) for the exact same set of symptoms to be produced by the two different dis-
eases. For example, a patient might have symptoms 2 and 3 and be in either the rare
or common disease category. There is no way for the subject to tell for sure what
disease a person has (in fact, even though we know the category structure, there is
no way for us to know either). Indeed, a patient might not have any of the symp-
toms, due to the probabilistic nature of the categories. One can assume that these
categories are difficult to learn (Gluck and Bower do not report learning data).

Gluck and Bower’s (1988) main interest was in people’s judgments about symp-
tom 1. After subjects were trained on the categories, they were asked what per-
centage of patients with symptom 1 had the rare disease. In reality, the answer
was 50%, because although symptom 1 is the most frequent feature within the
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rare disease, the common disease occurred three times as often. So, 3 times the rate
of occurrence of symptom 1 in the common disease (.20) equals the frequency of
symptom 1 in the rare disease (.60). Subjects, however, judged the feature to be in
the rare disease category 67% of the time. This is the result that would be expected
if subjects were ignoring the differences in category frequencies (hence the name
“base-rate neglect”).

Medin and Edelson’s (1988) result was qualitatively the same, but they used
deterministic (rather than probabilistic) categories and obtained category judgments
on test items rather than measuring frequency. To make an analogy to the design
given above, they essentially showed that an item with symptoms 1 and 4 would be
more likely to be categorized into the rare disease category, even though it was in
fact more likely to be in the common disease category, because of the large base-rate
difference.

Why do subjects think that the critical symptom (1 above) is actually more indic-
ative of the rare category? In a clever series of experiments, Kruschke (1996) has
argued that it is a function of the order in which the categories are learned, plus
shifts of attention to critical features. Kruschke points out that when one category
occurs three or more times as often as another category, subjects will learn the more
frequent category first. They will have more opportunities to observe its features and
to learn from getting feedback on their categorizations. He argues that when sub-
jects learn the common category, they have learned that it often has symptom 4,
fairly often symptom 3, but hardly ever symptom 1, for example. Now when learn-
ing the rare category, subjects will tend to focus on the features that distinguish it
from the already-learned common category. For that category, the most distinctive
feature is symptom 1. Thus, this symptom becomes particularly strongly associated
to the rare disease category.

To test his theory, Kruschke (1996) taught subjects categories that were equally
frequent—but he taught some categories first, for 9 blocks, and then taught all the
categories together for 9 blocks. His reasoning was that if it is the contrast between
learned and unlearned categories that causes subjects to focus on a distinctive fea-
ture, the same result should be found in this condition, even though the categories
are all equally frequent in the second phase. He found that subjects preferred the
later-learned category for items that contained its distinctive feature, even when they
were actually equally associated to the two categories. (It was not just that people
preferred the later-learned category overall; the distinctive feature had to be pres-
ent.) In another experiment, he showed that a feature must be distinctive to be sub-
ject to base-rate neglect. If the feature is frequent in both the rare and common
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categories, it does not produce the effect. The feature must be frequent within the
rare category and less frequent within the common category.

These results support Kruschke’s view that the base-rate neglect phenomenon
occurs because of attention shifting from the common category to the most pre-
dictive features of the rare category. Without such a shift, he argues that learning
models cannot explain the result. He developed a prototype model that incorpo-
rated this shift and explained the results (see an exemplar model with the same kind
of attentional shift in Kruschke and Johansen 1999).

Feature Correlations in Concepts

Eleanor Rosch’s writing on concepts greatly emphasized that conceptual structure is
based on the structure of the environment. In particular, she argued that objects in
the world do not have random collections of properties but instead are structured:
“The world is structured because real-world attributes do not occur independently
of each other. Creatures with feathers are more likely also to have wings than crea-
tures with fur, and objects with the visual appearance of chairs are more likely to
have functional sit-on-ableness than objects with the appearance of cats. That is,
combinations of attributes of real objects do not occur uniformly. Some pairs, tri-
ples, or ntuples are quite probable, appearing in combination sometimes with one,
sometimes another attribute; others are rare; others logically cannot or empirically
do not occur” (Rosch et al. 1976, p. 383). In short, Rosch argued that categories
contain clusters of correlated attributes that are fairly distinct from other clusters.
Whether the environment truly possesses such clusters is difficult to say (and is
something that cannot be answered by doing psychology experiments, which can
only measure people’s perceptions of the environment). However, it does seem clear
that our concepts consist of such clusters of correlated attributes. These are in fact
the prototype concepts that have been found in empirical studies of natural con-
cepts. That is, there are many features of birds that are predictive of birds but of few
other animals. Birds tend to have wings, to fly, to have feathers and a beak, to mi-
grate south in winter, to eat seeds, and so on. Not all of these features are true of all
birds of course, but it is still the case that if you know that an animal lives in a nest
and has wings, you can be more certain that it migrates south in winter than if you
knew that it lives in a burrow and has paws. In short, the prototype structure of
concepts is one way of representing these clusters of correlated features. When fea-
tures are all connected to the same prototype, then they are all at least somewhat
correlated. And the features that are very highly weighted in that prototype are
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probably highly correlated. For example, feathers and beaks are highly weighted in
birds, and they are also highly correlated, as almost all birds have both.

In short, prototypes themselves represent feature correlations (note that in this
section I shall be using the term prototype primarily to refer to the category struc-
ture rather than to the theory). However, there is a somewhat different possibility
for encoding feature correlations, namely that they are directly represented in the
concept. For example, Smith and Medin (1981, pp. 84-86) suggested that highly
correlated features are associated together by a “correlated” link that indicates that
when one feature is present, the other should be expected as well. As I have indi-
cated, if two features are both quite frequent within a category, such a link would
probably not be necessary, because one can infer that the features co-occur. How-
ever, there may be other features that are not universal within a category but none-
theless go together very frequently. For example, for birds, ““is small” and “sings”
seem to be correlated, even though many birds do not sing and presumably most are
not small (relative to other birds). Perhaps, then, these two features are linked, so
that when one sees a small bird (but not a large one), one would be likely to con-
clude that it sings.

There have been a number of experiments devoted to the question of whether
such feature-feature correlations are in fact noticed by subjects and used in making
categorization judgments. Before we discuss the evidence for this, however, it is im-
portant to reemphasize that these studies are not tests of Rosch’s idea of concepts
consisting of clusters of correlated attributes. The literature has sometimes presented
the articles discussed below as testing the Roschian position, but, as I have pointed
out, it is prototype concepts themselves that are the evidence for her notion. People
do not have to explicitly link “beak” and “feathers” to represent their relation be-
yond including them both as frequent features of birds.

What we are asking, then, is whether, within a concept, some of the features are
more correlated than others, and if people learn this information and use it in con-
ceptual tasks. Malt and Smith (1984) obtained properties for members of six differ-
ent superordinate categories (e.g., different kinds of birds, clothing and flowers) and
asked subjects to rate how much each property applied to each category. For ex-
ample, how much does “is black” apply to robins, seagulls, owls, penguins, and so
on? They discovered that within each superordinate category, there were many fea-
tures that were significantly correlated. Some of these correlations do not seem par-
ticularly interesting, such as the negative correlation between “is large” and “is
small” within birds. However, others involved substantive correlations such as the
positive correlation between eating fish and having a large beak, or, for furniture,
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the correlation between having springs and being sat on. The number of such cor-
relations was higher than would be expected by chance, and so Malt and Smith
argued that there was considerable structure within these concepts.

Malt and Smith next asked whether there is an effect of the property correlations
on the typicality of category members. For example, consider a bird that has the
features “is small” and “sings.” In addition to being typical features, these are also
correlated. When judging this bird’s typicality, then, does it gain an advantage by
having this correlated pair? Does the correlated pair make the item more typical
than one would expect based on its individual features? Malt and Smith calculated a
family resemblance score for each item (robin, seagull, etc.) by adding up the number
of features it had, weighted by how frequently each feature appeared in its super-
ordinate category. They found (as one would expect from Rosch and Mervis’s 1975
results) that these scores predicted the typicality of category members quite well
(correlations of .56 to .79).2 Importantly, no significant improvement was achieved
in analyses that included information about correlated features (e.g., that increased
typicality for items that had both “sings” and “is small”’). Typicality could be pre-
dicted by individual features just as well as by individual features plus correlations.

Malt and Smith (1984) also examined the possibility that correlations work sub-
tractively. For example, perhaps when a bird is small but doesn’t sing, it is less typi-
cal than would be expected by its individual features, because it violates the positive
correlation of these features. However, they found no evidence for this idea either.
In short, Malt and Smith found little evidence that such correlations are used in
determining category structure in their study of typicality.3

In a final experiment, Malt and Smith presented subjects with items that differed
only in feature correlations. Each item was a list of features, like “has a beak, is
small, lays eggs, breathes, sings.” Some cases, like the one just given, contained a
correlated feature pair (is small-sings), and others were identical except that one
member of the correlated pair was replaced with another feature that was not
involved in a correlation but that was equally frequent (e.g., “is small” might be
replaced with “eats bugs”). Subjects viewed pairs of such items and had to decide
which one was more typical. Malt and Smith found that subjects chose the item with
the correlated pair 61% of the time, which was greater than the 50% expected by
chance. Thus, there was some evidence that subjects were aware of and could use
the correlated features.

As a whole, the overall picture of the use of feature correlations is not very posi-
tive. For example, Malt and Smith found no effect of the feature correlations in
determining typicality of six different superordinate categories. The one positive
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piece of evidence they found occurred when the only difference between items was
that of feature correlations—subjects had no other basis on which to make a choice,
since the items were identical in terms of family resemblance. Furthermore, by pre-
senting the items simultaneously and forcing subjects to choose one of them, this
procedure made the feature correlation much more salient than it would have been
if each item had been presented separately. Consider this analogy. Imagine that
color normally plays no functional role in your decision about whether something is
a chair. However, if you were presented with two identical chairs that differed only
in their color and were required to choose the more typical one, you would obviously
have to make your decision based on color. And if there is any consistent basis for
choosing one color over another (e.g., one is more attractive, one is more familiar,
or when forced to think about it, you realize that one color is found slightly more
often in chairs), then people might well agree on which chair is more typical. Simi-
larly, although Malt and Smith’s subjects agreed (a bit higher than chance) that the
correlated item was more typical when forced to choose between a correlated and
uncorrelated item, this is not very compelling evidence that an individual item is af-
fected by the presence of the correlation. Given all the negative evidence in Malt and
Smith’s paper, then, correlations do not seem very critical.

Murphy and Wisniewski (1989) used an experimental approach to this question.
They taught subjects family resemblance categories in which a pair of features
always co-occurred (whenever one feature occurred, so did the other one). After
subjects studied the items, they were tested on items that either preserved the corre-
lation or else separated the formerly correlated features. Murphy and Wisniewski
found no reliable effect of such correlations in three experiments. However, they
performed a similar study with features that subjects would expect to be correlated,
such as, for a weapon, “blinds you temporarily” and “emits a bright light.” These
were knowledge-based correlations, in that they could be explained by knowledge
prior to learning the categories. Here there was some evidence that subjects were
using the correlation. In fact, in their Experiments 3A and 3B, Murphy and Wis-
niewski found that subjects “learned” such correlations even when the features were
not particularly correlated in the stimuli. Subjects rated items higher when they had
the two correlated features than when the correlation was broken, even though the
correlated features did not occur together any more often than other features in the
category.

Murphy and Wisniewski concluded that subjects are not very good at learning
these pairwise feature correlations based on statistical evidence. When subjects are
trying to learn the two categories, they are attempting to learn how each feature is
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related to the category; trying to encode the feature-to-feature associations would
require considerable effort. In general, if one knows N features about a category,
one would have to consider N x (N — 1)/2 correlations. For example, if one knew 25
facts about birds (a large underestimate), then there could possibly be 25 x 24/2 =
300 feature correlations. This is a large number of correlations to have to attend to,
or even to learn without attention. In contrast, one’s knowledge will only connect
some of those features, and so using knowledge to identify feature correlations can
simplify this problem considerably. A perusal of the feature correlations discovered
in Malt and Smith’s (1984) study shows that many of them are related to more
general knowledge: eats fish-near sea, large wings-large, and flies-lives in trees (posi-
tively correlated), and small-large, small-large wings, can’t fly-lives in trees, and near
sea-eats insects (negatively correlated). Perhaps only such features, which are repre-
sented in more general domain knowledge, have an effect on typicality (as Malt and
Smith themselves suggest). Unfortunately, it may be difficult to test the use of these
correlations in natural categories, since it may be hard to find real category members
that do not preserve the correlations (e.g., birds that eat fish but do not live near
water, or small birds with large wings).

In a recent study, Chin-Parker and Ross (in press) confirmed that subjects do not
learn feature correlations during category learning. However, when subjects per-
formed an induction task during learning, in which they predicted unknown features,
they did acquire the correlations. Thus, whether feature correlations are learned
probably depends on the kind of processing done when encountering category mem-
bers. If you are focusing on learning the category per se, you will probably not notice
the correlations, but if you focus on feature relations, you can do so.

Having drawn this fairly negative conclusion about the importance of feature
correlations, I must discuss an important paper that has sometimes been taken as
providing evidence that people do learn feature correlations. Medin et al. (1982)
performed two kinds of experiments to test people’s sensitivity to feature correla-
tions. In one kind, they presented subjects with the items from one disease category
to study. In those items, two dimensions were perfectly correlated. For example, the
patients who had the symptom “splotches on the skin” also had “high red blood cell
count” (and vice versa). But when the patients in this category had “skin rash,” they
also had “high white blood cell count” (and vice versa). So, skin condition and type
of blood symptom were perfectly correlated. At test, subjects rated items that pre-
served this correlation (splotches-red blood cell) higher than those that broke the
correlation (splotches-white blood cell).



Miscellaneous Learning Topics 123

Table 5.1.

The stimulus structure of Medin, Altom, Edelson, and Freko (1982).

Terrigitis Midosis

D1 D2 D3 D4 D1 D2 D3 D4
1 1 1 1 1 0 1 0
0 1 1 1 0 0 1 0

1 1 0 0 0 1 0 1

1 0 0 0 0 0 0 1

Note: Each row depicts an exemplar of Terrigitis and an exemplar of Midosis. The Ds indi-
cate stimulus dimensions, and the 1s and Os indicate values on each dimension, in this case,
disease symptoms. D3 and D4 are the “correlated” dimensions.

Such results do show that subjects learned these correlations. However, because
there was only one category to be learned, this situation is rather different from the
one investigated by the studies described above and from natural categories. For
example, Murphy and Wisniewski found that when subjects learned two categories,
they did not notice perfectly correlated features of this sort. When learning multiple
categories, people are primarily learning how features are related to the different
categories, not how they are correlated within the categories. However, in Medin
et al.’s paradigm, there is nothing else for the subjects to learn besides how the fea-
tures are related to one another: There were no categories to learn to distinguish.
Subjects studied the nine items for 20 minutes, and it is perhaps not surprising that
under such circumstances, they learned which dimensions were perfectly correlated.
However, if subjects had been given a category-learning task, it seems less likely that
they would have learned the relations between the dimensions.

Medin et al. (1982) recognized this possible problem, and they performed a final
experiment in which items were in two different categories, using the category
structure shown in table 5.1. However, these categories did not use feature correla-
tions of the Roschian kind being discussed here. Recall that Rosch et al. (1976,
p. 383) mentioned examples like “Creatures with feathers are more likely also to
have wings than creatures with fur, and objects with the visual appearance of chairs
are more likely to have functional sit-on-ableness than objects with the appearance
of cats.” However, Medin et al.’s correlated attributes, Dimensions 3 and 4 in table
5.1, do not fit this description. As you can see, the properties in Dimensions 3 and 4
occur equally often, both overall and within the category. (There are equal numbers
of 1s and Os on each dimension in each category.) Furthermore, it is not the case
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that a 1 in Dimension 3 tends to go with some value in Dimension 4: Across all
items, the two dimensions are orthogonal (uncorrelated). In fact, each of the four
possible combinations of these dimensions (11, 10, 01, 00) is equally frequent. This
is quite different from the usual case in which some features are more frequent in the
category than others, and some features tend to co-occur with others in order to
form distinct categories. The relation between Dimensions 3 and 4 is complex. In
the Terrigitis category, if there is a 1 on D3, then there is a 1 on D4 (and vice versa),
but if there is a 0 on D3, then there is a 0 on D4. In the Midosis category, if an item
has a 1 on D3, then it must have a 0 on D4 (and vice versa), but if it has a 0 on D3,
it must have a 1 on D4. Following Rosch et al.’s example, imagine we used bird
features in such a structure. Then one category would have things with wings that
live in nests or with no wings that live in a burrow. The other category would have
things with wings that live in a burrow or no wings that live in a nest. This kind of
structure is more like the “exclusive or” (XOR) rule than the correlations found in
natural categories. (This is not to deny that such categories occasionally exist, as in
legal rules, the tax code, or equally unpleasant settings.)

Subjects in Medin et al.’s Experiment 4 studied these items for ten minutes in
order to learn the categories, and they received five more minutes of study if they
could not categorize them correctly. Then they were tested on old and new test
items. Medin et al. found that subjects tended to categorize the new items according
to the relation of Dimensions 3 and 4. When these dimensions were 11 or 00, sub-
jects tended to categorize the item as Terrigitis; otherwise they tended to categorize
it as Midosis.

Clearly, then, subjects can learn and use these relations between features in cate-
gory learning. However, the complex nature of the correlation does not seem to be
the same sort that has been claimed for natural categories, and so it is not possible
to generalize this result to them. Furthermore, it should be noted that subjects had
to learn the correlation in order to learn the categories, because (1) the features in
Dimensions 3 and 4 were not individually predictive of category membership; and
(2) the other dimensions were not sufficient to categorize the items (e.g., 10__
occurred in both the Terrigitis and Midosis categories, as did 01__). Again, this is
unlike natural categories in which one generally does not need to learn the correla-
tion of features within a category in order to learn the category (one can learn that
birds fly and live in trees and not have to learn that the two features are correlated).
In fact, Malt and Smith’s (1984) results suggest that this is just what people do learn
in natural categories.
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All of the above is not a criticism of the Medin et al. (1982) demonstration, but is
an argument against taking it as answering this question about whether people learn
feature correlations in natural categories, which is how it has often been interpreted.
In natural categories, the features are correlated in clusters of related features, rather
than the orthogonal structure shown in table 5.1. Furthermore, the features are
independently predictive of the category. In such situations, it seems likely that
people will learn the individual features rather than the correlations, as suggested by
the results of Malt and Smith, and Murphy and Wisniewski. As remarked earlier,
there are so many possible pairs of correlated features in natural categories that it is
difficult to see how one could consider them all. One of the benefits of categories is
that they allow us to reduce the information structure of the correlations in the en-
vironment. Instead of storing the facts that wings go with feathers, and feathers go
with nests, and nests go with beaks, and wings go with beaks, and wings go with
nests, and feathers go with beaks, and so on, we can store the facts that wings,
feathers, nests, and beaks are all properties of birds, which implicitly represents the
feature-to-feature correlations.

Theoretical Implications
What does this conclusion say about the different theories of concepts? Exemplar
models would predict that the correlations should be preserved and used, because
these correlations would be found in individual exemplars. For example, when cat-
egorizing something as a bird, one would retrieve bird exemplars that are small and
sing, but one would not have stored exemplars that are large and sing (since they are
so rare). A large, singing bird, then, would be considered less typical. (Indeed, it is as
a test of exemplar theory rather than of feature correlations that Medin et al. 1982,
present their experiments.) Thus, if one accepts my conclusion from the studies of
Malt and Smith, Murphy and Wisniewski, and Chin-Parker and Ross that such
feature correlations are not represented and used in category learning, then this is a
problem for exemplar theory. Counteracting that is the finding in Medin et al.’s
experiments that the relations among their features were noticed (see also Watten-
maker 1993). However, given the concerns that learning these correlations was
absolutely necessary to complete the task and that very long study times and few
exemplars were used, this is not very strong evidence. Thus, exemplar theory falls a
bit short here.

Prototype theory does not normally represent feature correlations, though it could
be modified to do so, as Smith and Medin (1981) proposed. The general negative
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findings of such correlations (in prototype-like categories, rather than the XOR-like
categories) is therefore consistent with most prototype models.

Finally, the knowledge approach gained support from Murphy and Wisniewski’s
finding that feature correlations were noticed and used when the features were items
that would be expected to co-occur. Contrary to exemplar model predictions, this
effect was found whether or not the features actually did co-occur. Similar results
were found by Barrett et al. (1993, Experiment 1) with children. To the degree that
these experiments show that prior knowledge is influencing the learning of new
categories, they are supportive of the knowledge approach.

Category Construction

In the majority of experiments on categories and concepts, subjects are required to
learn novel categories. Typically, the experimenter designs pairs of categories and
then has subjects go through item after item, until they correctly categorize them.
Obviously, the experimenter decides which items are in which category, according
to a rule or the requirements of the stimulus design. However, there is another way
by which people can acquire categories, which is that they can spontaneously notice
that items are in a separate category. Most of us have consciously noticed this, as
when we find ourselves thinking “What is this new kind of dog that I see around
nowadays?” (usually some annoying miniature breed), or “Look at the interesting
flowers that they have out in the desert here,” or “What is this music I've started to
hear on the radio that has only bass and drums, and complex rhythms?” When we
encounter items that don’t seem to fit very well into our current categories but that
form a coherent set, we have noticed that there is a new category that we are not
familiar with. This is an example of category construction—the learning of a new
category that you formed on your own, without an experimenter or teacher telling
you what is in the category. Because of the absence of feedback, this is sometimes
called unsupervised learning. (Note that what I call category construction is different
from what is usually called category learning in that only the latter involves feed-
back. However, this terminology is not yet universal.)

This process is one that is probably most important in childhood, when children
notice the categories around them but may not yet have words to describe them or
may not have received any feedback telling them that the things are indeed in the
same category. Merriman, Schuster, and Hager (1991) have shown that children do
form categories on their own and then will quickly learn a new word that refers to
that category. Mervis (1987) has suggested that this is a typical way that children
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Table 5.2.

The stimulus structure of Medin, Wattenmaker, and Hampson (1987).

Category A Category B

D1 D2 D3 D4 D1 D2 D3 D4
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

Note: This structure consists of a prototype (the first exemplar in each category) and other
items that differ from the prototype by exactly one feature.

learn words—first noticing the category and then learning what it is called. Fur-
thermore, as we shall discuss in chapter 9, experiments on infants often require them
to form their own categories. That is, the infant is exposed to things that are mem-
bers of a category (or two—see Quinn 1987) and is expected to notice that they are
all the same kind of thing, even without any instruction or feedback from the ex-
perimenter or Mommy. Impressively, they do so. As adults, we already have con-
cepts for most of the things we encounter, and so we may not notice this process
working unless we travel, encounter a recent invention, or otherwise expose our-
selves to new kinds of entities.

Although I haven’t yet said much about how category construction works, one
would expect that it should be like category learning in important respects. For
example, if you held a prototype theory of categories, you would probably expect
people to form prototype concepts; if you held an exemplar view, you would expect
people to notice the similar exemplars and to think that they were in the same cate-
gory. Surprisingly, neither prediction is correct, according to standard experiments.
When people are asked to form categories, they form categories that are unlike nat-
ural categories. In a seminal paper, Medin, Wattenmaker, and Hampson (1987)
gave subjects items that fell naturally into two categories. As shown in table 5.2,
each category had a prototype, and its items differed from the prototype in only one
feature. Thus, there were two clear clusters of similar items. Each item was printed
on a separate card (in some experiments, they were pictures, in others, each feature
was a phrase), and subjects were asked to divide them into the groups that were best
or most natural. Surprisingly, when given items that fit this design, subjects virtually
always divided them up based on one feature. That is, if the stimuli were pictures of
objects, they would choose one dimension (e.g., size or body pattern) and divide the



128 Chapter §

items up into categories that differed in that dimension (large vs. small, or striped vs.
plain).

This unidimensional strategy is very robust to differences in stimuli and instruc-
tions. Medin et al. (1987) attempted to persuade subjects to form family resem-
blance categories (i.e., using all or many of the features, rather than just one) in a
number of ways and were generally unsuccessful. For example, in one experiment,
they made stimuli that had three different values on every dimension. They used
bugs with tails that were long, short, and medium, in equal numbers, and similarly
for the other dimensions. Then they required subject to form two equal-sized cate-
gories. So there is no way that they could use a single dimension to make the cate-
gories, right? Wrong: ... a subject might put the drawings with short tails in one
category, those with long tails in another category, and then closely scrutinize the
figures with medium length tails for any differences in tail length. Inevitably there
were tiny differences and a subject could use these to assign two medium length tails
to the ‘long’ category and two to the ‘short’ category” (Medin et al. 1987, p. 259).
Regehr and Brooks (19935) also tried to prevent subjects from creating unidimen-
sional categories by using complex geometric stimuli that could not be easily divided
on single dimensions. Nonetheless, they found that subjects arbitrarily identified
parts of the stimuli as dimensions and then used this to form two categories. So, the
bias toward unidimensional categories is extremely strong. It used to be thought
that preschool children did not use single dimensions in related sorting tasks, but
recent evidence has suggested that they also are likely to sort items unidimension-
ally, at least, when there is any consistency to their sorting (see Thompson 1994;
Ward et al. 1991).

Based on such results, Ahn and Medin (1992) suggested a two-stage model of
category construction. In stage one, subjects choose a salient dimension on which to
divide up the stimuli. If there are stimuli left over after this division (generally be-
cause information has been omitted from some exemplars, or because there are fea-
tures in the middle of the extreme values), then they use a similarity strategy to add
the stimuli to the categories already made. So, if they first divide up items according
to color, but some items do not have any color, then subjects will try to put them
with items that are similar to them on other dimensions. Ahn and Medin were able
to provide strong evidence for this strategy using a variety of category structures
more complex than the one in table 5.2 (and more complex than we wish to delve
into here).

This model does not answer the question, however, of why people make cate-
gories that are so different from those of everyday life. As we have already discussed
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(e.g., chapter 2, but this has been assumed in almost every discussion in the book),
categories do not have defining features that determine precisely what is in and what
is out of the category. And even the most ardent classical theorist has never sug-
gested that there is a single overt feature that can define natural categories. For
example, subjects list many properties for categories like bird, car, chair, doctor,
movie, breakfast foods, and so on. There is no single property by which one can
identify them with any confidence. Furthermore, a category defined by a single at-
tribute would be very uninformative. If we simply thought of birds as “things with
wings,” for example, we would not know that birds tend to fly, live in nests, have
two feet, fly south in winter, and so on—all we would know is that they have wings.
The power of categories is in part the fact that features seem to go together; as
Rosch et al. (1976) pointed out (see previous section), properties tend to occur in
correlated clusters, and this is what makes having a category useful. So, if T see
something fly briefly across my window, I may identify it as a bird and could then
infer that it has two legs, that it lives in a nest and lays eggs, even though I have not
directly observed any of these properties. Thus, my concept of birds is multidimen-
sional and rich, which gives it inductive power. Unidimensional categories are
obviously not rich and have no inductive power: Since you need to observe the
single feature to classify the item, and there are no other features, there is no further
information to be gained from categorization.

If they are so unhelpful, why then do people make unidimensional categories?
Part of the answer seems to be that this is an ingrained strategy that is taught in our
education system for solving problems. For example, standardized tests put great
emphasis on discovering the one property common to a number of disparate items.
Science progresses by isolating and identifying the single causes of phenomena
where possible. Finding such causes and ignoring the other, irrelevant variables is a
major part of Western schooling, as discussed in chapter 10. A unidimensional cate-
gory is one that can be logically explained and defended: All of the ones in this
category are green, and all of the ones in the other are red. Furthermore, such a
strategy can be done without having to learn very much about the items. In some
respects, then, I am suggesting that it is an artifact of the particular task that has been
given to college-educated American subjects. They interpret the task as one of find-
ing the critical feature, and so they find one. In part as a result, some subjects do not
even study the items very carefully, but instead immediately start to divide them into
categories based on the first few items they encounter (Spalding and Murphy 1996).

A surprising manipulation has been found to reduce the unidimensional sorting
strategy. Regehr and Brooks (1995) found that if subjects did not see all the items at
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once while they were sorting them, they were more likely to form family resem-
blance categories. They had subjects put the items into two piles, in which only the
top item of each pile was visible (I am glossing over some details here). Here, sub-
jects tended to put each item into the pile of the exposed item that was most similar
to it overall. Under these circumstances, the fact that all of the items in each cate-
gory may have shared a single dimension would have been less salient (literally in-
visible, since all items could not be seen), but the overall similarity of a new item to
the exposed category member would have been quite salient. Thus, structuring the
task so that the emphasis is on pairs of stimuli can create family resemblance sorting.

Although this bias is, I believe, an important part of why unidimensional catego-
ries are formed, it is also the case that finding the family resemblance structure of a
set of items is not always very easy. If you were to examine stimuli that correspond
to the structure in table 5.2, you would not immediately notice the category structure
(a point made by Regehr and Brooks, as well). In fact, when I say “immediately,” I
am just being polite. You would most likely not notice it at all. When subjects are
required to study the items on their own, or to view all the items four or five times
on a computer screen, they do not spontaneously notice that there are two different
kinds of things (Kaplan and Murphy 1999; Spalding and Murphy 1996). The cate-
gory structure that is so obvious when presented in terms of 1s and Os in table 5.2 is
not at all obvious when translated into actual features. Indeed, I have given talks in
which I present such items randomly arranged (in picture form), and I then arrange
them into the correct categories. So far, no audience member has noticed the cate-
gory structure before I revealed it. And even though I know the correct design, I find
it difficult to arrange the items into the correct categories. One might think that this
category structure is simply too weak, but Regehr and Brooks (1995) showed that
adding more dimensions in the stimuli, thereby greatly increasing the family resem-
blance, also did not cause subjects to deviate from their unidimensional preference.

So, forming such categories without feedback is difficult. However, it is easier
when prior knowledge connects the properties. Medin et al. (1987) suggested this
first, by constructing items that represented people’s personality traits. When the
traits were all related, subjects constructed the family resemblance categories 70%
of the time. However, it is not clear that this performance involved different dimen-
sions, because some of the “different” traits seemed almost synonymous. For exam-
ple, traits like “outgoing” and “exuberant” were values on two different dimensions.
They are so similar, however, that subjects may not have perceived them as being
different dimensions. If not, then subjects may still have been forming unidimen-
sional categories.
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Other attempts have used properties that are more clearly on different dimen-
sions. Ahn (1990), for example, created categories of flowers using a design similar
to that shown in table 5.2 (as well as others). She provided subjects with a causal
explanation connecting the properties of the flowers, namely that one type of flower
attracted a kind of bird, and the other attracted a kind of bee. The bird was said to
like bright colors, be active at night, fly high, and lay eggs near water, and the bee
was described as having the opposite preferences. After hearing this information,
subjects divided the stimuli up into two categories. Under these conditions, subjects
did form family resemblance categories a third of the time, identifying flowers that
were brightly colored, blooming at night, found in trees, and near the water as one
category. Control subjects formed family resemblance categories only 5% of the
time. So, the prior knowledge had an effect. However, because subjects were given a
causal explanation that explicitly linked the features of each category, this demon-
stration would not apply to a real-world case in which one has not already been
given a description of the two categories.

Spalding and Murphy (1996) used features that subjects would be likely to con-
nect on their own. For example, if a building was underwater, it also had thick
walls; if it floated in the air, astronauts tended to live there. Although these are
clearly not the same dimensions (wall type is not occupant type), people can easily
identify the relations between them. Here, subjects did not receive any advance in-
formation about the category, but when the features could be connected in this way,
they nonetheless used multiple features to form categories. When the features were
unrelated, people predominantly formed unidimensional categories.

Thus, when people have some prior knowledge that relates the properties
together, this appears to help them notice the category structure, and they are less
likely to focus on a single property. Kaplan and Murphy (1999) found that prior
knowledge was helpful even when it involved only a single feature per item. One
does not need all of the features to be connected together in order for subjects to
notice the category structure (though not surprisingly, the effect is stronger when all
of the features are connected).

Why does prior knowledge increase family-resemblance category construction?
Probably, the knowledge links the features, causing subjects to incorporate multiple
features in the category. When one feature is noticed, others come to mind by virtue
of the links. If you notice that some buildings float in the air, you may realize that
astronauts could be part of the category too. If this explanation is correct, then
other techniques that relate features together should also encourage subjects to form
family resemblance categories. Lassaline and Murphy (1996) tested this prediction
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by getting subjects to relate the features together in a prior task, rather than using
knowledge. In a first phase, some subjects were asked to answer questions about the
items of the sort “If an item has property A, what kind of Y does it have?” For ex-
ample, one set of stimuli was pictures of bugs. So, subjects might be asked “If a bug
has curved antennae, how many legs does it have?”” These questions asked subjects
to relate the different dimensions of the items (here, antenna type to number of legs).
A control group of subjects answered questions about individual dimensions, like
“How many bugs have curved antennae?” and “How many bugs have 6 legs?”
Both groups had to examine the features of the items in order to answer the ques-
tions, but only one group related the features together. After answering these ques-
tions, subjects were asked to divide the items up into categories. The subjects given
the relational questions formed family resemblance categories the majority of the
time, whereas the control subjects most often formed unidimensional categories.
This experiment is in some sense a concrete demonstration of the inductive power
of categories discussed earlier. By asking subjects to make feature-feature inductions
(“If it has A, which Y does it have?”), subjects noticed that there were clusters of
properties that tend to go together and support such inductions. This observation
helped to counteract the normal bias to create unidimensional categories in this task.
It should be mentioned that when very different category structures are used,
subjects may be able to notice the family resemblance structure without the use of
knowledge or a special task. Billman and Knutson (1996), for example, discovered
that when subjects were shown highly structured items, they were able to detect it.
Their stimuli (in Experiments 1 and 2) consisted of nine items of the form 1111___,
nine items of the form 2222__ _, and nine items of the form 3333___. Here, the
blanks indicate that various features could be introduced, in a nonsystematic way
(e.g., 1111331, 1111112, 1111223, etc.). Because some aspects of the stimuli were
repeated in exactly the same way on nine items, subjects noticed the repeated com-
ponents and identified the relation between them. Their specific stimuli were pictures
of animals at different times of day in different environments. Subjects might have
noticed, for example, that there was one kind of thing that had long legs, spotted
body, a curved tail, and was seen in the morning; and another kind of thing that had
fat legs, a plain body, a furry tail, and was seen at night.* Presumably, the reason
that their subjects were likely to notice the categories is because of the lack of
exceptions in these patterns. That is, a given leg type always went with the same
time of day, body type, and tail, whereas this is not at all true in the family resem-
blance structure shown in table 5.2, used by many of the researchers described
above. Thus, one tentative explanation of the apparent difference in results is that
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subjects are better at spontaneously noticing the category structure when the critical
features have no exceptions than when there is variability in the structure. Or, put
another way, they are especially good at seeing the exact same configuration of
properties repeated across items.

So, to summarize, the category construction task does not usually lead subjects to
construct categories that are like natural categories. In part this seems due to a uni-
dimensional strategy that these subjects have for solving problems of a certain kind.
In addition to that, however, it is clear that subjects do not spontaneously notice the
category structure even after many viewings of the stimuli (Lassaline and Murphy
1996; Spalding and Murphy 1996). It is only when properties are related together
that the clusters that make up a family resemblance structure are noticed. This can
happen either through the relations of prior knowledge (Ahn 1990; Kaplan and
Murphy 1999; Spalding and Murphy 1996) or through inductions that relate the
features (Lassaline and Murphy 1996). In real life, it is likely that both factors exist.
When one notices a new animal, for example, one is likely to use prior knowledge to
relate its physical characteristics to its habitat and behaviors. Furthermore, if one is
trying to predict something about it (whether it will attack, whether it will fly away,
or whether it will try to eat your garbage), one will notice relations between the
features (things with sharp teeth and claws tend to attack, things with wings tend to
fly away). Thus, the family resemblance structure of real categories is probably in
part due to such attempts to understand and make predictions (inductions) about
the world. Finally, when the categories are very highly structured (i.e., without any
exceptions in the critical features), subjects can notice the structure. For any real
categories that do have such strong structure, then, unsupervised learning may be
fairly easy.

Implications

Without further assumptions, neither exemplar nor prototype views are happy with
the massive bias toward forming unidimensional categories. According to both,
family resemblance categories should be noticed, because they create clusters of
similar items in the environment. Proponents of both theories would probably argue
that the strong unidimensional bias is a task-dependent strategy that overrides the
true category-construction processes that are found in the wild. If such a strategy
is engaged, then the normal category-construction processes would not be able
to work. What about the findings that relating the features together aids in the
construction of the categories? This seems generally in keeping with prototype
theory, because the knowledge or inductions will help to identify which features are
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associated with which prototype. That is, Lassaline and Murphy’s questions would
reveal that some bugs tend to have six legs and curved antennae, whereas others tend
to have four legs and straight antennae. This would be just the information needed
to distinguish two prototypes. It is not clear why these questions would affect ex-
emplar processing. Perhaps they help in encoding the features of exemplars more
than the nonrelational questions do.

Clearly, the findings in this domain give support to knowledge approaches, as the
presence of knowledge, even in very small amounts (Kaplan and Murphy 1999),
results in the construction of realistic categories. The absence of knowledge or other
relational information leads to unrealistic unidimensional categories. Thus, the re-
sults here could be taken as showing that relating the dimensions together through
background knowledge is an important part of our category-construction process,
since most natural categories are not unidimensional.

One unanswered question concerns this task more generally. One could argue
that it is only when given category construction as an experimental problem that the
unidimensional bias is found: In a task of dividing up items into explicit categories,
perhaps adults have a metacognitive strategy to use a single dimension. In contrast,
in real life, we just notice new categories (“what are those dreadful little dogs?”’)—
we are not given a set of items and asked to divide them up. If true, then the varia-
bles I’ve just discussed (knowledge, feature relations) may not really be necessary for
category construction more generally, though the experiments certainly give evi-
dence that they would tend to support the noticing of categories. So, before any firm
conclusions are drawn about category construction in the real world, we may need a
more realistic dependent measure to find out to what degree people spontaneously
notice categories even when that is not their overt goal.

Category Use

The majority of research on concepts has focused on the process of learning to
categorize. The most popular experiment by far is to construct two or more cate-
gories from artificial stimuli, and then get subjects to try to learn them by repeatedly
categorizing items until they get them all correct. In such an experiment, categori-
zation is often the only dependent measure. There are other uses of concepts that
have received attention in the psychology of concepts, most notably category con-
struction (just reviewed), induction (see chapter 8), and the use of concepts in com-
munication (see chapter 11). However, within the experimental study of concepts,
learning to classify items has a privileged place.
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Brian Ross (1996, 1997, 1999) has pointed out that we often have extensive ex-
perience with real objects in addition to categorizing them. That is, I cannot only
classify objects as beds, I have slept in them, made them, moved them, and so forth.
When I made my bed this morning (this is a hypothetical example), I was not trying
to classify it as a bed—I knew perfectly well that it was a bed. Nonetheless, it may
be that in making it, I was learning something about beds or related items (sheets,
pillows, what a bed looks like after you eat pizza in it the night before, etc.) that
could influence my concept of beds. Of course, this would be especially true early in
the course of one’s experience with the category.

Contrast this situation with the typical category learning experiment. Here the
object is often not really an object but only a visual display or list of phrases. Once
one has categorized it, one has no further interaction with it. One never sleeps on a
stimulus in a psychology experiment, nor straightens it up, nor moves it to a new
home. Furthermore, there is usually nothing else fo learn about the stimulus—no
further meaningful interaction is possible. The red triangle is just a red triangle, and
there is nothing else to learn about it. That is not true for real objects, which are
extremely rich and highly structured entities, about which it is almost always possi-
ble to learn more than one knows now. No matter how much of a dog person you
are, you could probably learn more about dog behavior, dog anatomy, dog diseases,
dog training techniques, and so on. If you took your dog to a training class for a few
weeks, you would be interacting with the dog in such a way that you might be learn-
ing much more about it, even if you could already perfectly categorize it as a dog.

Such interactions may change or augment the conceptual structures that represent
the categories. One way to demonstrate this is to show that using category items
can lead to changes in the categorization itself. That is, even when one uses the items
for some purpose in a setting separate from the category-learning trials, what one
learns will then be evident in later categorization. An example will make this clearer.
One domain that Ross (1996) points out as particularly relevant is problem solv-
ing. When people solve problems, they often do so by first categorizing them as a
particular type of problem. For example, students learn to identify problems as
“Distance = Rate x Time” problems or quadratic equation problems, and so on.
These categorizations lead to different solution procedures. However, as one solves
problems over and over, one may learn different aspects of the problems that could
later become important in identifying and solving them, especially by identifying
properties that may not be evident through superficial contact.

In short, category use could be an important variable in how concepts are repre-
sented. I will use this term a bit ambiguously, to refer to use of specific exemplars
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or use of the category as a whole. As will be seen, thinking of the category itself is
important, not just experiencing the exemplars. The typical case of category use as
studied in experiments is that the learning exemplars are subjected to some other
task in addition to category learning. This additional task, then, is the “use,” and
the question is how it influences the conceptual representation.

Ross (1996) used equations as stimuli, like the following.

bx\ q+mx\
o (T) - (55)-

Examples like the first were in one category. They consisted mostly of constants
with letters from the beginning of the alphabet, had parentheses enclosing one term,
and could be solved (for x) by the processes of subtraction, multiplication, and di-
vision in that order (called SMD). The second category had letters mostly from later
in the alphabet, parentheses enclosing an entire side of the equation, and could be
solved by multiplication, subtraction, and division in that order (MSD). Thus, there
were a number of features by which subjects could learn to distinguish the catego-
ries. Ross’s subjects all learned to classify the categories in a standard category-
learning technique. However, one group also solved each equation for x after each
categorization trial. This task did not give subjects any more information about
the correct categorization of each item, so it was a use of the item outside of the
category-learning process itself. Ross predicted, however, that subjects who solved
the problems would become more aware of the differences between the two catego-
ries in the way the equations are structured and therefore solved—in other words,
would become aware that one category was solved by SMD and one by MSD.

This prediction was tested with new items that varied both the superficial prop-
erties that predicted the categories (the letters used for constants and the placement
of parentheses) and the deeper mathematical properties (whether solution was SMD
or MSD). Ross found that subjects who solved the equations were significantly more
sensitive to the mathematical properties of the two categories. It is important to re-
call that the mathematical properties were equally present in the items learned by
both groups; what differed was that one group simply classified the items, whereas
the other group also solved the equations, putting them to a use.

One concern about such experiments is that subjects who use the items have more
experience with them, which could be accounting for the observed differences. To
some degree this is not an alternative explanation. The point is that using items be-
yond classification will give information that could influence a variety of conceptual
tasks. Such use will necessarily involve more time than no use. However, to ensure
that it wasn’t simply that subjects solving the equations were exposed to them longer,
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Ross used a clever design in which he constructed equations with two variables,
x and y. Although all subjects saw the same equations, some solved Category 1
equations for x and Category 2 equations for y; others had the reverse assignment.
The equations were constituted so that solving for x in Category 1 used the SMD
order, and solving for y in Category 2 had the MSD order. But the reverse assign-
ment had different solution orders: Solving for y in Category 1 had the MSD order,
and solving for x in Category 2 had the SMD order. In addition to the solution
procedure, the equations also differed in surface characteristics such as placement of
parentheses and use of different letters. In short, all subjects saw the same items and
categorized them in exactly the same way. They all solved each equation as well.
The only difference was whether they solved the Category 1 and 2 equations for x
or y. Ross’s test items were new equations that had only a single variable, z. These
equations could be solved either by the SMD or MSD procedures. Ross (1996, Ex-
periment 2A) found that the solution procedure influenced subjects’ classification.
That is, if the test equation could be solved by SMD, subjects in one group tended to
identify it as Category 1 (because they solved for x in that category, in the order
SMD), whereas other subjects tended to identify it as Category 2 (because they
solved for y in that category, in the order SMD). Given that all subjects received the
exact same exemplars for the two categories, and given that the categories could
have been learned with the superficial features, this is an impressive demonstration
of how using items can change a concept.

Later studies by Ross expanded these results significantly. Perhaps the effects of
category use are specific to these equation categories, as equations are essentially
constructions for problem-solving anyway. However, later experiments found simi-
lar results using disease categories, which are a popular kind of stimulus in category-
learning experiments. Here, subjects learned to categorize described patients based
on their symptoms. They also learned to prescribe medications for patients, based
on symptoms as well. The symptoms that were critical to the prescription were
treated as more important by subjects in categorization. For example, if a test pa-
tient had a treatment-relevant symptom from one disease and a treatment-irrelevant
symptom from another disease, subjects tended to categorize them into the first
category. When subjects were given the disease names and asked to generate the
symptoms, they tended to mention the symptoms relevant to the treatment before
those that were not used in the treatment (Ross 1997). Again, it should be empha-
sized that all the features were equally predictive of the categories. Nonetheless,
when some features were involved in a later use of the item, they were learned better
and were seen as more important to the category.
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More recent work by Ross has shown that category use can be separated from the
category learning process and still have an effect. For example, if subjects learn a
category of diseases, and later learn the treatments, the features important to the
treatments are more heavily used in categorization (Ross 1999, 2000). Importantly,
however, the category itself has to be thought about during the use, or the effect is
not found. For example, if subjects learn two categories, then use the items without
the categories themselves being mentioned, the use does not affect later classifica-
tion. In contrast, if the items are constructed so that subjects can’t help but notice
the categories of the items during use, then the use does affect later classification.
This result is important in explaining how the effect of category use comes about, as
will shortly be seen.

In summary, most category experiments look at a very limited situation, in which
an item is presented, subjects guess its category, and then the item disappears. In
contrast, there are many objects in the real world that people interact with more
extensively—perhaps for many hours. What people learn in those interactions is
apparently incorporated into their concepts and in turn affects categorization. Fea-
tures that are salient in the interaction may become more salient in the concept, even
if they are not more reliable or common than other features.

Implications
How are these effects to be explained? First, it should be clear that none of the
major theories of concept learning talks about such uses of category members, and
so none currently explains these results. What is not as clear is the question of how
easily, if at all, the theories can be modified to incorporate such effects. For example,
prototype theory allows conceptual properties to be weighted, and so it would be
possible to weight the use-relevant features more highly. However, current versions
of prototype theory determine feature weighting by the frequency with which the
feature appears in the category and related categories. The theory would need a new
mechanism to incorporate use effects. Similarly, exemplar models as they stand do
not currently explain Ross’s findings, because his experiments generally compared
features that were presented equally often. For example, in the disease categories,
“sore throat” and “fever” might have occurred equally often in a category’s exem-
plars, but if sore throat determined what drug was prescribed and fever did not,
subjects weighed the presence of sore throat more highly.

Some form of feature weighting might possibly account for these results. The fact
that sore throats predict a given drug being prescribed makes sore throat seem more
salient or important. These features are then relied on more in categorization. Thus,
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one might try to modify the exemplar representation by giving more attention to the
use-relevant features, or perhaps even by encoding new features (such as the order
of arithmetic operations in the equations, which subjects might not normally en-
code). Such a possibility could then be incorporated into the exemplar representa-
tion. The fly in the ointment is Ross’s (1999, 2000) later experiments showing that
subjects had to be thinking about the category during use in order for it to have a
later effect on classification. On an exemplar account, it is hard to understand why
the salient feature wouldn’t be encoded into the exemplar memory in this situation.
If subjects learned that a given item with the feature sore throat led to a particular
treatment, this should increase the salience of sore throat in the exemplar represen-
tation, whether or not they are thinking of the disease category. The necessity of the
category is more in keeping with prototype theory’s assumption that features are
associated to a summary representation. If the category is not active in memory,
then it would not be surprising that the feature’s weight in the prototype was
unchanged.

This discussion (and see the articles cited above for more detailed analysis) is all a
bit speculative, however, because none of the proponents of these theories has
attempted to account for the results of category use, and so it is simply not known
how the theories might or might not be able to account for these results. The same
is true for the knowledge approach. However, it should be said that the general
assumptions of the knowledge approach are quite sympathetic to these findings. The
knowledge approach argues that what one knows outside of the concept influences
how it is learned and then used. The concept is formed within the constraints of
one’s understanding of the world. Category use is a similar variable, in that it is an
influence that takes place outside the category-learning situation itself, and yet it
influences how the concept is represented. Research of the Medin group on tree
experts (e.g., Medin et al. 1997) similarly suggests that people who actively work
with category members develop representations that reflect their usual interactions
with the objects, such that biologists and landscapers have rather different concepts
of tree types. Continuing this analogy, studies of how knowledge influences catego-
rization have shown that features that are important in background knowledge may
have importance above and beyond their statistical relations to the category (e.g.,
Ahn et al. 2000; Lin and Murphy 1997; Wisniewski 1995), just as features involved
in category use do.

I do not think that the category use demonstrations can simply be absorbed into
the knowledge approach, but I nonetheless think that both are examples of a more
general principle that concepts reflect more than the simple empirical predictiveness
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of properties. Just as the main models of concept learning need to address the use of
knowledge, they also need to be modified to explain the effects of category use.

I have been defining category use as the interaction with category members sepa-
rate from the category-learning procedure. This use does influence the representa-
tion of the category, as just discussed. Related effects are found when the actual
learning of the category itself is done through close interactions with the exemplars,
rather than through mere categorization training. Arthur Markman and his students
(Markman and Makin 1998; Yamauchi and Markman 2000) have done a series of
studies comparing traditional category-learning techniques with other ways of inter-
acting with the category, most notably through inference. In an inference task, one
is given an item with its category label. One of the features (e.g., color) is omitted
from the item, and subjects are asked to predict the missing feature (e.g., is it red or
blue?). Yamauchi and Markman (1998) found that such learning led to more com-
plete representation of the category than traditional category learning, in which
subjects provide the category label. They argued that inference caused subjects
to encode all the dimensions of the stimulus and their relation to other dimensions
(see also Lassaline and Murphy 1996). In contrast, category learning encourages
subjects to focus on a single dimension of the stimulus or on the minimal amount
of information necessary to get the category name correct. Popular categorization
models had difficulty fitting their inference results in particular, although they did
well on the category-learning data. Interestingly, Yamauchi and Markman found
that if subjects performed an inference task followed by category learning, their
representations were more complete than if they performed category learning fol-
lowed by the inference task. Thus, the initial interaction with the items may have
robust effects on later representations.

Markman’s and Ross’s work together suggest that researchers will have to
broaden their approach to category learning, taking into account the richness of our
interactions with the world. The traditional learning experiment has served us well
since Hull (1920), but it is not the only way that categories are learned, nor the only
one that can be studied in our experimental paradigms.



6
Knowledge Effects

Traditionally, studies of concepts have used materials that are as divorced as pos-
sible from outside knowledge. A survey of the literature would find stimuli such as
geometric shapes, alphanumeric strings, patches of color, dot patterns, and sche-
matic faces to be quite common. Although some of these stimuli have familiar ele-
ments, such as faces or geometric shapes, people’s knowledge prior to the experiment
could not have predicted what the concepts were. For example, nothing that one
knows about geometry suggests that the to-be-learned concept should be red pairs
of triangles, rather than single blue circles. Why are such categories so popular?
There are two main reasons. First, researchers believe it is important in a learning
experiment to use categories that the subjects do not already know. If subjects are
already familiar with the materials, then the results would not just reflect learning
but also their pre-experimental knowledge. In a study of category learning, then,
artificial stimuli may be best. Second, by using very simple, even meaningless stimuli,
some investigators feel that they are discovering general principles that will apply
across many different domains. If the stimuli had been types of animals, for exam-
ple, how could we be sure that the results would generalize to plants or furniture or
economic principles? But when the stimuli are abstract items that are not related to
any particular domain, the results may reflect basic principles of learning that would
apply very widely.

It is not obvious that this reasoning is actually correct, however. It could be, for
example, that the results of such experiments do not apply to more realistic situa-
tions in which people know something about the domain and do have expec-
tations, right or wrong, about the concept. And just because the stimuli are
simple and abstract does not mean that the results are especially generalizable. The
history of cognitive psychology is based, one could argue, upon the finding that
results from simple learning experiments (on rats, pigeons, or aplysia) do not give
much insight into intelligent behavior and thought. Whether experiments on simple
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categorization could be the basis for explaining all concepts is an empirical question.
However, if one is worried that experiments on learning animal categories would
not generalize to learning about furniture, then how can we be sure that experi-
ments on learning dot patterns generalize to both of them?

In contrast to the traditional assumptions, one could argue that the learning pro-
cesses used for realistic concepts in familiar domains are not the same as those used
for simple, artificial situations. It is not (or should not be) controversial to point out
that there are important variables in real-world learning that are never identified or
explored in the simple experiment, because they have been “controlled away” by the
experimental design. In a more controversial sense, the results of the simple experi-
ments may be actually wrong, in that people could be doing things in those situa-
tions that they do not do in real life. It is important to emphasize, however, that
these are empirical questions. Some people love the elegance and control of the
simple experiments, and some people find them boring. Discussions of which ap-
proach is correct have an unfortunate tendency to degenerate into personality clashes.
This issue must be resolved not by argument but by research into what people do in
the richer situations, which can then be compared to the results of the majority of
past experiments on concepts, which follow the simple, abstract procedures. It is
possible, and perhaps likely, that both approaches to understanding concepts will be
necessary to paint the complete picture.

The present chapter, then, provides a review and discussion of a class of effects
found in more realistic stimuli, in which some (but by no means all) of the richness
of real-world stimuli is allowed into the laboratory and is examined. Specifically,
this chapter examines the effects of background knowledge on concept learning and
use, an issue that has not been a traditional part of the psychology of concepts but
which has slowly grown in popularity since the mid-1980s (Carey 1985; Keil 1989;
Murphy and Medin 1985).

Possible Benefits and Limitations of Prior Knowledge

Previous chapters have already reported a number of benefits of prior knowledge in
concept learning and use. Nonetheless, it would be useful to step back and discuss
some general ideas of why and how knowledge might be useful—or not—to put the
whole enterprise into perspective. To start very simply, how might knowledge be
related to or useful in concepts? One way some people summarize this possibility
is to say something like “People have a theory of dogs, which is their concept of
them.” This gives the impression that the knowledge is sufficient to predict the exis-
tence of dogs and/or to account for all their properties, just as a scientific theory
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explains the existence of black holes, say. Such a situation is not impossible, as in
some sciences it is possible to predict entities before they are actually seen. For
example, Neptune was predicted to exist before it was actually discovered; and in
subatomic physics, various particles have been predicted long before experiments
could be devised to actually create and then detect them. However, I doubt very
much whether people’s knowledge is this powerful in most cases. If you have mun-
dane knowledge of the seas, for example, it would not form a theory that would
allow you to predict the existence of dolphins or sea slugs or sponges if you didn’t
already know that they existed. Instead, knowledge is almost always used in a post-
hoc way to explain entities and apparent categories that one encounters. For exam-
ple, if you saw a sea slug at the bottom of the ocean, you could use your knowledge
to understand what kind of thing it was and what properties it probably has (e.g.,
gills rather than lungs). Therefore, I will focus here on the use of knowledge to
explain a category when it is being learned, and use that as a framework to under-
stand knowledge effects. (This discussion draws on material in Murphy 2000.)

Let’s consider how a common category, birds, might be explained to some degree
by everyday knowledge. Most people think of birds as being feathered, two-legged
creatures with wings, which fly, lay eggs in nests, and live in trees. Why do birds
have these properties? In asking this, I am not asking a question of evolution but of
understanding why this particular configuration of properties exists rather than
some other. With simple, mundane knowledge, one can explain many of these fea-
tures. Let’s start with flying. In order to fly, the bird needs to support its weight on
wings. The feathers are important as a very lightweight body covering that also
helps to create an aerodynamic form. Thus, wings and feathers enable flying. By
virtue of flying, the bird can live in nests that are in trees, because it can easily fly
into and out of the trees. This is a useful thing to do, because many predators are
unable to reach the nests there. The bird needs a nest for brooding, and for the
babies to live in until they are able to fly. Thus, flying can be partly explained by
these desirable consequences.

This line of reasoning, which virtually any adult in our culture could perform,
relies not on book-learning or courses but on everyday knowledge.! This knowledge
may be incomplete or even wrong in detail (e.g., most people’s ideas about how
wings support a bird are probably wrong), but it is close enough to account for a
number of generalizations about the world. For example, most things that fly have
wings; almost everything with wings flies. The exceptions can be explained by the
mundane knowledge as well. For example, ostriches have wings and do not fly, but
this is easily explained by the tiny size of the wings relative to the size of the ostrich.
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The surface area of the wings is manifestly unable to lift the ostrich’s weight. So,
even if people do not really understand the aerodynamic principles by which wings
support a body, what they do understand (or believe) about them does a pretty good
job in explaining why some things can fly and some cannot.

All Tam claiming is that these particular properties of birds can be explained once
one has noticed them. It might be possible for a physiologist, for example, to know
some of the features and then to be able to predict others (e.g., predicting the inter-
nal structure of birds’ bones, given observations of their flying and wing structure),
but such a feat would be far beyond most of us. Instead, most people can provide a
post-hoc explanation of why birds have the particular constellation of features they
do. The post-hoc nature of such explanations makes them somewhat circular. One
cannot just explain why a bird has wings. One must explain why it has wings, given
that it flies, lives in a nest, lays eggs, and so on. But at the same time, the explana-
tion for flying depends on knowing that the bird has wings, lives in nests, lays eggs,
and so on. Rather than a logical chain in which unknown properties are deduced
from known ones, each property can be explained by the other properties. These
properties are in a mutually reinforcing or homeostatic relationship such that they
conspire to support one another (Boyd 1999; Keil 1989). Such circularity would be
anathema in science, but from the perspective of learners, circular explanations may
still be useful.

There are some exceptions to the post-hoc nature of explanations. For example,
if someone told you about a DVD player, they might say “It’s like a CD player, but
for movies.” Or perhaps when you first saw a DVD inserted into a player, you
thought something like that. Now you can bootstrap a concept of DVD players by
drawing properties that you know from this related concept. However, this is only
successful if you are told or observe the relationship between DVD and CD players—
it is rather specific similarity between two categories rather than more general do-
main knowledge. Although this kind of similarity is probably very useful in many
cases, I will be focusing in this chapter on broader domain knowledge.

Another shortcoming of explanations is their shallowness (Wilson and Keil 2000).
Often one can explain a given property by referring to some underlying property or
principle. But why that principle exists or where that underlying property came
from is often totally opaque. For example, I can explain the fact that knives are
made of metal by the fact that metal is hard and therefore helps the knife in cutting.
But why is metal hard? Although I know that it is somehow based on chemical-
physical properties, I don’t really have a clue what they are. (NB: It is not necessary
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to write and explain them to me.) This shallowness of explanations seems typical.
Like the doctor in Moliere’s Le Malade Imaginaire who explained the effect of
sleeping pills as arising from their “dormative virtue,” we don’t understand many
properties more than one level down.

The question, then, is whether such knowledge will in fact be useful. If explan-
ations are often applied after the fact and are rather shallow, can they really aid in
learning and using concepts? Specifically, if one typically explains features after
observing them, does knowledge arrive too late to help in initial learning? If one has
to know that a bird has wings and flies in order to understand the connection be-
tween them, it looks as if one has already learned the critical features of birds. The
explanation might make one feel a sense of understanding after the fact, but it may
not have influenced the actual learning of the properties. If explanations are gener-
ally somewhat shallow, then how helpful could they be in using a concept, in tasks
such as induction or communication?

In short, although it may seem intuitively obvious that our knowledge of the
world will help us learn new concepts related to that knowledge, it is possible that
the limitations on our knowledge will make it less than useful in many cases. Among
those cases would be situations in which knowledge is incomplete or partially
wrong, unfortunately not unusual circumstances for humans.

An Example of Knowledge Use

Before discussing actual experiments, let’s consider a somewhat simplified example
of how you might normally learn a new category, namely a trip to the zoo. This
situation can be used to illustrate the specific uses of knowledge to be discussed and
can be contrasted with the typical psychology experiment using artificial stimuli.
Suppose that on a trip to the zoo, you encounter a new animal, the whingelow. The
whingelow, let us hope, does not look anything like a dot pattern, a geometric figure
on a card, or a string of letters. Instead, the whingelow probably looks much like
other animals of its class. If it is a mammal, it likely has visible fur, four limbs, a
symmetrical face with two eyes, a nose, two ears, and so on. Thus, the whingelow is
unlike the stimuli in these experiments in just the respect that it does look like other
kinds of things you know. Furthermore, if you find out (or can infer) that it’s a
mammal, then you can use your knowledge about other mammals to conclude that
it has a four-chambered heart, gives birth to live young, and so on. This real-life
situation, then, is exactly what the experimentalists described above were trying to
avoid: The real-life concept learner is not in a pristine environment where past



146 Chapter 6

knowledge is useless—instead, the learner comes to the situation knowing much
about similar kinds of animals and being able to use that knowledge to learn about
the whingelow.

It must be emphasized that before your trip to the zoo, you did not already know
what the whingelow was, perhaps never having heard about it. You might have
known a lot about animals and mammals in general, however. So, this prior
knowledge is knowledge about the entire domain (e.g., all animals must breathe) or
about concepts related to the new one (e.g., the whingelow looks a bit like a wombat;
animals in zoos are often endangered), rather than knowledge about the new con-
cept itself. The question, then, is whether and how such knowledge might influence
your learning about whingelows.

Before beginning, however, it is necessary to clarify some terminology. I refer here
to knowledge effects as influences of prior knowledge of real objects and events that
people bring to the category-learning situation. The word “knowledge” is poly-
semous, and it could also be used more broadly than I am here to indicate anything
at all that one knows about a category. For example, once a subject in Posner and
Keele’s (1970) experiment had learned the dot-pattern categories, she could be said
to have “knowledge” of the categories. But this is not the sort of knowledge that we
are discussing in this chapter. The knowledge that we will investigate is the pre-
experimental information about the world, rather than what you know about the
target concept in particular. (Sometimes I shall use the phrase background knowl-
edge, which emphasizes this point.) As we shall see, such knowledge can have a
powerful effect on learning.

Knowledge effects are to be contrasted with empirical learning of the properties of
observed exemplars during learning. For example, at the zoo, you might see that
most whingelows have an eye stripe; or you might remember a purple, mid-sized
whingelow with two legs that whined. These observations would constitute empiri-
cal information about the category.

Researchers have suggested that knowledge is important in a number of different
aspects of category use (Heit 1997; Murphy 1993; Murphy and Medin 1985). First,
knowledge may be involved in defining the features of an object. For example, when
you went to the zoo, you paid attention to the number of legs of the whingelow and
incorporated this into your initial concept. But you didn’t incorporate the location
of the animal’s cage or the time of day. These didn’t seem to be important aspects of
the concept of a whingelow, even though they were readily perceivable properties. It
can be argued that it was your prior knowledge of animals that directed these judg-
ments about what features to encode and use. In other domains, the features you
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ignored for whingelows might be very reasonable ones; for example, social events
may exist at specific places or times of day even though animal concepts generally
do not. Thus, one’s domain knowledge could cause one to encode or ignore time of
day when learning the new animal concept.

Second, knowledge could help people to learn the features of new categories. It
is well known from memory experiments that it is difficult to learn arbitrary lists of
things, but once those lists are formed into a coherent structure (e.g., a story or de-
scription), people learn the material much better. Thus, it could be easier for you to
learn about the whingelow than about Rosch and Mervis’s (1975) alphanumeric
strings, because your prior knowledge about animals may aid learning the particular
features of the whingelow.

Third, your knowledge could influence the kinds of categorization decisions you
make after learning. For example, if you saw a smaller animal that was in the same
cage as the whingelows, and that was hanging around one of the females, you might
assume that this was a baby whingelow, even if it did not look identical to the adults
(Mervis 1987). This is not due to your having learned (yet) what the babies look
like, but instead would be explained by your broader beliefs about the behavior of
juvenile animals. More generally, the way you categorize new objects may be partly
dependent on your background knowledge, rather than solely on your experience
with the category.

Finally, knowledge might also be used to guide inductions or inferences you make
about a category. For example, if one of these (apparent) baby whingelows kept
pestering one of the females, you might infer that it was attempting to suckle. Again,
such an inference is not based on specific experience with that animal (or even with
whingelows) but is an educated guess, based on your more general knowledge. This
chapter will discuss each of these uses of knowledge in turn.

Knowledge Effects in Category Acquisition

Category Learning Experiments

Perhaps the simplest way to start this investigation is to ask, “Does it make any
difference what you know when you are learning a new category?” Intuitively, the
answer seems obviously to be “yes,” but this answer is not one that you would re-
ceive from most theories of concept learning. For example, suppose that concept
learning consists in forming a prototype, which is the set of features that are most
distinctive of the category. Nothing in this process relies on knowledge—it is a
matter of identifying the features of the category members and seeing which ones
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are the best indicators of the category (see chapter 3). This is a statistical process
that does not depend on the identity of the features. Similarly, if learning the cate-
gory amounts to learning individual exemplars, there is no obvious reason that
background knowledge should be involved. And in fact, the main articles describing
prototype and exemplar theories say little if anything about how background
knowledge might be involved in category learning (Hampton 1979; Medin and
Schaffer 1978; Nosofsky 1984; Reed 1972; Rosch 1973; Rosch and Mervis 1975).
This is not to say that these authors would actively deny that knowledge is impor-
tant but to point out that although we may have an intuitive belief that knowledge
should influence category learning, the most prominent theories of category learning
have not incorporated this idea.

A simple demonstration of the importance of background knowledge can be
found in Murphy and Wisniewski’s (1989) Experiment 4. In one condition, subjects
learned Coherent categories. These were items in which the features were sensibly
related to one another, or at least not contradictory. For example, subjects learned
an animal category that usually had the features: lives in water, eats fish, has many
offspring, and is small. In contrast, the Incoherent categories had features that did
not make sense together, for instance, lives in water, eats wheat, has a flat end, and
used for stabbing bugs. (These features were used to construct individual items and
were presented as verbal descriptions. The details are not essential here, except to
note that the concepts were formally identical—only the names of the features
changed, not the structure of the exemplars or the feature distributions.) As can be
seen, in the Incoherent condition, the features came from different kinds of domains
(animals and tools), and even within those entities, they did not make much sense (if
something is used to stab bugs, it should have a pointy end, rather than a flat one).
And perhaps not surprisingly, Murphy and Wisniewski found that the Incoherent
categories were learned less well than the Coherent ones. Subjects made more errors
on test items, and they were less confident in their categorization decisions for
Incoherent categories.

In short, a concept’s content influences how easy it is to learn. If the concept is
grossly incompatible with what people know prior to the experiment, it will be
difficult to acquire. This conclusion, however, is not very impressive, since most
concepts that people learn are not nearly as incoherent as those in the Incoherent
condition. Pazzani (1991) asked a more interesting question, namely whether prior
expectations could help people learn a category compared to a case in which they
had no such expectations. Here neither category was incompatible with what is
already known; one category was consistent with prior knowledge, and one was
simply not related to any particular knowledge.
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Pazzani (1991) used categories that were described by simple rules. His items
were pictures of people performing actions on objects. Each picture showed an adult
or child doing an action on an uninflated balloon that was either large or small and
either yellow or purple. The action was to dip the balloon in a cup of water or else
to stretch it. Pazzani compared two different kinds of categories, disjunctive and
conjunctive. The disjunctive category was defined by the rule “the person must be
an adult OR the action must be stretching the balloon.” The conjunctive category
was defined by the rule “the color must be yellow AND the balloon must be small.”
Considerable past research had shown that people find it easier to learn a conjunc-
tive category than a disjunctive category, so that is what one would expect in this
case as well.Z Pazzani added another factor, however, which he believed would in-
fluence the result. He told subjects either that they were to try to learn “Category
Alpha” or that they were to try to identify which balloons would inflate. He
believed that the first condition would not activate any particular knowledge but
that the second condition would bring to mind whatever people believe about
inflating balloons. In particular, people may believe that adults are better able to
inflate a balloon than children are and that stretching a balloon makes it easier to
inflate. Thus, this knowledge would be expected to aid the disjunctive rule, which
included these features. Subjects saw the pictures one at a time and had to say
whether each one was in the category that they were learning. The dependent mea-
sure in the experiment was how many examples of the category they had to see be-
fore they were completely accurate in identifying category members.

When subjects received the Category Alpha instructions, Pazzani found the usual
pattern of the conjunctive category being easier to learn than the disjunctive category
(a difference of about 15 fewer trials). However, when the Inflate instructions were
given, this result reversed; in fact, the disjunctive category was learned after only
about 8 examples on average, whereas the conjunctive category was learned after
about 28 examples (Pazzani 1991, figure 1). Clearly, the hint about balloon infla-
tion greatly aided subjects in learning the category. Knowledge was useful in a more
positive way than was demonstrated by the Murphy and Wisniewski experiment—
namely, people used their knowledge to make hypotheses about a category’s fea-
tures, and since their knowledge was correct, concept learning was easier.

Pazzani’s (1991) experiment has another implication as well. It is significant that
a finding from many past experiments on category learning (starting with Bruner,
Goodnow and Austin 1956), the advantage of conjunctive rules, could actually be
reversed by the use of background knowledge. This suggests the somewhat disturb-
ing possibility that the results of artificial experiments that do not make contact with
prior knowledge may not hold in the situation where people have expectations
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about the category (which is probably the more usual case). That is, it is possible
that results from experiments with dot patterns or geometric shapes will not apply
to real-world cases in which people have background knowledge. This possibility
will be discussed further in the chapter’s conclusion.

Locus of the Knowledge Effect

Clearly, then, knowledge can help one learn a novel category. But there is consider-
ably more to be investigated here. If one compares the traditional experiments with
artificial stimuli (such as dot patterns) to natural categories, two differences are
salient. The first is that the features themselves are different. The second difference is
that the features of natural categories seem to hang together, whereas the features of
artificial categories generally do not. In order to understand the knowledge effect,
we need to discover whether either or both of these differences is responsible for it.
The following experiments investigate these variables.

One possible reason for knowledge effects is that the features themselves may
make learning easier. As noted earlier, in most experiments that do not involve
knowledge, the stimuli have been themselves meaningless items, such as dots, geo-
metric stimuli, and even letter strings (individual letters not having much meaning
associated with them). Would using more meaningful stimuli in and of itself lead to
an improvement in learning? Murphy and Allopenna (1994) compared categories
that had relatively meaningless typographical symbols (like <, {, +, and !) as fea-
tures to those that had meaningful phrases such as “lives alone” and “thick, heavy
walls.” However, these phrases were randomly assigned to categories, so that there
was no overall rhyme or reason to them. Murphy and Allopenna did not find any
difference in the difficulty of learning these categories; both were quite difficult.
Thus, the mere meaningfulness of the features itself does not appear to be a very
important aspect of the knowledge effect.

What did make an important difference in learning was how the features were
related. When the features of a category formed a consistent set, the category was
much easier to learn than when they were inconsistent or simply neutral. Consider
the pair of categories summarized at the top of table 6.1. The features of these cate-
gories, both vehicles, can be described by a theme that connects them. The category
in the left column seems to be a kind of jungle vehicle, and the one in the right col-
umn seems to be an arctic vehicle. That information was never given to subjects, but
it is possible that during the course of learning they would realize that the features
were related in this way, and this might in turn improve the learning process. Be-
cause these features could be integrated into a single theme, Murphy and Allopenna
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Table 6.1.
Typical features of categories from Murphy and Allopenna (1984).

Integrated Categories

Category 1 Category 2

Made in Africa Made in Norway
Lightly insulated Heavily insulated
Green White

Drives in jungles Drives on glaciers
Has wheels Has treads

Neutral Categories

Category 1 Category 2

Green White

Manual transmission Automatic transmission
Radial tires Non-radial tires

Air bags Automatic seat belts
Vinyl seats Cloth seats

Note: Subjects would have learned a pair of integrated or neutral categories. Exemplars were
constructed by selecting a subset of each category’s features (shown above), along with some
random features (not shown) that occurred in both categories equally often.

called this the Integrated Condition. Now consider the pair of categories summar-
ized at the bottom of table 6.1. These categories are also vehicles, but their proper-
ties are no longer connected by a theme. There is nothing inconsistent about the
features that appear together in the category—but there is no special connection
between them, either. That is, there is no reason why being green should lead a
vehicle to have a manual transmission rather than an automatic one, nor why air
bags should go with vinyl seat covers rather than cloth seat covers. I will call this
the Neutral Condition.? The category structures made from these features were
identical—all that differed was how well the features could be related by a theme.
The results showed that subjects could learn the Integrated categories in about half
the time of the Neutral categories.

These findings suggest that knowledge helps learning because it relates the fea-
tures in the category, rather than through the properties of the features themselves.
Of course, it is likely that some differences in features are important, but more sig-
nificant here is that the knowledge must relate the features to one another, and
hence, to the category as a whole. Why is this helpful? Keep in mind that not every
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example from the category has the same features—one might have treads and be
white, while another might be built in Norway and drive on glaciers. This variation
in features makes the purely empirical learning process more difficult. One must
learn multiple features, because every feature will not be present in every item, and
an item might have an atypical feature. Learning these multiple features is easier if
they can be related by a common knowledge structure. The knowledge could help
subjects learn which features go with which categories and to remember that feature
assignment at test. If you know that vehicle X is built in Norway, it’s easy to learn
that vehicle X goes on glaciers too.

In short, knowledge probably works by helping to relate features. Later, we will
consider how using this knowledge affects the category representation.

Amount and Consistency of Knowledge

In the experiments discussed so far, the knowledge has generally been consistent
with the entire category. For example, in Pazzani’s (1991) experiment, the category
was defined by the two features “adult OR stretch the balloon,” and it was exactly
these two features that were related to people’s prior knowledge about inflating
balloons. And in the Murphy and Allopenna experiments just described, all of the
category’s features were related to the theme. But this situation seems rather un-
realistic. When you went to the zoo and saw the whingelow, you had some knowl-
edge that explained some of its properties or that helped them make sense to you.
But certainly others of its properties were not specifically related to that knowledge.
The particular color of the whingelow, for example, or the shape of its nose, or the
length of its fur might not have been related to any specific knowledge that you had.
Yet, you might well learn from this experience that the whingelow is a kind of
grayish animal, with a wide nose and short fur. Thus, even though you had knowl-
edge about other animals and mammals that was relevant to learning about the
whingelow, you probably also learned about properties that did not make contact
with that knowledge. In the experiments discussed so far, there were no such prop-
erties. This raises the question, then, about whether knowledge is helpful in the
more realistic situation. Perhaps when knowledge does not pick out most or many
of the category’s properties, it is not very useful.

Kaplan and Murphy (2000) investigated the situation in which some, but not all,
of a category’s features were not related to knowledge. Their categories were for the
most part like the Neutral categories shown in table 6.1. However, every item had
exactly one property that was related to a theme, such as arctic vehicle or jungle
vehicle. These properties were different across items: One item had “green,” another
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had ““drives in jungles,” a third had ‘is made in Africa,” and so on. Thus, unlike the
Pazzani or Murphy and Allopenna experiments, the majority of the features of every
item were not related to specific knowledge. Furthermore, in order to realize that
there was a theme related to the categories, subjects had to notice the relatedness of
different features appearing in different exemplars (e.g., that one item’s “green” was
related to another item’s “drives in jungles”). In previous experiments, the exact
same feature was repeated across items (e.g., “stretch the balloon” in Pazzani’s ex-
periment). In spite of these apparent hindrances to noticing and using the knowl-
edge, Kaplan and Murphy’s subjects learned the categories significantly faster (in
less than half the time) when these thematic features were present. Thus, we can
conclude that background knowledge is helpful even when it is not related to all—
or most—of a category’s properties. This is a significant result, because it suggests
that knowledge is likely to be useful even in complex settings in which one’s
knowledge is incomplete or imperfect.

Similarly, Murphy and Kaplan (2000) found that knowledge was useful even when
it was not totally consistent. One popular way of making up items in a category-
learning experiment (Medin, Wattenmaker, and Hampson 1987) is for each item to
consist of N features, of which 1 feature is “incorrect” and N — 1 are correct. (As
shown in table 5.2 of ch. 5, except for the first exemplar in each category.) For ex-
ample, if there are six stimulus dimensions, each exemplar would have five correct
features and one incorrect feature. By “correct” and “incorrect” here I mean simply
that the feature is normally associated with the exemplar’s category or a different
category, respectively. To use a real-life analogy, I might make up an item that has
wings, walks, lives in nests, lays eggs, and sings. Five of these features are associated
to the category of birds, and one is associated to mammals. If the features in an ex-
periment are derived from a theme, like those shown in table 6.1, how does the
presence of the incorrect feature in each item affect learning? Because every item has
a feature that is inconsistent with the rest of them, perhaps subjects will ignore the
theme; perhaps the knowledge has to be almost perfectly consistent before subjects
will rely on it.

Murphy and Kaplan found that even with this structure, Integrated Categories
were easier to learn than Neutral Categories. Subjects were able to explain away or
ignore the one inconsistent feature and still use the mostly accurate knowledge.
Thus, knowledge does not have to be related to every feature in the category, and it
does not have to be perfectly reliable in order to benefit learning.

Finally, it may be useful to ask how soon knowledge has its effect. Heit and
Bott (2000) propose that knowledge will only be useful after a certain amount of
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learning, because it will take a fair amount of time to figure out which knowledge
is relevant and is reliably associated to the categories being learned. And in their
first experiment, they found no difference between knowledge-related and -unrelated
features after one block of learning, but this difference did appear in later blocks.
However, Heit and Bott’s second experiment with different materials did find a dif-
ference after one block. Furthermore, Kaplan and Murphy (2000) also found a dif-
ference after one block of learning in their categories with minimal knowledge. In that
case, each knowledge-related feature had been seen only once, and yet they were
learned better than the more frequent knowledge-unrelated features.* It is likely that
the time course of knowledge effects will depend greatly on the particular kind of
knowledge present in the stimuli: A hint given in advance could affect the processing
of the very first stimulus; a subtle knowledge difference that is not readily apparent
could take a few blocks to reveal itself. However, there is certainly no general rule
that considerable learning is required before knowledge begins to help.

So far, knowledge has been shown to aid in learning categories. However, back-
ground knowledge cannot be expected to always be correct. In some cases it may be
vague, in others, wrong. (I am flouting convention here by referring to incorrect
knowledge, which is an oxymoron. The point is that this information is exactly the
same as information that is helpful—only it is wrong.) Clearly, knowledge may not
be helpful in such cases. The degree to which “bad” knowledge hurts has not been
very much investigated. Kaplan and Murphy (2000) found that when knowledge in
a category was contradictory (i.e., features related to different themes were mixed
together), subjects found the category about as easy to learn as categories in the
Neutral condition (see bottom of table 6.1) that had no knowledge at all. Al-
though the wrong knowledge obviously did not improve learning, it didn’t hurt it
relative to no knowledge (see also Murphy and Allopenna 1994). This rather sur-
prising result has not yet been fully investigated.® The best guess is that when the
knowledge is contradictory or misleading, subjects very quickly realize this and then
simply ignore it. Thus, even though knowledge is generally helpful, people can ap-
parently identify when it is not, by noticing internal inconsistencies and by receiving
feedback.

In a series of experiments, Heit (1994, 1998) investigated how prior knowledge
influences the way that new category examples—consistent or inconsistent with one’s
expectations—are processed. He posed the following thought experiment. Imagine
that you are visiting a new country and have read some guide books on the people
and sights there. The guide book has given some presumably stereotypical informa-
tion on the character of the people of this country—say, that the people are typically
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friendly. When you go to the country, you will meet a number of people, and some
of them are likely to be friendly and others not so friendly. How do you evaluate
this information in coming to a conclusion about the character of the people? Given
that you expected the people to be friendly, perhaps you should give greater weight
to the people who meet this expectation—after all, the unfriendly ones are likely
to be exceptions. Alternatively, perhaps you should give greater weight to the dis-
confirming information. These unfriendly people might surprise you and therefore
draw attention to themselves. Thus, they might have a greater effect on your judg-
ment about the people.

Heit’s experiments followed this example in presenting to subjects descriptions of
people in a new city, W. He manipulated subjects’ expectations by using pairs of
characteristics that would be expected to co-occur or not. For example, if a person
was described as “shy,” then one would expect the person to have the property
“does not attend parties often” rather than “attends parties often.” Heit manipu-
lated how often pairs of features like “shy” and “does not attend parties often”
co-occurred: They could be paired 0%, 25%, 50%, 75%, or 100% of the time.
After viewing a number of these descriptions, subjects were asked to estimate per-
centages of the co-occurrences. For example, they were asked ““if a person from city
W was shy, how likely would the person be to attend parties often?” based on the
exemplars.

Heit expected that subjects would be influenced by their prior knowledge in
making these judgments. That is, they should give higher percentages for shy—does
not attend parties often than for shy-attends parties often. Figure 6.1 illustrates this
effect, by showing that high expectancies (q = 90%) lead to higher estimates than
low expectancies (q = 10%) across the range of observed probabilities (the x-axis).
However, the exact form of this effect should vary depending on which kind of ex-
ample subjects pay more attention to. If people pay equal attention to examples that
are consistent and inconsistent to their knowledge, then the effect should be equal
across the observed co-occurrence of the pairs of features (as in figure 6.1a). If the
congruent items (those consistent with knowledge) are weighted more, then the dif-
ference between consistent and inconsistent items should be largest at 50% and
smallest at 0% and 100% (figure 6.1b). Because the evidence is most mixed at 50%,
there is more “room” for knowledge to push up the congruent items and push down
the incongruent ones. In contrast, if people attend to the incongruent items (those
inconsistent with prior expectations), then the effect should be smallest at 50%.
Attention to incongruent items would reduce the difference between the two item
types, by pushing up their subjective frequency. The effect would again be found in
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Figure 6.1

Predictions from Heit’s (1994, 1998) weighting model. Each graph shows subjects’ estimated
probabilities of co-occurrence of pairs of items as a function of their actual co-occurrence
(shown on the x axis), knowledge status (pairs expected to co-occur are solid lines; pairs
expected not to co-occur are dashed), and form of weighting. In the equal weighting model,
positive and negative exemplars are treated as equally informative. In the congruent model,
positive evidence is weighted more heavily than negative evidence; in the incongruent model,
negative evidence is weight more heavily. The congruent model shows the largest expectation
effect when observed proportions are intermediate, whereas the incongruent model shows the

smallest effect at intermediate proportions.
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the middle, rather than near 0 or 100% (figure 6.1c), because it makes little differ-
ence how items are weighted when almost all the items are of one type. (Heit 1998
provides a mathematical model of the weighting process to support these predic-
tions, which the interested reader should consult.)

Across many experiments, Heit found that congruent and incongruent items were
weighted equally—that is, the effect of knowledge was constant from 0-100%
co-occurrence (like figure 6.1a). However, Heit (1998) found one exception to this
rule: When subjects were given a small number of items and a fairly long time to
study each one (16 seconds), they tended to weight the incongruent items more, as
shown in figure 6.1c. Here it can be seen that there is an overall knowledge effect;
people tend to give lower ratings to the less expected feature pairs. However, this
effect is smallest at the middle range of probabilities, because the incongruent items
are weighted more (raising that curve) and the congruent ones less (lowering its
curve).

Heit (1998) argued from these results that when people encounter an unexpected
item, they spend more time thinking about it, perhaps attempting to explain its pe-
culiar properties. And, indeed, he found that people studied the incongruent items
longer when the study period was self-paced. This, then, is another effect of prior
knowledge. It does not just aid category learning when it is consistent with the ex-
amples (as in the above experiments), but it also influences what subjects attend to
when learning. It may seem paradoxical that it results in attention to items that dis-
confirm the knowledge, but this is probably a more efficient strategy for learning.
There is no need to give special attention or weight to things that one already
knows. Indeed, it is probably best not to think about them, since they do not teach
anything new (see also Kruschke 1991). Instead, learning may be most efficient when
it focuses on surprising events.

This section began with the question about whether knowledge would be helpful
when it was not as complete and reliable as in the early experiments that in-
vestigated knowledge effects. The clear answer is “yes.” When knowledge relates
only some of the features, it still benefits learning; and when the knowledge was
sometimes wrong, it still helped. In Heit’s experiments, subjects were sensitive to
both their prior expectancies and the observed level of co-occurrence of features—
incorrect knowledge did not overwhelm the empirical data, nor was it ignored.
Furthermore, even when the knowledge was plain wrong, it did not adversely affect
learning, compared to no knowledge at all. Thus, the picture given by these studies
is one in which learners use whatever amount of knowledge is present and useful
but are not overly swayed by inaccurate expectations.
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Interactions of Structure and Knowledge

In some cases, one might think of knowledge effects as being something that can be
added to or subtracted from a category, much as one could print the stimuli in blue
or red. And, indeed, many studies have added or subtracted knowledge by changing
some features or prior information about the category. However, in an important
study, Wattenmaker et al. (1986) argued that knowledge must be related to the
structure of a category in order to be helpful. To see what they meant by this, I dis-
cuss their experiments in some detail.

Wattenmaker et al. began with the comparison of linearly separable and non-
linearly separable categories described in chapter 4. To summarize this distinction
briefly, linearly separable categories are those in which the evidence for the category
can be simply summed together in order to make a decision. For example, if the
members of category A are mostly blue, triangles, and tall, then one can assume that
a blue, tall rectangle would be a member of category A, because the majority of
its features are consistent with the category. (This is simplifying somewhat—see
chapter 4.) In contrast, a nonlinearly separable category cannot be explained by
such a rule. There is no way to simply sum up the evidence for individual features to
decide whether the item is in the category. Typically, such categories are determined
at least in part by specific configurations of features (e.g., blue-and-triangle might be
associated to the category, although blue alone is not).

Table 6.2 gives an example of linearly separable and nonlinearly separable cate-
gories (from Wattenmaker et al. 1986). (Each row describes a category exemplar;
the columns refer to different stimulus dimensions; and each 1 or 0 indicates a dif-
ferent value on that dimension. Keep in mind that in an experiment, these dimen-
sions are turned into stimuli with colors, shapes, sizes, positions, and so on. Subjects
do not get to see 1s and Os as we do here, and so learning is harder than it often
seems from such diagrams.) As can be seen, for the top pair of categories, each
member of Category A has three or more 1s, but no member of Category B does.
Therefore, a learner could acquire these categories by learning which features (the
1s) tend to go with Category A, and simply deciding whether each item has a ma-
jority of those features. In contrast, the category pair at the bottom of the table does
not have any such rule. Although Category A does have more 1s than does Category
B, exemplar B3 has a majority of 1s, and exemplar A1 has a majority of Os. There is
no way to simply add up the features to decide category membership. Instead, in
order to learn this category, one must learn about individual exemplars (memorizing
that A1l is a member of Category A, that B1 is in Category B, and so on), or one
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Table 6.2.
Category structure used by Wattenmaker et al. (1986).

Linearly Separable Categories

Category A Category B

Exemplar D1 D2 D3 D4 Exemplar D1 D2 D3 D4
Al 1 1 1 0 B1 1 1 0 0
A2 1 0 1 1 B2 0 0 0 1
A3 1 1 0 1 B3 0 1 1 0
A4 0 1 1 1 B4 1 0 1 0
Nonlinearly Separable Categories

Category A Category B

Exemplar D1 D2 D3 D4 Exemplar D1 D2 D3 D4
Al 1 0 0 0 B1 0 0 0 1
A2 1 0 1 0 B2 0 1 0 0
A3 1 1 1 1 B3 1 0 1 1
A4 0 1 1 1 B4 0 0 0 0

Note: D1, D2, etc. refer to stimulus dimensions of each item. 1 and O refer to the values on
those dimensions. Each exemplar is made up of four features, one from each dimension.

must learn about configurations of features (e.g., learning that only members of
Category A have a 1 on D2 and a 1 on D4).

Wattenmaker et al. (1986) believed that whether a linearly separable or non-
linearly separable category would be easier to learn could depend on how the struc-
ture was related to knowledge that people bring to the learning situation. In some
cases, the knowledge would suggest that the evidence should simply be summed
up—consistent with a linearly separable category. In other situations, the knowledge
would refer to configurations of features—consistent with a nonlinearly separable
category. In their Experiment 1, they used personality features. They hypothesized
that people are believed to be kind or intelligent or extraverted to the degree that
they evince behaviors consistent with these characteristics. A kind person may not
always be kind but is kind more often than not. Thus, personality categories might
be particularly susceptible to a linearly separable form of categorization.

In their experiment, Wattenmaker et al. manipulated knowledge by the way they
assigned features to their design. In the #rait condition, the 1s and Os in table 6.2
were replaced by actions that were consistent with a given personality. For example,
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the 1s on each dimension might be replaced by actions consistent with an honest
person, whereas the Os would be replaced by actions of a dishonest person. Pattern
A1 in the linearly separable condition was: “Returned the wallet he had found in the
park; Admitted to his neighbor that he had broken his rake; Told the host that he
was late for the dinner party because he had overslept; Acted like he enjoyed shop-
ping when his girlfriend asked him to go along with her to the store” (Wattenmaker
et al., p. 169). The first three properties (1s) display honesty, whereas the last (a 0) is
less than fully honest. Thus, in the trait condition, summing up the properties would
lead to a simple rule such as “the people in Category A are usually honest.” In the
control condition, the dimensions were four different traits (honesty, talkativeness,
cooperativeness, and cautiousness). Here, subjects would not be expected to sum up
the features, because there is no personality category that corresponds to all these
traits. That is, no prior knowledge structure says that people in a given category
should be both honest and talkative, but not cooperative or cautious. So, a 1 on D2
was not related to a 1 on D4.

The results fit Wattenmaker et al.’s predictions. In the trait condition, the linearly
separable categories were easier to learn. However, in the control condition, subjects
found the nonlinearly separable category slightly easier to learn. Presumably, subjects
were able to use their knowledge of personality types to combine the different actions
in order to use a trait description of the category. In the nonlinearly separable case,
this was not possible, and so attempting to use the trait was not very successful.
In later work, Wattenmaker (1995) has suggested that social categories in general
are interpreted as linearly separable, in part because we do not expect people to be
entirely consistent in their behavior. Thus, social categories in general are flexible, in
that they do not require specific configurations of features but usually just require
some preponderance of evidence (“most of the time, Jessica’s quite pleasant”).

Wattenmaker et al. (1986) found that it was also possible to induce subjects to
prefer a nonlinearly separable category. Without going into the details of their ex-
periment, Ill describe a stimulus to illustrate it (based on their Experiment 3). Sup-
pose that you are trying to learn about an occupation. Half of the members of this
group work in the winter and half in the summer. Therefore, the season in which
they work does not seem to distinguish this group from any other. However, later
you realize that half of these people work indoors and half work outdoors. Now the
season does seem relevant: The indoor workers should work in the winter, and the
outdoor workers in the summer. This configural information is not the linearly sep-
arable sort, because it depends on how the two features are configured—“works
indoors” is not predictive of the category by itself; it’s predictive when it occurs with
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“works in winter” and not predictive otherwise. You can’t simply sum up the evi-
dence. Wattenmaker et al. (1986) found that when pairs of features made sense, as
in this example, subjects found the nonlinearly separable categories easier to learn
than the linearly separable ones. When the feature pairs did not make sense (i.e., were
not predictable based on prior knowledge), then the difficulty of learning reversed.
In short, Wattenmaker et al. showed that which structure was more difficult
depended on how it related to prior knowledge. Furthermore, prior knowledge was
not always helpful. When it was well matched to the category structure, it did im-
prove learning. But when it did not match that structure, it actually hurt learning in
some cases. So, knowledge in and of itself may not be helpful unless it actually
conforms to the category’s structure. These results suggest that we should not think
of prior knowledge as being an attribute of a category that can be simply added or
taken away in the way that a single feature can. The utility of prior knowledge may
depend in a subtle way on how the features related to knowledge are empirically
structured. This is an important issue on which more work needs to be done.

Category Construction

As described in chapter 5, a very different way to study category acquisition is not
to teach people the category but to let them try to discover it on their own—the
category construction task. In real life, people notice distinctive classes of objects by
themselves without someone telling them that these are different sorts of things, or
instructing them in the name. In experiments of this sort, researchers have typically
given the subjects a set of stimuli printed on cards and then asked them to divide
them into the groups that are best or most meaningful. Quite surprisingly, adult
subjects overwhelmingly choose a single stimulus dimension on which to divide up
the cards rather than forming family resemblance categories (Ahn and Medin 1992;
Medin et al. 1987; Regehr and Brooks 1995). For example, they might divide up the
items based only on their color. Given that real-world categories like chair and rose
seem to be family resemblance categories, this result is rather puzzling. You can’t
identify a rose simply by its color or its having thorns: You need to use many fea-
tures associated with roses. The reasons for subjects’ strong preference for uni-
dimensional categories are discussed in chapter 5. Here I focus on the influence of
knowledge on this task.

Perhaps if subjects had knowledge connecting the features, they might attend to
more of the features when constructing these categories. Medin et al. (1987) had
used pictures of bugs in their experiments, and they thought that if they impressed
subjects with the idea that these were different species of bugs inhabiting different
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ecosystems, subjects might look for larger constellations of features rather than
choosing just one, such as head shape. In one experiment, subjects were told that the
bugs represented bottom dwellers and top dwellers of a pond. They were shown the
two category prototypes and told that one was the “best adapted top dweller” and
the other the “best adapted bottom dweller.” Even with this help, 19 of 20 subjects
used a single dimension to divide up the stimuli. That is, rather than noticing that a
bunch of items were similar to one prototype and another bunch of items similar to
the other prototype, they might put together all the items with the same head shape
as prototype 1 and then all the items with the same head shape as prototype 2,
ignoring the other dimensions. So, clearly, very general background knowledge
about animals is not sufficient to overrule this unidimensional bias.

Ahn (1990) tried a more direct approach. She used features of flower categories
that were clearly different, such as color and location, and provided subjects with a
causal explanation connecting the properties of the two kinds of flowers, namely
that one type of flower attracted a kind of bird, and the other attracted a kind of
bee. The bird was said to like bright colors, be active at night, fly high, and lay eggs
near water, and the bee was described as having the opposite values. After hearing
this information, subjects divided the stimuli up into two categories. Under these
conditions, subjects did form family resemblance categories a third of the time,
identifying flowers that were brightly colored, blooming at night, found in trees, and
near the water as one category. This result does demonstrate that knowledge can
help people to identify category structure. However, the knowledge provided was
somewhat arbitrary, in that the bird or bee just happened to prefer the prototypical
features of the two categories, and subjects were given these descriptions that con-
nected all the categories’ features right before sorting. If, then, this sort of informa-
tion is required to induce family resemblance categories, it would not be likely to be
very helpful in more realistic settings.

Spalding and Murphy (1996) and Kaplan and Murphy (1999) used the stimuli
like those described in table 6.1 in category construction experiments. They found
that explicit instruction in the connection of the features is not necessary with these
items, because subjects could spontaneously identify the relations between features.
However, it was important to ensure that subjects first examine all the items.
Spalding and Murphy (Experiment 3) found that if subjects were simply given cards
and asked to divide them up, they discovered the family resemblance category 40%
of the time when the categories were distinguished by themes (like the arctic and
jungle vehicle). When subjects first read through all the items and then were asked
to divide them up, 78% of the categories were family resemblance sorts. Thus, one
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reason why people often make unidimensional sorts in experiments may be that they
do not study the items carefully enough to observe whatever structure is there.
However, it should be emphasized that when there is no knowledge relating the
features, examining the cards by itself is not helpful. In this condition, Spalding and
Murphy found that no subject recovered the category structure.

Kaplan and Murphy (1999) essentially repeated their experiment with category
learning described above, only using a category construction task. Recall that in
their learning experiment, every item had only one feature that was related to the
theme. All of the other features were neutral. In spite of the very small number of
knowledge-related features in their stimuli, a third of the subjects divided them up
into family resemblance categories. Control subjects who did not get these few
knowledge-related features never made family resemblance categories. Thus, even a
small amount of knowledge can lead subjects to pick out the category structure.
One surprising result from their experiment was that when the categories had a
thematic basis, subjects not only learned about the thematic features but also
learned about the nonthematic features to some degree. Subjects whose categories
did not have a thematic basis did not learn about either. The theme helped subjects
notice the empirical structure of nonthematic features, which suggests an interaction
between the empirical and knowledge-based learning processes.

These experiments demonstrate that knowledge may be helpful in people’s spon-
taneous creation of categories. As described in chapter 5, the category construction
methodology may be somewhat artificial, and so its results should be taken with a
grain of salt. Nonetheless, the effects of knowledge demonstrated in these experi-
ments suggest that knowledge may be used in more realistic situations as well. For
example, suppose that you notice a tree with strangely shaped leaves that you’ve
never seen before. You could make a new category that is essentially unidimen-
sional: tree with such-and-such a leaf.® However, your knowledge of plants suggests
that other properties are likely to be relevant, such as the location where the tree
was found (forest, urban, mountain, near water), its size, the presence or absence of
fruit, and so on. If the tree is in an unusual environment (say, a desert), you might
try to make a connection between the strange shape of the leaf and the environment.
Perhaps the leaves are small, to reduce water loss. In short, it is unlikely that you
would stop at one dimension when trying to understand this kind of tree, and the
other dimensions you consider would probably be the ones that your knowledge
suggested were relevant.

The effect of knowledge in unsupervised category formation is important, because
it indicates that feedback is not necessary to obtain the benefits of knowledge. In
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many situations one must form concepts without anyone available to provide in-
struction; in particular, it has been suggested that many of children’s early concepts
are initiated in just this way (see chapter 10). The somewhat surprising finding that
even small amounts of knowledge can aid in this task (Kaplan and Murphy 1999)
provides further evidence that children may benefit from knowledge when learning
categories. That is, some have suggested that children do not know very much about
biology or social categories or mechanical devices, and so their background knowl-
edge could not help them very much. However, even a small amount of knowledge
does improve category construction.

Knowledge in Categorization

The examples discussed up until now have all dealt with the initial acquisition of a
category. However, knowledge may also influence a later-occurring process, namely
the categorization of items into categories that are already known. An example of
Douglas Medin’s (Murphy and Medin 1985) will illustrate. Suppose you were at
a party, and you heard that one of the guests had fallen into the pool. You might
conclude that this person was drunk. But this is not because you have stored in your
concept of drunks the feature “falls into pool.” Instead, this event can be explained
by the categorization of the person as drunk. Similarly, there are new inventions and
newly seen objects that may not be very similar to anything we know, but which can
be explained by their category membership. For example, suppose that you saw a
construction worker holding a loud device that seemed to be shooting nails into
some wooden studs. You might understand this machine to be a kind of electric
hammer, even though it looks very different from other hammers you’ve seen.
However, it fills the same function as a hammer and presumably was invented to
fulfill the same purpose a hammer was invented for. In short, the machine would be
explained if it were a hammer. As another example, consider a difficult medical di-
agnosis. (Diagnosis is a form of categorization, and patients with the same disease
often do not have the same set of symptoms.) In a complex case, a patient may not
look exactly like any single disease victim that the doctor is familiar with. However,
perhaps the patient’s symptoms can be explained by a particular set of disease cate-
gories (e.g., atypical hepatitis combined with a vitamin E deficiency). Doctors can
make such diagnoses through reasoning processes that tell them that these diseases
could explain the patient’s symptoms and test results. All of these examples concern
not the original learning of a category but rather the process of deciding whether
something is or is not a category member.
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In short, categorization may not always be based on simple matching of proper-
ties. It may be that background knowledge is more actively involved. There are
many anecdotes of the sort just described, but there have been fewer tests of this
hypothesis than in category learning. Most of these tests have been with natural
categories, since these are ones for which subjects are most likely to have well-
developed knowledge structures.

One study that examined categorization of this sort was performed by Rips
(1989), who created a scenario in which an object or animal went through a trans-
formation. In particular, he described to subjects something that was much like a
bird. This animal, however, had the misfortune to live next to a toxic waste dump,
where chemicals caused it to lose its feathers and develop transparent, thin wings.
It also grew an outer shell and more legs. At the end of this metamorphosis, the
creature appeared rather reminiscent of an insect. Rips asked subjects whether the
animal was a bird or an insect and whether it was more similar to birds or insects.
Subjects claimed that this stimulus was more similar to an insect but that it was still
more likely to be a bird. That is, subjects felt that the change in outer appearance
and even body parts did not constitute identity, but that the animal’s inherent
biological properties determined what it was. Apparently, then, this judgment was
based on a domain theory about biology rather than on more superficial properties.
Keil (1989) performed some very similar studies on children and adults using a
surgical scenario, described in chapter 10. He found similarly that adults were not
persuaded that transforming an animal would make a difference in its category
membership, even when it ended up looking exactly like a different item. Children
were somewhat more flexible: Before grade 2, they were generally willing to believe
that a cat could be turned into a skunk, for example. However, even children at this
age did not believe that an animal could be transformed into a plant or inanimate
object.

Rips (1989) reported another influential study using a different kind of example.
Imagine that there is a round object that is half way in size between a quarter (a U.S.
25-cent piece) and a pizza. Is it more likely to be a quarter or a pizza? There does
not seem to be any way to tell based on empirical evidence. However, because people
realize that coins are restricted in size by convention and law, whereas pizzas are
not, Rips expected subjects to categorize it as a pizza. And in fact, this is what most
subjects did.

Unfortunately, this study was found to be difficult to replicate, as Smith and
Sloman (1994) discovered that the choice of the nonvariable category was found
only when subjects were required to talk out loud and justify their answers. If they
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Figure 6.2

Pictures of the tuk category used by Lin and Murphy (1997). Subjects read descriptions of the
item and were told what each of the numbered parts was. However, different subjects received
different information about the objects and their parts, as explained in the text.

only had to make a categorization decision, they chose the variable and nonvariable
categories about equally. Although this still indicates that people will use their
background knowledge in making these decisions, Smith and Sloman argued that
people use such knowledge only when encouraged to do so by the instructions of the
task. In everyday life, they suggest, categorization of entities may not involve such
knowledge at all, especially when it is done rapidly without much overt reflection.
Lin and Murphy (1997) attempted to find evidence for more automatic, less re-
flective use of knowledge, with speeded identification tasks that have been used in
past categorization research (e.g., Murphy and Brownell 1985; Smith, Balzano and
Walker 1978). These tasks would not be of the sort Smith and Sloman criticized,
since they require fast, nonverbal responses. Subjects first learned about kinds of
artifacts in a foreign country, such as the set shown in figure 6.2. Different subjects
were taught different things about these items. For example, one group was told that
the tuk displayed in figure 6.2 was used for hunting. The hunter would slip the
noose (1) at the top over the animal’s head, and pull on the loose end of the rope (4)
to tighten it. The hunter held the tuk at the handle (3), and the hand guard (2) pro-
tected the hunter from animal bites and scratches. A different group read a very
different story about the tuk. They were told that it was a fertilizing tool. The liquid
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Consistent A Consistent B Control

Figure 6.3

Test items used by Lin and Murphy (1997), differing in which critical properties are present in
the object. The Consistent A item is consistent with one description of the tuk (the animal
catcher), and the Consistent B item is consistent with the other interpretation (the fertilizer).
The Control item has neither of the critical properties.

fertilizer was held in the tank (2), and the knob (3) was turned in order to let it flow
out the outlet pipe (4). The loop at the top (1) was used to hang up the tuk in stor-
age. Obviously, the two groups have very different background knowledge about
this implement. However, they have both seen the same examples of tuks and have
been given descriptions of the same parts. The question is, then, whether this differ-
ence in background knowledge will influence subjects’ categorizations.

Lin and Murphy tested this question by creating items that lacked one or more of
the parts of the originally seen tuks. As shown in figure 6.3, one item might lack the
loop at the top, one might lack the triangular part in the middle, and another might
lack both. The descriptions of the objects had been designed so that the most impor-
tant part in one description should be relatively unimportant in the other descrip-
tion. For example, the loop at the top is critical for the hunting tool tuk, because it
grabs the animal. In contrast, that part is not essential for the fertilizing tuk, because
it only concerns the storage of the tool. The reverse is true of the triangular part (2),
which is essential for holding the fertilizer but is only a convenience for the hunting
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tool. Lin and Murphy found that subjects’ willingness to call these items tuks de-
pended on the initial description. Those who learned the tuk as a hunting tool did
not categorize the item with the missing loop at the top as a tuk; those who learned
the item as a fertilizer did. These effects were also found in reaction times of speeded
category decisions, even when subjects were given a response deadline, to make
them go faster than usual. In fact, similar effects were found for subjects whose task
was simply to decide whether the object, when presented briefly, had all of its orig-
inal parts or not: Subjects were more likely to notice when a functionally critical
part was missing than when a less important part was missing.

In short, although all subjects saw the same examples, they drew different con-
clusions about what parts of the object were most important. These conclusions
influenced speeded categorization decisions, even though this background knowl-
edge was not specifically asked about during the task. Palmeri and Blalock (2000)
also found knowledge effects in speeded categorization, even when subjects were
forced to respond very quickly. This result gives some confidence that Smith and
Sloman’s (1994) finding of limited knowledge effects is not universal. Recall that
Smith and Sloman found that subjects only seemed to use their background knowl-
edge when they were asked to justify their answers. In contrast, in Lin and Mur-
phy’s and Palmeri and Blalock’s experiments, the results were found without such
justifications being asked for, and under speeded instructions. (Especially notewor-
thy is the finding of knowledge effects on part detection, which is a simple, factual
question.) Thus, some kinds of knowledge are probably directly incorporated into
the category representation and used in normal, fast decisions about objects. Other
kinds of knowledge, however, may come into play only when it has been solicited.

More generally, it seems unlikely that much background knowledge is called for
when you walk down the street and see a pigeon, say, on the sidewalk. If the pigeon
is clearly visible, and you’ve seen many of them before, you will identify it extremely
quickly as a bird, without having to go through a long reasoning process. In other
circumstances, however, overt reasoning using background knowledge would be
called for. As described earlier, cases of medical diagnosis often require one to reason
explicitly about how to explain the symptoms and test results observed. More gen-
erally, if you have to categorize something based on minimal perceptual information
(e.g., a noise at the window), you might naturally rely almost entirely on back-
ground knowledge to arrive at an answer (a bird might have flown up to the window
and then flown away; a dog couldn’t get up there and then disappear so suddenly).
In between these two extremes are cases in which knowledge might be somewhat
involved or could speed up or slow down a decision. For example, if you were in the
desert, you might have trouble identifying something on the ground as a pigeon,
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Table 6.3.

Example of categories in Wisniewski (1995).

Mornek Category Frequency  Plapel Category Frequency
Installed near garbage dumps* .50 Located in a nuclear plant* .50
Found near mosquito-infested .50 Found in the city water supply* .50
swamps™

Produces a poisonous .50 Has a red flashing light* .50
substance®

Emits microwaves* .50 Makes a loud beeping noise* .50
Turned on by a dial 1.0 Turned on by a key 1.0
Box shaped 1.0 Barrel shaped 1.0

Note: Asterisks indicate knowledge-relevant features. Frequencies are the proportions of
category items containing that feature.

because you would not expect pigeons to be there. Little is known about these in-
between cases and how much knowledge is involved in the sort of everyday object
categorization that people do so effortlessly.

Wisniewski (1995) addressed part of this issue by asking whether empirical in-
formation or background knowledge is more important in categorizing things when
the two conflict. He constructed categories using features shown in table 6.3. In this
example, subjects learned about two novel tools, morneks and plapels. Morneks
tended to have the features listed in the left column, whereas plapels tended to have
the features listed on the right. (Individual examples were made up by sampling
from these features, plus some random features that occurred equally often in both
categories.) Also, some features were quite typical of their category: They appeared
in every example, as indicated by the 1.0 in the Frequency column. Other features
occurred in only half the category items, as indicated by .50 in the Frequency col-
umn. The knowledge group was told that morneks are used for killing bugs, and
that plapels are used for detecting toxic substances. The ignorance group (a name I
have invented to emphasize the difference between conditions) was not given this
information. This information about the function, then, is the background knowl-
edge that Wisniewski manipulated. After learning, subjects had to categorize test
items and say how confident they were in the category decision. If people use their
background knowledge to categorize items, then there should be a difference be-
tween these two groups’ performance on test items.

Some of the test items used are shown in table 6.4. The first type of item, the
atypical test item pits the function against the statistical structure of the category.
Two of the features (listed first here) are strongly related to the object’s function:
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Table 6.4.
Examples of Test Items for the Mornek Category (see table 6.3) used by Wisniewski (1995).

Feature Type Functional Relevance Feature Frequency

Atypical Test Item

Emits microwaves relevant to Mornek .50
Installed near garbage dumps relevant to Mornek .50
Turned on by a key irrelevant 0
Barrel shaped irrelevant 0
Inspected once every 6 months irrelevant .50

Function Test Item

Emits microwaves relevant to Mornek .50
Installed near garbage dumps relevant to Mornek .50
Inspected once every year irrelevant .50
Operates during the night irrelevant .50
Nonfunction Test Items

Turned on by a dial irrelevant .50
Box shaped irrelevant .50
Inspected once every 6 months irrelevant .50
Operates during the day irrelevant .50

Emitting microwaves is a possible way of killing bugs, and garbage dumps are cer-
tainly a location where a bug-killer might be useful. The knowledge one might bring
to bear on this item would support its being a mornek, the bug killer. However, two
other features (listed next) were strongly associated with the plapel category. As table
6.3 shows, “turned on by a key” and “barrel shaped” occurred in all of the plapels
and in none of the morneks. Thus, this is a very strong statistical clue to category
membership. (The final feature was equally present in both categories.) Subjects in
the ignorance group put this item into the mornek category only 43% of the time.
However, subjects in the knowledge group were apparently more swayed by the
relevant features, and they placed it into the mornek category 65% of the time.
When two features were related to knowledge—that is, were closely related to the
function of one category—they overruled the two features that statistically predicted
a different category.

This contrast is also made by the two test items underneath. Here, the statistical
properties of the features were held constant—all of them occurred in half of the
learning items. However, in the function item, two properties were related to the
object’s function, but in the nonfunction item, none of the features was. These two
differ, then, in the degree to which they relate to the knowledge underlying the
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category. Because these items are unambiguous, subjects almost always categorized
them correctly. But Wisniewski found differences in how confident the subjects were
about their answers. The knowledge group was more confident about the function
items than about the nonfunction items, but the ignorance group showed no such
difference (see also Wisniewski 1995, Experiment 1). Thus, the knowledge that sub-
jects were given about the function influenced their categorization both for some-
what unusual exemplars (the atypical test item) and typical ones.

Locus of the Knowledge Effect in Categorization

There are two general ways that knowledge could be having its effect on catego-
rization. First, when the knowledge is present during learning, it could be influenc-
ing the nature of the category representation. For example, Lin and Murphy (1997)
proposed that when people learned their tools (see figure 6.2), they might have paid
more attention to the features that were critical to the function. When the tuk was
used for catching animals, they might have encoded more information about the
loop at the top and elaborated their memory with inferences about how the loop
worked, and so on. In contrast, when the tuk was used for fertilizing crops, this
feature would not have received much attention and would have been represented in
less detail. Second, it is possible that the knowledge is activated and used during the
categorization judgment itself, after the learning period has ended. For example, at
test, subjects in this experiment might have thought something like “that thing
couldn’t catch an animal, because it doesn’t have the rope at the end, so it can’t be
a tuk.” Here, it is not just that the initial representation of the category has been
influenced—the underlying knowledge itself is actively used in making the catego-
rization decision. Of course, it is possible that knowledge is used in both ways.

The criticism of knowledge effects by Smith and Sloman (1994) is about the sec-
ond sort of use. It seems implausible to some researchers that when people see an
object, they activate rather complex knowledge structures and then draw inferences
about the object’s identity. Object categorization is often quite fast (for familiar
categories at the basic level, anyway), usually much less than a second, and it seems
unlikely to some that much knowledge could be activated and used in that time. In
experiments with time constraints on responding (Lin and Murphy 1997; Palmeri
and Blalock 2000), it seems even less likely that the explicit use of knowledge is
involved. Furthermore, Lin and Murphy found effects of background knowledge
even in a task where functional importance is not relevant, namely part detection.
Thus, their effects are probably due to knowledge influencing the categories’ (and
objects’) encoding in memory.
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Wisniewski (1995, Experiment 3) investigated this issue with regard to his cate-
gories by comparing groups that received the critical knowledge either before or after
learning. The early knowledge group was given the information about the object’s
function during the learning trials, as in his other experiments. The late knowledge
group went through the learning trials and was only told about the functions asso-
ciated with the categories at their end. So, they could not have used this information
to encode the properties of individual objects during learning, but they could still
use this information in making their categorizations during the test phase. In fact,
Wisniewski found that both groups seemed to use this knowledge. For example,
both groups rated the function test items higher than the nonfunction test items, as
described above (and see table 6.3). However, such differences were significantly
larger for the early knowledge group. Knowledge was actively used during the
categorization phase, as shown by the late knowledge group. But knowledge also
influenced the learning of the exemplars, as shown by the greater use of knowledge
for the group that received it prior to learning. Wisniewski’s stimuli were verbal lists,
so whether such results would extend to objects has yet to be seen.

Before the possible sources of knowledge effects in categorization can be fully
understood, we will need more information about when and where such effects occur.
It seems more likely that knowledge will actively be used during categorization
when the decision is difficult, is slow, is based on little perceptual information, and
in similarly straitened situations. It may be that the use of knowledge varies consid-
erably both with category and with the pressures on the categorization task. When
knowledge influences the initial encoding of a concept, however, that knowledge has
been incorporated into whatever representation is used to later categorize items, and
the categorization process cannot help but be affected by it.

A somewhat different case that might well be taken as demonstrating the use of
knowledge in categorization is Barsalou’s (1983, 1985) study of ad hoc categories.
These are categories that are constructed in specific situations to describe a specialized
class of objects that are of particular interest (see Barsalou 1991, for more detail).
Examples include things to take on a camping trip, things to carry out of a burning
house, ways to avoid being killed by the mafia, and ways to make new friends. Al-
though these categories are of interest in a number of respects, for our purposes, the
most important thing is that people can verify objects as being members of these
categories, as well as being more or less typical members. For example, which of
the following do you think are good examples of ways to avoid being killed by the
mafia?
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* move to South America

+ have a garage sale

+ take a bath only once a month

+ change where you’re living in Las Vegas
- change your identity

Most people would agree that the first and last items are both good examples of this
category. “Change where you’re living in Las Vegas” is a borderline member in my
estimate. It is somewhat similar to “move to South America,” but it would be un-
likely to help you avoid the mafia for very long. The interesting point about these
categories is that people can make such judgments with high reliability (Barsalou
1983) even if they have not previously learned the category or thought about the
items in this way. I doubt that you learned item by item whether the things on this
list were examples of ways to avoid being killed by the mafia. For most ad hoc cate-
gories, there is no learning period, per se. Instead, the phrase evokes a certain kind
of meaning, which you can then apply to a new item. By reasoning about whether
the new item fits this meaning, you can decide whether it’s a category member or not.
So, taking a bath only once a month may be off-putting, but you probably cannot
think of a reason that it would deter a hardened mafia hit man who has been
instructed to kill you. In contrast, by moving to South America, you might be out of
range of the mafia’s ability to find or harm you. These are not facts that you learned
previously, but inferences you made at the time of decision. In short, category deci-
sions about ad hoc categories are further evidence for the use of knowledge during
categorization itself. Because these categories usually do not have any previous
learning phase, the only way that knowledge could be influencing judgments is
during the categorization process.

What clearly can be concluded from this discussion is that background knowledge
affects not only initial acquisition of a concept but also later categorization judg-
ments. People tend to positively categorize items that are consistent with their
knowledge and to exclude items that are inconsistent, sometimes even overruling
purely empirical sources of information. The details of how this works have not yet
been established, largely because few experimental studies have been done, and
most have not used objects but instead have employed verbal descriptions. Also,
it seems very likely that how and when knowledge influences categorization will
depend on the nature of the category and whether other cues are readily available.
Working out the mechanisms of these processes is one of the more important tasks
for this approach to concepts.
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Knowledge in Feature Construction

Throughout this book, I have been talking about objects and concepts having cer-
tain features. For example, birds fly and have two legs, robins have red breasts, my
pet bird Tweety sings, and so on. The reader may have wondered where these fea-
tures come from—that is, not where do robins or their legs come from, but how is it
decided that these particular properties are the ones that are part of the robin con-
cept, as opposed to other properties? It is not too controversial to say that any
object could be thought of as having an infinite number of features. For example,
robins have two legs, but they also have a leg; they also have fewer than three legs,
and fewer than four legs, and so on. Robins have a red breast; or, one could say that
they have a red chest and red belly. Which, if any of these, should be features? Why
is it that red breast gets to be the feature, rather than red chest plus red belly? Why
isn’t having fewer than four legs a feature? And I saw a robin on my lawn this
morning. Should this fact (“found on my lawn this morning”) become a feature of
robins? Or should the property “robins can be found on lawns” or “robins can be
seen in the morning” or “robins can be found in the morning in the United States”

..or...“in the midwest” or “in Illinois?” Any object or event can be conceived of
in many different ways, and it would be impossible to encode each one and store it
as part of a concept.

We do not know very much, unfortunately, about which properties are encoded,
or how this is determined. However, it has been argued that knowledge might play
an important role in this process (Goodman 1965; Murphy and Medin 1985). One’s
prior knowledge of a domain provides a set of properties that can be used in
encoding a new member of that domain. Indeed, it seems likely that in learning a
new category, you compare it to similar categories and use features from or based
on those categories to construct the properties by which to represent the category
(Markman and Wisniewski 1997). This kind of comparison may not be a “knowl-
edge effect,” per se; it may only involve contrasting a new category to an old one
from the same domain.

Schyns and colleagues (Schyns, Goldstone, and Thibaut 1998; Schyns and Mur-
phy 1994; Schyns and Rodet 1997) have argued that features are in part defined
by how they are related to category structure. In some cases, the features are so
ambiguous that they cannot be reliably identified on simply examining a stimulus.
Consider, for example, an X-ray. Often X-rays have a large number of spots and
shadows on them that are of questionable importance. It is only experts who know
that some spots are uninteresting structures (“You always get these shadows when
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you photograph through the ribs.”) or artifacts of the procedure (“She probably
moved a little while the X-ray was taken.”), whereas others have special significance
(“This series of spots could be an unusual growth.”). When novices look at X-rays,
they simply do not know which markings constitute coherent features, and which
do not (Lesgold 1984). In these cases, category learning itself may be needed to
identify the features. That is, learning to diagnose conditions from an X-ray does
not just require learning which features predict which diseases but also requires
learning which patterns are features and which are not.

There is evidence for this idea in the work of Schyns and Murphy (1994). They
used blob-like stimuli with very ambiguous parts, such that subjects could not
identify the critical features in advance. That is, they couldn’t accurately determine
which sections of a blob were a part. Subjects learned to distinguish two categories
of such blobs. At the end of learning, they were now able to identify the correct
features within the blobs, namely, the features that distinguished the categories, be-
cause they had learned that some aspects of the blobs were found in one category
and some were found in the other. Control subjects who simply viewed the stimuli
were not able to identify the same features—category learning itself was required.
One might worry that the task, in which subjects were explicitly asked about the
parts of the objects, might have been responsible for the results. Schyns and Rodet
(1997) addressed this with a clever design in which they taught subjects categories in
sequence. They proposed that subjects who formed features in the course of learning
the first categories would find it easier to learn a second set that involved the same
features. Here no explicit identification of parts or properties was required. The
results supported their hypothesis.

In many situations, we assume that the features are obvious, and the only diffi-
culty subjects have is in learning which features are associated with which catego-
ries. These experiments suggest that in some cases, the features are not readily
available at the beginning of learning and that one goal of learning is to acquire the
features themselves.

These examples, though, are not very knowledge-dependent in the way we have
defined “knowledge” in this chapter. It was not general facts that people knew
about the domains that determined the feature learning here, but instead the learn-
ing of the particular category that accounted for it. A more radical demonstration of
knowledge-based feature creation was carried out by Wisniewski and Medin (1994).
In their study, the stimuli were children’s drawings of people. They divided up the
pictures into two categories. One category had detailed drawings that also shared
some superficial properties, such as curly hair on the people. The other category had
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pictures of people performing some action; they also shared some superficial prop-
erties such as not smiling. In one experiment (1a), subjects were shown these two
collections of pictures and were asked to come up with a rule that separated the two
categories. Subjects were told either that one group of drawings was done by cre-
ative children and the other by noncreative children, or else that they were drawn by
children in Group 1 and Group 2. The use of these meaningful category names in
one condition was a way of activating knowledge structures that might be used in
interpreting the pictures.

Wisniewski and Medin examined the features that people produced as part of
their rules. They found that about half of the features listed by the subjects who did
not have prior knowledge (the Group 1/Group 2 subjects) were simple, concrete
features that were readily detectable in the pictures. One such rule was “all of the
characters have their arms straight out from their bodies, and they’re also standing
very straight” (p. 241). In contrast, only 12% of the features of the knowledge
group were so simple. Instead, their features were more likely to be abstract, describ-
ing a whole class of properties (e.g., “drawings that show more positive emotional
expression”). In addition, the knowledge subjects were likely to make hierarchical
features, features that had both an abstract and a concrete component. In these cases,
the subjects would mention an abstract property of the features and then relate it to
a concrete feature: “There are many more details in each of them [drawings], things
like belts, pockets, and patterns on the clothes....” Here, the abstract feature of
“details” is mentioned and is related to more concrete properties.

Why did the knowledge group create these abstract and hierarchical features?
Wisniewski and Medin suggest that the prior knowledge created certain general
expectations about the properties. For example, subjects might expect that creative
children would make more detailed or unusual drawings. However, as discussed at
the beginning of this chapter, it is difficult to specify in advance exactly how these
general expectations would be instantiated. Unless you know a lot about children’s
drawings, you might not immediately know whether one was particularly unusual
or detailed. Part of subjects’ learning therefore was to relate the features observed
in the pictures to these general expectations (i.e., a post-hoc use of knowledge, as
described earlier). This process resulted in more hierarchical features being con-
structed, in which abstract expectations were linked to observed features. In con-
trast, when subjects did not have any particular expectation about the categories,
they were more likely to focus on concrete features, because they did not have an
abstract notion in mind at the beginning.

In their Experiment 2, Wisniewski and Medin (1994) asked subjects to provide a
rule to categorize the items after seeing each exemplar. Subjects would study a pic-
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ture, say which category they thought it was in and why, and then get feedback on
the answer. Subjects were told either that the pictures were done by farm kids and
city kids or by creative kids and noncreative kids. Because subjects’ initial guesses
about the items were not particularly accurate, they were often forced to re-evaluate
their rules and the features involved. Wisniewski and Medin identified a number of
processes that subjects followed in making these revisions. One example was that
subjects often reinterpreted a feature as supporting a different category. For exam-
ple, one subject felt that the “perfect body proportionment” of a drawing indicated
a creative child. When told that this was a drawing of an uncreative child, the sub-
ject decided that “perfect body proportions show lack of imagination.” So, the same
feature could be related to a different concept, via a different reasoning process.
Another strategy that people used was to focus on new features that might overrule
the feature that had led them astray. This is the kind of process that statistical
theories of learning would propose—forming associations to the correct features,
while weakening associations to other features. However, some of the processes
were much more knowledge-related. For example, sometimes subjects changed their
criterion for identifying a feature. Although a picture had seemed detailed, when
told that its creator was not creative, a subject decided that “drawings done by
creative children would be more detailed.” Thus, the identification of the feature
“detailed” changed as a result of learning. Finally, sometimes subjects reinterpreted
the same property based on feedback. For example, one subject identified the cloth-
ing in a drawing as a “city uniform,” but changed this to a “farm uniform,” when
told the drawing was done by a farm child. So, the feature itself changed as a result
of new information.

These strategies suggest that subjects were not working from a pre-selected set of
features that were obvious from the stimuli themselves. Different people focused
on different features, and exactly what counted as a feature was rather flexible.
Although a picture might seem detailed at first, later experience could change it to
being thought of as not detailed. In fact, some subjects looked at exactly the same
things and gave different interpretations. One drawing contained a series of dots on
the front of the person’s shirt. A subject who thought the drawing represented a

)

creative child interpreted this as “buttons,” reflecting a detailed picture. Another
subject who thought it might be a city child’s drawing interpreted the same dots as
being a tie. By starting from different expectations, the subjects extracted different
features from the pictures.

Wisniewski and Medin (1994) argued that the analysis of an item into features is
a function of the stimulus itself, prior knowledge, and learning of the category.

People do not view items in a vacuum—they have strong expectations about what
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the features will be. However, those expectations are flexible, and they change with
actual experience with the category. Thus bottom-up and top-down processes com-
bine to determine what features are associated with a category. And when this occurs,
the feature may not be represented as a simple property, like “large” or “blue,” but
it may be a more complicated knowledge structure, such as “detailed, therefore
contains buttons, pockets and shoes.”

Wisniewski and Medin’s article contains a number of arguments that challenge
the usual assumptions by which category learning works. They propose a much
more complex interaction of identifying features and learning the category than is
normally proposed. Indeed, although their article has been published for a few
years, the rest of the field has been somewhat slow to pick up on it, in part because
the complexity of the process they describe. It is difficult to model concept learning
when the features themselves are changing over the course of learning. Furthermore,
one could criticize their study on the basis of ecological validity. To begin with, their
categories did not actually correspond to pictures done by creative/noncreative or
city/farm children (though their stimuli were real children’s pictures and so were
naturally occurring entities, unlike almost all the other experimental stimuli dis-
cussed in this chapter). There might, therefore, be some question as to whether the
same results would be found when the categories were more accurate. In those
cases, how flexible would the features have to be, and how often would they be
revised during learning? Also, the learning situations that Wisniewski and Medin
used were somewhat unusual, at least relative to learning tasks done in most con-
cept experiments. In their Experiment 1, subjects looked at all the items (simulta-
neously) and then provided a rule for the categories. In Experiment 2, subjects were
required not just to learn the categories, but to provide a rule after every example.
These procedures are quite different from the usual categorize-plus-feedback experi-
ment. These are valid concerns, but it would also be a mistake to take the typical
category-learning experiment as a standard, simply because it is familiar to us by
repetition. In the usual experiment, the stimuli are extremely simple (dot patterns or
geometric figures), no information is given about an item other than its category
membership, people go through example after example until they perfectly identify
the categories, and so on. These characteristics are not particularly representative of
real-world learning. Although these techniques have proved useful, it should be kept
in mind that all experiments are to some degree simplifications, and the fact that
Wisniewski and Medin’s study has a different set of simplifications than usual is not
in and of itself a criticism. Nonetheless, it would certainly be useful to have a repli-
cation of this work in other kinds of tasks, with other stimuli, and so on. As with
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any such ambitious project, it is necessary to replicate and extend it to new situ-
ations before its importance can be fully understood.

Since the above was written, an important step in this direction has been taken by
Palmeri and Blalock (2000). Although they used Wisniewski and Medin’s stimuli,
they instituted a more familiar learning procedure and used speeded categorization
judgments as their dependent measure. Half their subjects learned two categories of
drawings as Group 1 and Group 2, and half learned them as drawings by creative
and uncreative children. All subjects were tested on new pictures that matched the
old ones either in terms of concrete features (like curly hair) or abstract features
(detailed). The results suggested that the neutral category names led subjects to learn
concrete features of the pictures, whereas the names referring to creativity led sub-
jects to learn more abstract features. Perhaps surprisingly, these results held even
when subjects were forced to categorize the pictures very quickly—within 500 ms.
As discussed in the section on categorization, these results suggest that the knowl-
edge influenced the way the pictures were encoded, as Wisniewski and Medin would
have expected, rather than a slow reasoning process that operated at the time of
categorization. Further work of this sort, especially using new materials, would be
welcome.

To sum up, then, most work on concept learning has not said very much about
where the object’s features come from. By focusing on very simplified stimuli with
perceptually obvious properties, this question has been largely avoided. But in real
life, the relevant properties of an object or situation may have to be learned in ad-
dition to the concepts themselves. An anecdote may illustrate this (from Clark and
Clark 1977, p. 486). A young boy misbehaved in some way, and his mother told
him, “Young man, you did that on purpose.” Later, he was asked what “on pur-
pose” meant, and he replied “It means you’re looking at me.” Since the boy was
told this when he was caught doing something, he inferred that the phrase referred
to getting caught, rather than to the much more abstract feature of mental intention
that actually determines purposeful actions. Children have to learn this kind of fea-
ture just as much as they have to learn the entire category. Learning the relevant
properties for mental states is a very difficult task (Wellman 1990), in part because
they are not visible. But learning the relevant properties for everyday objects and
events may sometimes be difficult as well.

The work I have reviewed suggests that in learning one category it is very useful
to already know the features of related categories. In other cases, the features are
acquired as a function of category feedback—Ilearning which items are in the cate-
gory involves learning the features peculiar to that category. In still other cases, the
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features themselves may not be simple entities but are knowledge structures them-
selves, in which general knowledge is related to specific properties. This possibility,
which is perhaps the most interesting one, needs further exploration and analysis.

Knowledge in Induction

As described in chapter 8, one of the main functions of categories is induction. Once
you know that something is a dog, you have a good idea that it will bark, it is not
something you sit on, it has legs, it is male or female, it has a liver, and so on. In
their simplest form, such inductions can be read off the concept representation. If
you have represented the concept of dog as having the features: barks, has four legs,
eats meat, is a mammal, and so forth, then when someone tells you that they have a
dog, you can immediately infer that their pet barks, has four legs, eats meat, and is a
mammal. This sort of induction does not require any particular knowledge other
than the properties associated with the category. However, knowledge can be in-
volved in induction in a more significant way. Because this work is covered in some
detail in chapter 8, I will only review it briefly here.

In the standard category-based induction task, one is told that one category (or
item) has a given property and then is asked whether the property would be likely
to apply to another category (or item). So, the question is about the projection of
a novel predicate from one category to another. Researchers have focused on two
determinants of this process: the similarity of the two categories and their typicality
to a more general category (Rips 1975). Knowledge relating the categories or the
property to the categories is not part of the traditional view. Nonetheless, knowl-
edge does influence this process.

Kalish and Gelman (1992) examined cases in which items were in two categories
at once, such as wooden pillows or fur bowls. They asked children one of two
questions about these kinds of items, which were presented as line drawings as well
as being verbally labeled. One question required children to respond on the basis of
the kind of item it was (pillow or bowl), and one required children to respond on
the basis of the material of the item (wooden or fur). For example, children might be
asked to decide which items were soft. Here they should pay attention to the mate-
rial of the item. In another question, they might be asked whether an object should
go into the bedroom or kitchen. Here, they should attend to the kind category. And
in fact, children as young as 3 years old responded correctly for both kinds of
questions. That is, they said that wooden pillows should go into the bedroom but
were hard. Thus, the children knew which categories controlled which features
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(showing a very nice sense of conceptual combination to boot). Even though pillows
are normally soft, wooden pillows are hard.

How did subjects know to use one category to make one kind of induction and a
different category to make the other kind of induction for the same item? Kalish and
Gelman proposed (pp. 1555-1556) that children were using knowledge of domains
to tell them which features were critical to that domain. The reason pillows are hard
or soft is because of the material they are made out of, and wood is by its nature a
hard material. So, although pillows are normally soft, the domain of materials con-
trols this judgment. In contrast, the functions of objects determine where they are
placed in the home, and pillows are largely determined by their function. Thus, even
wooden pillows would be placed in the bedroom.

Ross and Murphy (1999) compared inductions of different kinds of features from
the same categories (see also Heit and Rubinstein 1994, described in chapter 8).
They compared taxonomic categories of foods, such as fruits, to script-based cate-
gories, such as breakfast foods, which are determined by the time, location, or set-
ting in which they are eaten. To do this, they constructed triplets of items: a target
food, a taxonomic alternative, and a script alternative. For example, if the target
food was cereal, then the taxonomic alternative might be noodles (both are breads
and grains), and the script alternative might be milk (both cereal and milk are
breakfast foods, but are not in the same taxonomic categories). Subjects made a
forced-choice induction judgment. They were told that the target food had a certain
property and then had to decide which of the alternatives was more likely to have
that property. Ross and Murphy found that when the property was a biochemical
one (possession of a given enzyme), subjects chose the taxonomic alternative 83%
of the time; when the property was situational (when the food was eaten in a novel
culture), subjects chose the taxonomic alternative only 29% of the time. That is,
subjects preferred to draw inductions based on taxonomic relations for biochemical
properties but based on script relations for situational properties.

This kind of result is a puzzle for most theories of induction, which claim that
induction should depend primarily on the similarity of the categories involved. If
that were correct, the type of property would not matter, yet these studies show that
it does. Ross and Murphy’s (1999) results suggest that subjects are engaged in
complex reasoning, in which they consider not just how similar the categories are
but exactly how they are related and how that relation in turn is relevant to the
property being projected. The induction is considered strong to the degree that sub-
jects can create a story that connects the property in the target category to the pro-
jected category (see also Lassaline 1996; Lin and Murphy 2000, Experiment 9). An
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even more radical effect has been found by Proffitt, Coley, and Medin (2000), who
gave induction problems involving disease susceptibility to tree experts. For exam-
ple, if oaks get a certain disease, would birches also be expected to get it? (They
asked the question in a number of different ways, which 'm not distinguishing.)
Proffitt et al. found that their subjects often did not simply rely on the similarity of
the categories involved but would engage in long chains of reasoning about how a
disease could or could not be transmitted from one type of tree to another. They
referred to presence in the same ecological setting as well as to specific knowledge,
such as how thick the bark is of different kinds of trees. These chains of reasoning
went far beyond the similarity relations proposed by the most popular (knowledge-
free) models of category-based induction.

All these examples, as well as others described in chapter 8, suggest that prior
knowledge and reasoning are heavily involved in category-based induction. This
fact has been hidden in most work in the field because most studies look at the in-
duction of blank predicates that are chosen to be as uninformative as possible, often
using fictitious or unfamiliar properties. In such cases, subjects can only rely on the
overall similarity of categories and similar structural variables. But when the prop-
erties make contact with what one knows (as would almost always be the case in
real life), people apparently use that knowledge to reason about whether the prop-
erty should be projected.

Discussion of Models

This chapter has documented a number of ways that prior knowledge influences
concepts. (And other chapters have reviewed knowledge effects in the context of
their own specific topics, such as conceptual combination, conceptual development,
and word meaning.) Indeed, knowledge appears to influence concepts at all stages
that have been investigated: in identifying and constructing features that form the
conceptual representations, at initial acquisition (in both supervised learning and
unsupervised formation tasks), in categorizing novel examples, and in using con-
cepts to make inductions. Later chapters will extend this list to include conceptual
development and conceptual combination. These phenomena are consistent enough
that a complete theory of concepts will have to explain them, and the effects are
pervasive enough to suggest that it will not be possible simply to tack some knowl-
edge onto a purely empirical theory. The knowledge will have to be integrated into
the theory’s processes of learning and use at various levels. That said, it is not clear
that all the phenomena that are here being called “knowledge effects” form a single,
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coherent class. These effects may reflect knowledge of different sorts, may involve
different interactions of knowledge with the other processes, and may have different
constraints on how knowledge is used. Whether all these effects can eventually be
incorporated into a single model is an empirical question, but one that we are still
far from answering.

As usual, T will now discuss the three main theories’ approaches to these ques-
tions. As will be seen, there is still much left to be answered as to how any of these
theories will explain the results.

Prototype and Exemplar Models

As they are normally presented, neither prototype nor exemplar models have at-
tempted to account for the knowledge effects described above. The problem is that
these models start from a kind of tabula rasa representation, and concept repre-
sentations are built up solely by experience with exemplars. Most of their attention
has been directed toward empirical typicality and learning effects.

For example, in the prototype model (see chapter 3), subjects learn which features
are associated to which categories by keeping a rough count of how often each one
appears with category members. Features that are distinctive to a given category
receive a higher weight than do features that are found in many categories. There
is little need for prior knowledge in this process, as the features are assumed to be
given directly by the stimuli, and knowledge is not necessary to keep track of the
feature count. Similarly, in categorization, an item is compared to the feature list,
resulting in a measure of how closely it matches the category representation. Knowl-
edge is not used here, either, as the comparison process requires only the count of
matching and mismatching features (Smith and Medin 1981).

Thus, the standard prototype model has no particular need for knowledge to ac-
count for the typicality effects that led to its creation, and so it has not incorporated
knowledge as part of its learning and categorization mechanisms. The problem,
then, is that the model cannot account for the data presented in this chapter that
show that knowledge is in fact used. There is nothing in the prototype model, for
example, that says that the shape of the whingelow is more important than its
present location in identifying what kind it is. It does not provide any way by
which features can be constructed, rather than simply observed (Schyns et al. 1998;
Wisniewski and Medin 1994). There is no mechanism by which it can explain why
categories related by a theme are easier to learn or construct than those that are not
(Murphy and Allopenna 1994; Pazzani 1991; Spalding and Murphy 1996; Watten-
maker et al. 1986). In categorization, it does not have any mechanism by which to
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explain why some properties are more important than others that were equally often
present in the learning set (Lin and Murphy 1997; Palmeri and Blalock 2000; Wis-
niewski 1995). It has no way whatsoever to explain how ad hoc categories are
formed, especially since they do not follow the normal rules of family resemblance
(Barsalou 1983). Finally, the prototype model does not explain the effects of induc-
tion just discussed.

The list is quite similar for exemplar models. The major exemplar models
(Kruschke 1992; Medin and Schaffer 1978; Nosofsky 1984) do not have any way
by which features can be constructed or interpreted; the experiments testing these
models have almost always used simple, artificial stimuli with only a few features.
Knowledge has no part in the learning or categorization rules used by these models,
so without some modification, they cannot account for the learning and catego-
rization effects of knowledge reported above.

Exemplar models have not generally been extended to explain induction, so it is
worth considering whether they might be able to account for the results of Kalish
and Gelman (1992), Proffitt et al. (2000), and Ross and Murphy (1999), described
earlier. Suppose that induction from one category member to another involves the
retrieval of similar exemplars. For example, imagine that you are asked whether
property X of cereal is also true for milk or noodles. One way to answer this ques-
tion is to retrieve examples of cereal and of milk and see whether they are similar
(i.e., have the same properties). To the degree that they are similar, then, one might
respond positively to this induction question. Such a rule is parallel to the catego-
rization rule used by the Context Model (Medin and Schaffer 1978) and its descen-
dants, and it would seem to predict many of the data found in classic studies of
induction (e.g., the typicality and similarity effects of Rips 1975—see Osherson et al.
1990). By itself, however, this rule would not explain the knowledge effects shown
here, because it would not predict reversals of inductions from cereal to milk, com-
pared to inductions from cereal to noodles, for different properties. The similarity of
cereal to milk would determine the same induction strength for all properties, and so
this could not change depending on the property as Ross and Murphy (1999) and
Heit and Rubinstein (1994) found. Although the similarity rule could perhaps be
modified to be context-sensitive, it is not clear how to make similarity depend on the
induced property in just the right way, unless one incorporated a reasoning process
of the sort the knowledge approach includes. The ecological and causal-reasoning
processes used by Proffitt et al.’s experts are clearly beyond the scope of this exem-
plar comparison process. So, the traditional exemplar model does not immediately
predict knowledge effects in induction.
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It is clear, then, that the traditional models will have to be augmented or modified
in order to account for all these results. Some progress is being made on this front.
Heit (1994) suggested that exemplar models could incorporate knowledge during
learning by representing knowledge as a number of previously encountered exem-
plars. For example, in his experiment, subjects learned about how many people in
City W were shy and often attended parties. Heit proposed that the subjects already
knew people who are shy or not shy, and who often or seldom attend parties. That is,
they already had some knowledge of how often these features co-occurred. Under the
assumption that exemplars with the expected feature pairs are more frequent than the
unexpected ones (e.g., that shy people typically do not attend parties), Heit found that
an exemplar model could account for his results. This proposal, then, has the advan-
tage of using a standard psychological model to represent both empirical learning and
knowledge effects, although it does address only one form of knowledge influence.

Using exemplars to represent prior knowledge could work in some cases but
seems implausible in others. The above example used a pair of features whose rela-
tion is already known, but sometimes the knowledge accessed is abstract or a gen-
eralization that is inferred from specific examples. For example, I can understand
that a flying squirrel flies (or glides, really) because of the folds of skin between its
body and limbs, because this mechanism is analogous to that used by other flying
and gliding entities. However, other exemplars like birds, planes, parachutes, and so
on, do not have these folds or this exact gliding capability—it is only by analogy or
through a generalization of those exemplars that I can understand this new cate-
gory. Thus, simply having exemplars would not be sufficient to explain the flying
squirrel—a more powerful inferential or abstraction mechanism would be needed.
As a thought experiment, consider the feature pairs: shy-often talks in video-
conferences and shy-often talks in online chatgroups. Are they equally likely? The
first seems much less plausible than the second to me, because I expect shy people to
be more forthcoming when they are not physically present or perceptible to others.
However, I do not have direct experience with shy people in either situation, and so
I must rely on general knowledge to draw that inference, rather than on known
exemplars. As will be discussed below, most representations of knowledge in psy-
chology and artificial intelligence assume that knowledge is about whole classes of
entities rather than about individuals: Wings are useful for flying because of the
properties of wings in general and the laws of aerodynamics in general, rather than
because of the properties of a lot of exemplars. This point is not to deny that Heit’s
proposal could well account for a subset of knowledge effects, but how widely it can
be applied is less clear.”
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Category A Category B

Church Building

Input Features

Figure 6.4

A simplified depiction of Heit and Bott’s (2000) Baywatch model of category learning. The
input features represent properties of the objects, and Categories A and B are the to-be-learned
categories. The prior knowledge (PK) nodes are the already known concepts of church and
office buildings.

In a later paper, Heit and Bott (2000) developed a connectionist model of knowl-
edge effects. They had taught their subjects concepts of buildings reminiscent of
churches and office buildings. The features related to these familiar concepts were
learned significantly faster than those that were unrelated to the themes. They con-
structed a 3-layer connectionist model of this task, in which the input layer was the
features used in the items, the output layer was the two categories, and the hidden
layer contained the prior knowledge (PK) nodes of church and office building. As
shown in figure 6.4, all of the input features were directly connected to the output
nodes, initially at very weak levels; in addition, the input features related to the prior
knowledge were strongly connected to the PK nodes. For example, if an input fea-
ture was ‘“has candles,” it would be connected to the church building node. The
categories, then, could be learned through two routes: direct associative learning
between the input and category (output) nodes, and indirectly through the PK
nodes. (Note that this system is a prototype model, as it represents the strength of
relations between features and categories, rather than configurations of features that
might define an exemplar.)
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During learning, this model learned empirically by associating the input features
to the two categories (e.g., “has candles” was associated to category B). It also
learned that the PK nodes were related to the categories, that category B was like a
church and category A was like an office building. As a result, the model learned the
knowledge-related features better than the neutral features, as the subjects did. “Has
candles” directly activated category B and indirectly activated it through the church
building node, whereas a neutral feature like “near a bus stop” activated its cate-
gory only through the direct route. One might complain that the PK nodes were
somewhat rigged, as they just happened to correspond to the two categories to be
learned. However, Heit and Bott showed that if multiple knowledge nodes were
present, only some of which were relevant to the categories, the model did not be-
come confused. Because only the relevant nodes were consistently associated to the
categories, only their links to the categories were learned; the irrelevant prior con-
cepts had no effect.

This sort of model is a good start for explaining knowledge effects. Although it is
unlikely that PK nodes of exactly this sort are generally available (normally, the
concepts being learned are not as similar to known concepts), one can easily imagine
other kinds of generalizations and relations among features that might be repre-
sented in hidden nodes and that therefore could aid category learning. One possible
problem with connectionist models of this sort, as Heit and Bott (2000) and Kaplan
and Murphy (2000) both note, is that they predict that knowledge will reduce
learning of features that are not related to it: Learning some features comes at the
expense of others. However, this result has not been empirically found in human
concept learning. Surprisingly, unrelated features are learned equally well by sub-
jects who do and do not have prior knowledge (Kaplan and Murphy 2000). This
result is difficult to obtain in connectionist models that use error-driven learning.
(Rehder and Murphy 2001 have recently developed a model that expands Heit and
Bott’s framework by using a more flexible representation of knowledge. It is able to
learn knowledge-unrelated features while simultaneously showing the knowledge
advantages found in experiments.)

Heit and Bott’s (2000) model has considerable promise, then. Ultimately, a com-
plete model of the learning process will have to do more to represent the relevant
knowledge, perhaps through addition of an inferential mechanism of some kind.
Furthermore, this sort of model is focused specifically on the learning of known
features and, like all current models, does not address issues of feature construction,
knowledge in induction, and the like. However, in order to develop a model that
does all these things, we must first have a successful model that does one or two of
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them, and that is the goal for the field at present. Heit and Bott provide a useful
discussion of various ways that knowledge could be incorporated into different
kinds of models, and the interested reader should consult that article.

In short, we are just making a start at building theories and computational models
that integrate empirical and knowledge-based learning. It might be useful to con-
sider what a complete model would look like, so we can see the task ahead of us.
Ignoring both practical and theoretical problems in developing such a system, how
do the current data suggest that knowledge should be integrated into a learning
model? First, an integrated model would have to represent a number of prior con-
cepts at the beginning of the learning task, rather than modeling the learning of one
or two concepts in a tabula rasa. Since similar concepts are a source of features and
feature weights, they need to be present in order to give the new concepts a starting
point. Learners also place special attention on properties that seem likely to be in-
formative. So, in learning about a whingelow, the system must already know about
other mammals in order to know which features to attend to and which general-
izations to make from the observed examples. More difficult to implement, but
probably also necessary would be a form of reasoning or inference engine. Some-
how these models need to be able to use more general knowledge to draw infer-
ences. These may not have to be very difficult or intelligent inferences, but, at the
least, obvious ones such as “astronauts would live in a building in outer space, but
divers would live in an underwater building.” (However, it should be pointed out
that the history of Artificial Intelligence tells us that such inferences are notoriously
difficult to draw, so working models would probably have to confine themselves to
a simple domain with only a small number of facts to deal with.)

Why is this whole reasoning apparatus necessary? Some researchers have sug-
gested that weights on dimensions at the start of learning could represent some prior
knowledge (Kruschke 1993). For example, perhaps one could give greater attention
to shape than color, since shape seems to be a more important dimension for cate-
gory learning. However, this kind of solution will not be sufficient, as different
features are important for different categories (see Keleman and Bloom 1994). It
cannot be a weight on the dimension itself, then, that accounts for this, because the
weight would not change with different categories. (If you did not weight dimen-
sions differently, you might pay a lot of attention to the present location of the
whingelow, because present location is important for baseball positions. Then you
would end up hypothesizing that whingelows are found only in the zoo, or only in
San Diego, because that’s the only place you saw them.) Especially for very new
kinds of categories (space vehicles or very deep sea creatures, for example), the sys-
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tem could not rely on prior feature weights or exemplars but must be able to draw
inferences from more general knowledge. Another problem with simply storing
weights for each feature is that knowledge is also needed to tie together the features
within a category. This can be seen in experiments that contrast the same features
when they can be related together vs. when they cannot (Murphy and Allopenna
1994; Spalding and Murphy 1996; Wattenmaker et al. 1986). Such results obviously
cannot be explained by feature weights, which are the same across conditions. How-
ever, it is also likely that frequently made inferences will be encoded into concepts so
that they do not need to be drawn de novo every time.

General knowledge plus an inference engine could be used again during catego-
rization. Knowledge would provide greater weight to some features of the item be-
ing categorized than to others, even if both were empirically found to be related to
category membership. Furthermore, such knowledge could be used to infer unseen
features (e.g., “that vehicle must have an engine, because it’s moving on its own”). I
should note, however, that the use of knowledge during categorization of well-
learned categories is perhaps the least well demonstrated of the knowledge effects
described earlier. If knowledge influences the learning process so that the represen-
tation of the concept is affected, it is not so clear that one must also access this
domain knowledge during categorization—it could already be incorporated into
the concept (see discussion of categorization above). For example, after seeing the
whingelow, you could have encoded quite a bit about its shape and behaviors, but
not so much about the time of day that you saw it or the number of them in the
cage. If you did so, then when deciding whether another animal is a whingelow, you
would not need to consult domain knowledge to decide whether shape or time of
day are critical, because this information would already be implicit in the concept.
Thus, it is possible that a formal system could get by without using knowledge dur-
ing the categorization process itself, if it is incorporated during learning. Of course,
this consideration would not apply to ad hoc categories (Barsalou 1983), which are
essentially made up on the spot. Here, categorization is clearly a knowledge-intensive
process, but perhaps these cases are out of the range of category-learning models.

The Wisniewski and Medin (1994) results are probably the most difficult for the
prototype and exemplar models to accommodate. The root assumption of these
models is empiricist: They assume that exemplars present their features to the
learner, which then are associated to a category. This observation leads to a repre-
sentation of the category in terms of the observed properties. The Wisniewski and
Medin study undermines this whole perspective, however, by suggesting that the
features are not always present in the observed items but can instead be constructed,
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in part as a function of prior knowledge. Similarly, the work of Schyns and col-
leagues (Schyns et al. 1998; Schyns and Murphy 1994; Schyns and Rodet 1997) has
shown that the category-learning process itself helps to define what the features are.
This makes it very difficult for both the exemplar and prototype views, because the
features that are being associated to the category are a moving target. You can’t
count how often each one is associated to each category (or see which exemplars
have which features) if the features themselves are changing from trial to trial.

How could this sort of effect be incorporated into the formal learning models? If
one allows only a pre-set list of features such as “green,” “square,” “large,” and so
on, then there is no possibility of modifying them or adding to the set. In some
sense, what these effects require is the entire perceptual system to be an input to the
learning module. In Schyns’s experiments, for example, the stimuli are rather am-
biguous entities that could be perceptually divided in a number of different ways.
The learning system needs to have access to the multiple representations constructed
during perception, so that it can select among the possible ones in order to associate
the correct one to the category. If one section of the blob keeps coming up in one
category but not the other, this has to be identifiable as a coherent section in the
perceptual system and then associated to the correct category by the learning com-
ponent. (See Schyns 1991 for a related computational model.)

Even more complex are Wisniewski and Medin’s findings with children’s draw-
ings, which reveal an interaction between the perceptual input and prior expect-
ations of the category. The perceptual system must represent such drawings in a
flexible enough manner that dots on the front of a shirt could be perceived as but-
tons by one subject and as a tie by another—the decision being made by knowledge
that prompted the subjects to look for detail or city clothing. This system would be
extremely complex, though, because not only does the knowledge influence the per-
ceptual identification of properties, learning influences whether these encodings are
maintained. That is, after identifying something as a detailed drawing, when a sub-
ject learns that it was not made by a creative child, he or she might decide that the
drawing was not in fact detailed enough. So, there is a three-way interaction of the
input, the prior expectation, and the feedback.

Unfortunately, very little of this fits in with current formal modeling. For propo-
nents of prototype and exemplar theory, it can only be hoped that when such models
are developed, the learning mechanisms and representations that they have pro-
posed still have a place at the center of the learning process. But it is premature to
say whether that will be the case or not, given that the field seems far from incor-
porating all these effects in any kind of model.
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Knowledge View

There will be little suspense in concluding that something called “the knowledge
approach” is the winner in a chapter entitled “Knowledge Effects.” The phenomena
reviewed in this chapter are exactly the ones that have caused some researchers to
conclude that concept acquisition and use involves prior knowledge to a significant
degree. It would be tedious to review all the phenomena and then point out that
each one seems to require reference to domain knowledge. Therefore, in this section,
I will consider more critically what the knowledge approach is and how it must
handle the variety of effects discussed in this chapter.

As was mentioned in chapter 3, the knowledge approach is still somewhat in-
complete. It has not been instantiated in a computational model to any significant
degree, unlike the exemplar approach in particular. The statement that knowledge is
heavily involved in many aspects of concept acquisition and use (as I have just
reviewed) is now one that has extremely strong support. However, it takes much
more than that statement to make a complete theory.

There are two reactions one could have to the kinds of results discussed in this
chapter. The first, most aggressive approach would be to argue that the empirical
theories are inadequate, since they do not account for the knowledge effects that
have been demonstrated, and therefore they should be rejected. Instead, a new
theory that relies more heavily on knowledge must be developed. This is certainly
one possible conclusion, but at this stage, it seems premature for two reasons. The
first is that the empirical phenomena discussed in other chapters, such as typicality,
basic categories, and exemplar effects are extremely reliable, but they do not require
prior knowledge. Clearly, people can learn categories in artificial and unfamiliar
domains, and it is likely that at least some of the same learning mechanisms are
involved in the learning of categories in knowledge-rich domains. Simply rejecting
the more empirical approaches, then, provides no way of accounting for this com-
monality. Second, no knowledge-based approach has been proposed that could
actually replace the empirical views. There is currently no general model based on
domain knowledge, inference and reasoning, and so on, that can explain the sorts of
results that the prototype and exemplar models have focused on. Given that, rejec-
tion of those models would be premature at this stage.

The second way to respond to the results presented in this chapter would be to try
to fill in the gaps of the more empirical approaches. In the previous section, I argued
that the learning models needed to be integrated with a knowledge base and reason-
ing process that used that knowledge during learning, categorization, and induction.
The knowledge approach, then, could well be assigned the task of providing that
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component of a complete learning model; researchers in this approach should be
saying what kind of knowledge people use, how it influences learning, how people
use it during categorization, and so on. There are many gaps here that need filling.
For example, we do not have anything like a taxonomy of different types of back-
ground knowledge and an understanding of how each type might influence learning
(see Murphy 2000, and Wilson and Keil 2000, for discussion). And different re-
search projects have drawn on different knowledge sources. For example, Watten-
maker (1995) activated knowledge structures by telling subjects that the items
resembled categories that they already knew (see also Ahn 1990; Heit and Bott
2000; Wattenmaker et al. 1986, Experiment 6). In contrast, Pazzani (1991) evoked
knowledge by using a pre-existing causal schema (see also Ahn 1998; Ahn et al.
2000; Rehder and Hastie 2001). Other studies have used categories that were
“thematically related,” in that the properties could all be related to a similar func-
tion or environment (e.g., Murphy and Allopenna 1994; Spalding and Murphy
1999). However, not all of these relations were clearly causal (e.g., arctic vehicles
being white) or any other single type of relation. Although all these studies show the
use of “knowledge,” it is not at all clear that the knowledge involved is the same
kind of thing, or that it is influencing learning in the same way. In short, this is a
promising avenue for exploration.

A similar point could be made about categorization. I discussed above two dif-
ferent ways that knowledge might affect categorizations: (1) indirectly, by changing
the concept representation during learning (i.e., before categorization); or (2) directly,
by activating the knowledge during the category judgment. It is likely that both
effects occur at least some of the time. For example, for fast visual categorization (as
in Lin and Murphy 1997; Palmeri and Blalock 2000), the indirect influence seems
most likely, but for ad hoc categories (Barsalou 1983) and the medical-experiment-
gone-horribly-wrong categorization problems used by Keil (1989) and Rips (1989),
it seems likely that the knowledge is used during the decision process itself. We now
must ask what distinguishes these cases, and what the limits are of each kind of
knowledge use.

Much of the research within the knowledge approach has been devoted toward
showing that knowledge does indeed have an effect and that purely formal models
of categorization are not sufficient. This point has been made very forcefully, and
now it is necessary to go beyond it in providing explicit, detailed accounts of how
knowledge is involved in these processes. More recent research has in fact been
designed to differentiate hypotheses about how knowledge influences concept use
(e.g., Heit 1994, 1998; Kaplan and Murphy 1999, 2000; Spalding and Murphy
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1999; Wattenmaker 1995; Wisniewski 1995). If the critique of those traditional
models of category learning that ignore knowledge is to go forward, however, it will
be necessary for proponents of this view to provide similarly detailed models of their
own. By the same token, proponents of formal theories need to develop their own
models to provide an account of all the phenomena described here. This is in fact
how the most recent proposals of Heit (1994; Heit and Bott 2000) developed.

The question that has yet to be answered is exactly how knowledge changes the
learning process and the resulting concept representation. Early proposals (Murphy
and Allopenna 1994) suggested that the knowledge simply became the category
representation to some degree. For example, once you figured out “Category 2 is
arctic vehicles” (see table 6.1), you didn’t then devote attention to learning the
category’s properties or exemplars, but simply represented the category as arctic
vehicles. On this account, then, knowledge pre-empted empirical learning. But
later findings show that this proposal is clearly wrong—knowledge doesn’t hurt the
learning of statistical properties of the stimuli; in some cases, it may even help it
(see especially Kaplan and Murphy 1999, 2000; Spalding and Murphy 1999). For
example, subjects learn the frequency of features related to knowledge somewhat
better than subjects do who do not have knowledge (Spalding and Murphy 1999).
Theories of concept learning will need to be developed that can explain how knowl-
edge simultaneously (1) greatly speeds category learning, (2) greatly aids learning of
features related to the knowledge, (3) yet does not impair statistical learning of those
features (or benefits it), and (4) does not hurt learning of features unrelated to
knowledge. This is a surprising pattern of results, which is a challenge to all current
theories.

Models from Outside Psychology

One place to look for inspiration on how to incorporate knowledge is the literature
on machine learning in artificial intelligence (AI). More traditional learning algo-
rithms have been called Similarity-Based Learning (SBL), because they learn cate-
gories based on the sharing of properties among items in the same class. These are
analogous to the traditional prototype and exemplar models in psychology. SBL is
contrasted with Explanation-Based Learning (EBL), which is related to the knowl-
edge approach in psychology. In early EBL systems (e.g., DeJong and Mooney 1986),
the computer started out with a bunch of knowledge, which could be thought of
as premises. The system was exposed to a single category member, along with some
kind of description of what the category was supposed to be (e.g., a tool to accom-
plish some function; a treatment for a particular disease). The system then used its
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knowledge to attempt to prove that the object was in fact in the category. The pro-
gram could also generalize the proof so as to specify the range of observable proper-
ties that would satisfy it. This proof then became the representation of the category
as a whole. In this way, the system would not have to go through a new proof with
every new category member that was encountered, and it would not be misled by
idiosyncratic properties of the learning exemplar.

This description may be a bit puzzling to psychologists, because it seems to as-
sume that the system already knows what the category is, or else it could not have
derived a proof, especially after observing only one exemplar. The system knows
about the entire domain and also knows something about the function or goal of the
category itself. (In Ahn, Brewer, and Mooney 1992, for example, subjects were
provided with the purpose of the category before being exposed to the exemplar. In
DeJong and Mooney 1986, the learning program already had a set of knowledge
about human behavior and then had to learn a category from a narrative that
exemplified a particular category of human behavior.) This situation still requires
further learning, because even if one has general knowledge of a category, such as its
function, one must still learn which particular properties are characteristic of it and
be able to identify members based on perceptual properties. However, I think that it
is fair enough to say that EBL models of this sort do not capture the typical situa-
tions in which one is confronted with objects and their category labels, or in which
one has observed a number of objects and then realizes that they form a category. In
most such cases, the learner does not already have a function available for the ob-
ject. Also, learners can and do learn unexpected properties of objects as a result of
induction from multiple examples.®

More recent models, however, have focused on situations that are somewhat
more realistic, or, at least, somewhat more like psychology experiments. For exam-
ple, Pazzani (1991) developed a computer program called Post-Hoc that simulated
the performance in his experiment (described above). Post-Hoc developed hypoth-
eses about the correct category representation by starting from its knowledge and
then looking for relevant properties in the examples. For example, if the program
was trying to learn the category of balloons that would inflate, it would then look
for the properties of being stretched and being inflated by an adult. If a positive ex-
ample had one of those features, it would be incorporated into the hypothesis about
the category. It also had a fairly simple learning mechanism that would fix hypoth-
eses that were found to be incorrect based on later evidence. Pazzani presented evi-
dence that his model did account for important aspects of the human data.

Post-Hoc does have some interesting ideas for how knowledge-based learning
may work, but it is incomplete in a number of respects. First, it only learns classical
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categories in which features are related by conjunction or disjunction. It would find
it very difficult to learn many of the family-resemblance categories used in other
experiments. Second, the model makes the strong claim that knowledge features are
learned to the exclusion of other features (when the knowledge is correctly related
to category membership). However, more recent evidence shows that people learn
other features as well. For example, Kaplan and Murphy (2000) found that provid-
ing subjects with knowledge did make them focus more on the knowledge-related
features. However, their learning of other features was exactly the same as that of
subjects in the neutral group, and was fairly good overall. Wisniewski (1995) and
Heit and Bott (2000) have also demonstrated learning of features unrelated to cate-
gory knowledge. As noted earlier, this result is a puzzling one for many proposals
of how knowledge influences learning, because it requires that knowledge speed
learning and help some features but that the other features still be learned. This
seems to be a realistic aspect of concept learning, since people learn not only
knowledge-related features of everyday categories (e.g., birds have wings in order
to fly), but also features that are not clearly related to that knowledge (e.g., birds
have beaks).

IOU was designed by one of the originators of EBL approaches to learning, Ray-
mond Mooney, to address some of these limitations of a purely knowledge-based
approach. Mooney (1993) pointed out that prior theory can typically only explain
some proportion of a concept’s features, and that some other mechanism will be nec-
essary to discover its other features. In the IOU (Induction Over the Unexplained)
system, domain knowledge is first used to explain as much of the observed examples
as possible. However, if this explanation does not result in correct categorization, it
is augmented by an empirical learning system that learns additional features.

For example, suppose the system were trying to learn about cups, and it had the
idea that cups are drinking vessels, but didn’t know anything else about them
(Mooney 1993). It would first attempt to explain as many features as possible based
on its knowledge and the drinking vessel function (as in the usual EBL system).
Now, some features of observed cups could be easily explained (cylindrical shape),
but others might not be so easily explained, by the system, at least (their typical
width and height). Furthermore, the explanation of a drinking vessel might pick out
not only cups but also bowls and glasses. Therefore, the system must be exposed to
cups and contrast categories, labeled with their category membership, in order to
learn to separate cups from related items on an empirical basis. The explainable
features are ignored in the empirical process, and only the unexplained ones are
submitted to it. In one version of the program, the empirical learning component
notices all the (unexplained) features that are common to the observed examples.
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Mooney (1993) reviews how the model can explain aspects of psychological
experiments, such as those of Wisniewski (1995) and Ahn et al. (1992). Indeed, the
model is an important step in unifying empirical and knowledge-based learning.
Like other EBL systems, it has the limitation that one must already have some de-
scription of the category to allow one to explain the observed features. It is not clear
if the model will avoid the problems I raised for the Post-Hoc model. For example,
it also seems to require that the explainable features be present in all items. IOU
can certainly explain giving more weight to knowledge-related features, which are
learned first; and it also accommodates the learning of purely empirical features.
The model is not designed to accomplish unsupervised learning, but it does not seem
impossible to adapt it to such a situation. Thus, this model has some promise, if it
can overcome the issue of having to know the goal or other information about the
category in advance. Although it does not address the more difficult issues of feature
construction and induction, that is beyond any model at this time.

Al models hold promise for helping us understand the interaction of knowledge
and empirical learning processes. Their main shortcomings as psychological accounts
are twofold. First, they are sometimes not tested on psychological data but rather
on in-principle problems, to see if they form reasonable categories. (This is less
true with the particular models I have been reviewing in this chapter, which have
addressed at least some psychological data.) Second, the models often have some
assumptions that are psychologically implausible, for example, a reliance on predi-
cate logic and classical rules in the knowledge component. These Al proposals are a
good jumping-off point, but more specifically psychological theories of the interac-
tion of knowledge and empirical learning still need to be developed.

Perhaps it is worth pointing out that these Al approaches all appear to be proto-
type models. That is, they produce descriptions that apply to the category as a
whole, rather than learning individual exemplars. This is probably based on the be-
lief that knowledge tends to be about whole categories rather than individual enti-
ties, and it is most convenient to represent it that way. In any case, these models
therefore carry whatever positive or negative baggage that prototype models have in
general.

Future Directions

I have been emphasizing the development of more complete models in this discus-
sion, but there is still much psychological research to be done in order to increase
our understanding of how knowledge effects work, and how they are integrated
with empirical learning. At the present moment, the most critical question to my
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mind is the issue of how the learning process itself is changed by prior knowledge
and how that in turn leads to changes in the category representation (see discussion
at the end of the “Knowledge View” section above). The knowledge and statistical
learning are apparently interacting in some way, but it is not obvious how.

As remarked in a number of places, there also needs to be further work done on
knowledge in categorization, as the number of studies on this is somewhat slim, and
important theoretical alternatives need to be distinguished. And finally, the influence
of knowledge on feature construction is a fascinating question that has been little
studied since Wisniewski and Medin’s (1994) groundbreaking work.

In sum, there is still much to discover beyond the initial “does knowledge make a
difference?” questions that motivated the earliest studies on this topic.
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7

Taxonomic Organization and the Basic Level of

Concepts

The people, objects, and events that we encounter every day do not each fit into a
single category. Wilbur might simultaneously be a bulldog, a dog, a mammal, and an
animal. At various times, he might be considered a pet, a friend, a guard dog, or even
a weapon. People fit into many different categories such as being a woman, a reporter,
a political conservative, a Yankees fan, a New Yorker, an African-American, a
cousin, and so on. We identify people in terms of their gender, ethnicity, profession,
and a host of social roles that our culture provides. We do not feel that one category
is the only one or the best one (“Are you a woman or a reporter?”), though different
categories are most relevant or useful at any given time. The same is true for events,
as the same event might be thought of as seeing a comedy, going to the theater,
spending an evening out, getting entertainment, going on a date, or (hopefully not)
a fiasco. In some cases, the object or event can be viewed as simultaneously and
equally being in these categories (e.g., Wilbur is both a dog and a mammal), and, in
other cases, there is a shift of perspective involved (e.g., Wilbur is both a dog and a
friend; the event was a date and a fiasco). Either way, most things are not solely in a
single category but can be placed into a large number of different categories. The
question arises, therefore, of how these categories are coordinated in our memories
and behaviors. How do we decide which of these categories to use on any occasion?
And is there a preferred category by which we think about any one thing?

In this chapter, I will not address all of the possible ways in which an object can
be categorized. Instead, I will focus on one particular kind of category organization:
the hierarchical structure of categories. In the above example, the categories bull-
dog, dog, mammal, and animal form a hierarchy or taxonomy—a sequence of pro-
gressively larger categories in which each category includes all the previous ones.
That is, mammals include all dogs, which include all bulldogs. The hierarchical

This chapter owes a considerable debt to an earlier essay written with Dr. Mary Lassaline
(Murphy and Lassaline 1997). I thank Mary for her contribution.
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organization, which will be described in more detail shortly, has been suggested as a
particularly important way of organizing concepts. In fact, when people are asked to
categorize an object in a neutral setting without further instructions, they are very
likely to provide one of the hierarchically organized categories, like bulldog or dog,
rather than categories like friend, drooling animal, or something to be rescued in
case of a fire. Thus, these taxonomic categories may be particularly important ones
for thought and communication.

In addition to identifying hierarchical organization, psychologists have noted that
one particular level of specificity of categories is important. For example, people
normally call a Siamese cat “a cat,” rather than calling it “a Siamese” or “an animal.”
There is something about the category cat that makes it just the right level of iden-
tification. Considerable effort has been expended to identify this especially useful
level, called the basic level of categorization, in a number of different domains. This
chapter presents the evidence for such a privileged level of categorization, along
with explanations for what gives the basic level its advantages.

Hierarchical Structure of Categories

In order to illustrate the hierarchical structure of categories, I will refer to a category
structure in the long-term memory of a fictional person, Rachel, shown in figure 7.1.
To begin, we need to establish some terminology: The categories that are higher in
the hierarchy are superordinate to the lower-level categories; the lower-level cate-
gories are subordinate to the higher-level ones. Note that some parts of the hierarchy
are “deeper” than others, that is, have more levels. For example, Rachel knows two
kinds of dogs but no kinds of deer; therefore, the hierarchy is deeper under the dog
category. Finally, I should note that in order to save space, I have given each cate-
gory only two subordinates. However, this is not an actual rule of hierarchies. In
fact, Rachel likely knows many more kinds of animals and mammals than are
shown in figure 7.1.

A hierarchy is a kind of network. That is, it has nodes (categories) connected by
relations (indicated by lines in figure 7.1). However, a hierarchy is a special kind of
network. To begin with, the only relation allowed between category members is the
set inclusion relation. For example, the set of animals includes the set of fish, which
includes the set of trout, which includes the set of rainbow trout. Set inclusion is
sometimes called the “IS-A” relation (Collins and Quillian 1969), because the sub-
ordinate category “is a” superordinate: An oak is a tree, and a tree is a plant. In
addition, for a network to be a hierarchy, any category can have only one immedi-
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A simplified conceptual hierarchy. The lines represent IS-A links connecting concepts to their superordinates or subordinates.
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ate superordinate; no node in figure 7.1 could have two lines leading to it from
above. For example, deer can have mammal as its immediate superordinate, but it
can’t also have fish as an immediate superordinate.

The nature of the IS-A relation is also important in determining the properties of
hierarchies. First, the IS-A relation is asymmetric. All dogs are animals, but all ani-
mals are not necessarily dogs. Second, the category relations are transitive: All pines
are evergreens, and all evergreens are trees; therefore, all pines are trees. The tran-
sitivity of category membership leads to a similar transitivity of property ascription,
called property inheritance. Every property true of the members of a category is also
true of the category’s subordinates. For example, suppose that all animals have
blood. If this is true, then all mammals must have blood, and therefore all dogs have
blood, and therefore all bulldogs have blood. Bulldogs, then, inherit the properties
of dogs, and dogs inherit the properties of mammals. Property inheritance is directly
related to the set-inclusion nature of the links. It is because all bulldogs are animals
that the properties of animals must also apply to bulldogs.

These properties illustrate some of the power of hierarchical descriptions. If
Rachel learns something about animals in general, she can now generalize this to all
of the many categories that are under animal in the hierarchy. Or if she learns that a
chow is a kind of dog, she can now generalize everything else that she knows about
dogs to chows. By being able to place a category into its proper place in the hierar-
chy, one can learn a considerable amount about the category. So, even if Rachel has
never seen a chow, she can assume that they have blood and bark—that they have
all the properties common to dogs and other animals. Clearly, this is an important
ability, since it allows one to immediately access knowledge about new entities that
one hasn’t had direct experience with.

Much of this section of the chapter will be devoted to discussing whether people
really have and use such hierarchies. In order to discuss that, we need to specify
what exactly counts as evidence for this hierarchical structure of concepts. Much
work in developmental psychology has formed a very stringent set of criteria for this
ability, based on the work of Piaget (Inhelder and Piaget 1964). However, Piaget’s
assumptions were based on theories of logic rather than empirical observations of
how people use concepts, and so they seem in retrospect to be too stringent. For
example, Piaget believed that if Rachel knows that all terriers are dogs, then she
should be able to answer questions of logic and numerical reasoning of the sort
“Are all dogs terriers?” and “Are there more terriers or more dogs?” Perhaps not
surprisingly, Piaget and other researchers found that young children could be quite
bad at answering such questions.! However, the uses of hierarchies that I described
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above do not necessarily require people to be able to answer such questions. For
example, a child (or adult, for that matter) might not be able to reason about the
number of bulldogs, dogs, and animals, but could still understand that if an animal
has blood then a bulldog must also have blood.

What then, should constitute knowledge of a hierarchy and understanding of its
relations? Markman and Callanan (1984) tentatively proposed that someone be
able to identify an object at two different levels of categorization, for example, as a
chair and as furniture. However, they then rejected this proposal, because such a
person might not fully understand the inclusion relation, that all chairs are furni-
ture. Perhaps the person only knows these two categories as independent kinds of
groupings. In particular, they argue that the person should demonstrate an under-
standing of the asymmetry and transitivity of the relation.

For our purposes, the question of whether people understand the relation of class
inclusion may be somewhat too strict. It is important to discover whether people
organize their concepts in hierarchies that have these properties. However, it is
possible that people do so but do not overtly understand the nature of these rela-
tions. For example, people may be able to infer that if animals have blood then
bulldogs have blood—Dbut not vice versa—without being able to articulate an under-
standing of the IS-A link or its asymmetry. The main criteria I will focus on will be
the transitive nature of class inclusion and the corresponding inheritance of prop-
erties. That is, if someone understands that all bulldogs are dogs and all dogs are
animals, then he or she should be able to infer that all bulldogs are animals. And if
this is understood, then knowing that all animals breathe should allow one to infer
that all bulldogs breathe. Someone who correctly represents this relation will not
make property ascriptions with certainty in the opposite direction. That is, if all
bulldogs have an omentum, it does not follow that all animals have an omentum.
(However, it should be noted that for some properties such an inference could be
reasonably made, even though it is not logically true. For example, if all bulldogs
have a gene involved in the formation of the lungs, one might infer that all dogs or
even all mammals have the same gene—see Osherson et al. 1990—in part because
one does not expect such properties to vary much across related species. This is one
reason why I am less concerned with the asymmetric aspect of class inclusion than
Markman and Callanan 1984, were.) As will be seen, few of the studies of adults
actually test subjects very carefully on whether they understand these relations in
detail. This question is much more critical for the developmental concerns addressed
in chapter 10. Instead, adult studies have focused on the issue of transitivity of cate-
gory judgments, such as deciding whether a dog is an animal.
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Psychological Status of Hierarchies

Hierarchical structure appears to be a universal property of all cultures’ categories
of the natural world (Berlin 1992). However, what is not clear is exactly how hier-
archies are mentally represented. There are two main possibilities, which are not
mutually exclusive. One possibility is that people’s concepts are structured in mem-
ory much as in figure 7.1. That is, perhaps concepts are connected in hierarchical
networks, and the connections are used in order to make inductive inferences and
categorization judgments as described in the previous section. For example, figure
7.1 could illustrate the actual concepts that Rachel knows, with associations be-
tween the concepts indicated by the lines. In addition to what is shown in figure 7.1,
there would also be properties associated with each concept. For example, perhaps
linked to evergreens is the property “has needles,” and linked to oak is the property
“has lobed leaves.” In this respect, then, the hierarchy is literally represented as a set
of connections in memory, which would be consistent with many models of memory
that argue that items are linked in large networks (e.g., Anderson and Bower 1973;
Collins and Loftus 1975; Collins and Quillian 1969; Rumelhart and McClelland
1986). It is necessary to distinguish different kinds of links in order to indicate the
hierarchical structure. The IS-A links (shown in figure 7.1) are the ones that specify
the hierarchical structure, whereas other links would specify properties known
about each concept, and still other connections might be made between related
concepts or properties. But it is the IS-A links that constitute the hierarchical struc-
ture itself.

According to this view, the network would be used to make various category
decisions. For example, in deciding whether a bulldog is an animal, one would
locate bulldog in memory and trace upwards in the hierarchy until reaching the
node for animal. At this point, the sequence of IS-A links would indicate that a
bulldog is indeed an animal. Furthermore, information true of all animals would be
stored with the animal concept, and only information distinctive to bulldogs would
be stored at the bulldog node (Collins and Quillian 1969; Smith 1978). This as-
sumption provides a kind of cognitive economy. By representing “breathes” with
the animal node, one does not need to store the fact that mammals breathe, fish
breathe, reptiles breathe, dogs breathe, deer breathe, bulldogs breathe, irish setters
breathe, and so on. One does not need to store these individual facts because hier-
archies provide for the inheritance of properties.

The second possibility for how hierarchies are psychologically represented is that
the hierarchical structure of concepts results from a kind of reasoning process rather
than being explicitly stored in memory. Suppose that all Xs are Ys, and all Ys are
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Table 7.1.

Hypothetical features of categories that form hierarchical sets.

Category Possible Hierarchical Feature Set

Animal moves, breathes

Mammal moves, breathes, has fur, gives birth to live young

Dog moves, breathes, has fur, gives birth to live young, barks, has 4 legs

Zs. Now if I tell you that all Zs have six fingers, what does that tell you about Xs? A
little thought will reveal that Xs must also have six fingers, since all of them are Zs.
Thus, even though you clearly did not have the hierarchy stored in memory (before
reading this paragraph), you could use the information about category inclusion to
come to the correct answer. This suggests the possibility that people may not have a
hierarchy directly represented in their heads but may still be able to infer category
inclusion and then draw the appropriate inferences (see Randall 1976) through a
reasoning process.

If people did not have the hierarchy stored in memory, how would they know
that bulldogs are dogs and dogs are animals? One suggestion (Rips, Shoben, and
Smith 1973) is that this information can be computed based on the properties that
are known of a category. Recall that one version of the prototype view discussed in
chapter 3 said that people learn properties that are generally found in the category
members. So, to represent dogs, one would have a list of weighted features that are
generally true of dogs (I will ignore the weighting here). In a hierarchy, the proper-
ties that are generally true of a category are also true of its subordinates; as a result,
the more specific categories have the same features as the more general categories,
with one or more additional features. Table 7.1 illustrates this. The right column
presents the properties (or features) Rachel knows about each category in the left
column, animal, mammal and dog (clearly, this is just an illustration—Rachel knows
many more things about these categories). As one goes to more specific categories,
the list of known features only increases. A subordinate has all the properties of
its superordinate, plus some others that distinguish it. So, bulldogs have all the
properties of dogs as well as some properties distinctive of bulldogs.

This example illustrates how one can look at the properties that are known of
two categories and make a judgment about whether they are hierarchical. If X’s
features are a subset of the features of Y, then X is a superordinate of Y. For example,
the features of animal are a subset of the features of mammal in the right column of
table 7.1, and so animal is a superordinate of mammal. (It may be counterintuitive
that fewer features means a bigger category, but remember that as more and more
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features are specified for a concept, it is being made more specific, and more objects
are being ruled out because they don’t have all the features.) If X has all the features
of Y, plus some additional features, then X is a subordinate of Y. For example, dog
has all the features of animal, plus some additional ones, and so it is a subordinate
of animal. If X and Y have the same features, then they are the same category.?
According to this view, then, we do not need to have IS-A links stored in memory—
all we need to know is the properties of the category members, and we can infer the
set inclusion relations from them. Note that this approach does not have cognitive
economy, as features like “moves” are represented separately in each category.

In short, the category hierarchy could either be prestored or computed (Smith
1978). If it is prestored, then our memory is a network of IS-A links like that shown
in figure 7.1. If it is computed, then hierarchical relations are not directly stored in
memory but are calculated based on the properties of each pair of categories. In the
1970s, many experiments were conducted to discover which of these accounts of
conceptual structure was most accurate (e.g., Chang 1986; Collins and Quillian
1969, 1970; Glass and Holyoak 1975; McCloskey and Glucksberg 1979; Rips,
Shoben, and Smith 1973). Unfortunately, these experiments were not entirely con-
clusive. Part of the problem is that it is necessary to make further assumptions about
what memory structures and processes are used in any particular experimental task.
Since neither theory completely accounted for all of the observed data, each was
modified in order to be more complete. The result was that it became difficult to tell
the two views apart. I will review here three relevant phenomena that were used to
try to distinguish these two views. For readers wishing more information, the review
in Smith (1978) is excellent.

If concepts are represented in a hierarchy of the sort shown in figure 7.1, then
accessing conceptual relations should require one to use these hierarchical links. For
example, deciding that a pine is a tree, one should first note that pines are evergreens
(crossing one IS-A link) and then note that evergreens are trees (crossing another
IS-A link). Because of the transitivity of set inclusion, this indicates that pines are
trees. If it takes a certain amount of time to cross each IS-A link, Collins and
Quillian (1969) reasoned, one could predict the response time to judge the truth or
falsity of sentences: Subjects should be faster at verifying “A pine is an evergreen”
than “A pine is a plant,” because the former involves fewer IS-A links than the
latter. Similarly, people should be faster at identifying “An evergreen is a plant”
than “A pine is a plant.” In general, the more IS-A links that need to be traversed in
order to verify the sentence, the longer it should take people to verify that it is true.
(Similar predictions can be made for false sentences such as “An evergreen is an
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oak,” but they are more complex.) Because of the assumption of cognitive economy,
one can predict that property questions should also take longer when more IS-A
links are involved. For example, “A pine uses photosynthesis” requires one to infer
that a pine is a plant (traversing many IS-A links) and to recall that all plants use
photosynthesis. In contrast, “A pine has needles” requires only going up one IS-A
link, to the evergreen node. Collins and Quillian found evidence for these predic-
tions. When a sentence required traversal of only one IS-A link, subjects were faster
to verify the sentence than when it required traversal of two links—both for cate-
gory decisions and for property statements. This supported the notion that a taxo-
nomic tree is indeed stored in memory.

Other researchers suggested a different explanation for such results, however.
They argued that if people had stored mental descriptions of each category, cate-
gories closer in the taxonomic tree would generally have more similar descriptions.
For example, as table 7.1 shows, dog shares many more features with mammal than
it does with animal. If subjects were using feature lists to infer category relations,
perhaps this similarity of the category representations could explain the effect that
Collins and Quillian found.

Rips, Shoben, and Smith (1973) introduced a new factor, typicality, into the sen-
tence verification paradigm. They compared category members that were more or
less typical or representative of a superordinate category—for example, “A robin is
a bird” vs. “An ostrich is a bird.” Both judgments would require one IS-A link to be
traversed (i.e., both robin and ostrich would be directly connected to bird as a
superordinate), and so both should take about the same amount of time to evaluate.
However, Rips et al. found that the sentences including typical terms, such as robin,
took less time to verify than those including atypical terms, such as ostrich or goose,
as reviewed in chapter 2. Rips et al. also found that for some items, people were
faster at verifying category relations that crossed two IS-A links than a less typical
category relation that crossed only one IS-A link. For example, people might be
faster to verify “A dog is an animal” than “A dog is a mammal,” because dog is a
more typical animal than mammal. These results are inconsistent with the taxonomy
represented in memory, as in figure 7.1, since it is impossible to verify that a dog is
an animal without first going through the mammal category. Furthermore, the fea-
ture model could explain the typicality effect under the reasonable assumption that
atypical members have fewer features in common with the category than typical
members do (Rosch and Mervis 1975; see chapter 2).3

Another problem for the pre-stored view of hierarchies is cases of intransitivity.
As described in chapter 2, Hampton (1982) has shown that people do not always
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follow the rules of transitivity that are found in a strict hierarchy. For example, his
subjects verified that a car seat was an example of chair. They also agreed that chair
is an example of furniture. But they denied that a car seat was a kind of furniture. If
people were simply tracing the links in the IS-A hierarchy, they would not have
denied this relation, since subjects did agree that each individual link was correct.
However, intransitivity is compatible with the view that hierarchical relations are
computed, with a few added assumptions. Car seat shares some features with chair
(e.g., having a seat) but perhaps not very many, since it is not very typical. Similarly,
chair shares some features with furniture, but probably different features than car
seat shares with it (e.g., most furniture does not have a seat). As a result, a car seat
may share very few features with furniture, and so subjects may not judge that it is a
kind of furniture (see Hampton 1982, and chapter 2 for discussion). Randall (1976)
found similar intransitivities in biological categories of a number of different cul-
tures. Osherson et al. (1990) showed that subjects will make what they called an
inclusion fallacy in inductive arguments. People believe that the argument “Robins
have an ulnar artery, therefore all birds do” is stronger than ‘“Robins have an ulnar
artery, therefore ostriches do.” If subjects believed the first argument, then by tran-
sitivity, ostriches should have an ulnar artery too, and so they should believe the
second argument at least as much. But they don’t, suggesting a failure of transitivity
in reasoning about hierarchies.

Perhaps the greatest problem for the pre-stored view (and, indeed, the view that
hierarchies are critical to conceptual structure) was found by Sloman (1998). He
tested subjects on simple one-step logical inferences such as:

All metals are pentavalent.
Therefore, all iron is pentavalent.

Subjects had to rate the probability that the conclusion was true, assuming that the
premise was true. To be sure that the results were not influenced by subjects’ igno-
rance (conceivably some of them might not know that iron is a metal), he only used
the probability ratings of subjects who said that the conclusion category was in-
cluded in the premise category. Surprisingly, Sloman found that subjects did not rate
the probability of the conclusion category as 1.0. Furthermore, Sloman (1993)
found that subjects felt that arguments with typical items were stronger than argu-
ments with atypical arguments, even though both were logically valid according to
taxonomic rules. For example, the argument

Birds have an ulnar artery.

Therefore robins/penguins have an ulnar artery.
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was judged as stronger when robin rather than penguin was used in the conclusion.
But both should be maximally strong, since all robins and all penguins are birds.

Sloman (1998, p. 28) argued that people do not store and use hierarchies in the
way envisioned by Collins and Quillian: “Inclusion relations are part of the set of
rules that we can apply given the right conditions; not the set of relations that com-
prise memory structure.” Instead, he argued that subjects compute the similarity (or
typicality) of one category to its superordinate, and they are willing to draw infer-
ences from one to the other to the degree that this similarity is high. This is clearly
more consistent with the computed rather than the pre-stored view.

In my view, the feature models, which say that hierarchies are computed rather
than prestored, have the edge in this battle (e.g., see McCloskey and Glucksberg
1979). The simplicity and elegance of a hierarchy like that found in figure 7.1 does
not seem to be a property of human memory, as Sloman (1998) has demonstrated.
Findings of typicality effects, intransitivity of class inclusion, and evidence from RT
experiments all pose problems for the stored hierarchy view. People do not strictly
follow cognitive economy in a way that organizes the information in memory so
nicely. As I warned at the outset of this discussion, however, the evidence in this
area is not entirely decisive. A list of features may also be insufficient to account for
all the data. At least some category relations may be explicitly learned and repre-
sented. For example, children may learn that whales are mammals and store this
fact explicitly in memory (Glass and Holyoak 1975)—if not in a network (like in
figure 7.1), then perhaps as a feature of the concept. That stored fact could be used
to help them answer questions about whales, rather than doing a comparison of the
features of whales and mammals. In fact, storing that relation may be necessary,
since whales are so different from most mammals that a feature comparison might
not give the correct result. It seems most likely that some category relations are di-
rectly learned and stored (those that are not obvious, like the whale-mammal kind),
whereas others are computed as needed. Although perhaps inelegant, this kind of
mixed model may be the best explanation of the jumbled set of facts that people
know about the world. Indeed, later versions of network models have allowed many
violations of hierarchical structure and cognitive economy, taking on some of the
assumptions of the feature models (e.g., Collins and Loftus 1975). Unfortunately,
mixed models of this sort are very difficult to test, since they have different possible
ways of representing any given piece of information one might test.

This somewhat confused state of current theory should not blind us to two im-
portant generalizations. First, people are able to learn and use taxonomic relations
in order to draw inferences even if they are not perfectly logical in doing so. Second,
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people are able to reason taxonomically about novel materials that have not been
previously stored in memory (as in the “All Xs are Ys” kind of example). This is
useful for generalizing new facts about one category to its subordinates. Without
such an ability, learning facts about the world would be much more onerous. In the
next section, we’ll discuss some important distinctions that have been made about
different levels in the taxonomy.

The Basic Level of Categorization

As described earlier, any object can be thought of as being in a set of hierarchically
organized categories, ranging from extremely general (e.g., entity) to extremely spe-
cific (e.g., eighteenth-century French upholstered dining room chair). An unknown
object is most likely to be a member of a maximally general category, because
members of general categories occur with greater frequency than do members of
more specific categories. For example, there are more living things in the world than
there are cats. Therefore, classification at the most general level maximizes accuracy
of classification. Maximally specific categories, on the other hand, allow for greater
accuracy in prediction than general categories. Given that something is a cat, you
are able to predict more about it (its behavior, its appearance, its tendency to wake
you up in the middle of the night when it knocks over a glass) than if you know only
that it is a living thing (it might or might not have gills, produce leaves, or drink
milk). Of all the possible categories in a hierarchy to which a concept belongs, a
middle level of specificity, the basic level, is the most natural, preferred level at
which to conceptually carve up the world. The basic level* can be seen as a com-
promise between the accuracy of classification at a maximally general level and the
predictive power of a maximally specific level.

Initial Studies of the Basic Level

Roger Brown (1958a) first noted that people prefer to use a consistent middle level
of categorization in speech. He pointed out that parents speaking to their children
tend to use the same short, frequent names for things. For example, a parent might
call a bulldog a dog or doggie, rather than an animal or bulldog. Brown proposed
that parents use category names at a level that “anticipates the equivalences and
differences that will need to be observed in most ... dealings with ... an object”
(p. 16) and only supply a different name “in order to identify an immediately im-
portant property of the referent” (p. 17). For example, the name chair indicates that
an object has a seat, a back, and legs, and is used to sit on, but the new chair or the
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good chair is in a different class, indicating that the child should treat it with care
and probably not sit on it.

It may be that the psychologically basic level of categorization is a reflection of
discontinuities in the world, suggesting a connection between the structure of people’s
concepts and the structure inherent in the world (see Malt 1995). Berlin (1992;
Berlin, Breedlove and Raven 1973) studied folk classification by following native
speakers of the Tzeltal language (spoken by Mayans in Mexico) through the jungle
and asking them to name various plants and animals they came upon. He found
that Tzeltal speakers tended to name plants and animals at a single level of scientific
classification, that corresponding to the genus (pine, bass), rather than to a more
specific (white pine, black bass) or to a more general (tree, fish) level. According to
Berlin, people across all cultures have this same basic level, the genus. This proposal
may be too rigid, however. For people who lack experience with a domain, a higher
level is basic. For example, urban dwellers treat the life form—in this case, tree—as
basic, rather than the genus, such as maple or elm (Dougherty 1978; Rosch et al.
1976), presumably because of lesser amounts of interaction with the natural envi-
ronment (though see Coley, Medin, and Atran 1997). Second, people with extensive
training may treat a more specific level as basic. I discuss changes in categorization
with expertise in a later section.

In a series of highly influential studies, Eleanor Rosch and her colleagues (Rosch
1978; Rosch et al. 1976) developed a number of operational definitions of the basic
level. First, the basic level of object categories was shown to be the most inclusive
level at which category members possess a significant number of common attributes.
When subjects were asked to list attributes possessed by categories at the super-
ordinate, basic, and subordinate level (e.g., clothing, pants, and jeans, respectively)
they only listed a few attributes for superordinate categories, and listed significantly
more for both basic and subordinate categories. The number of attributes listed for
subordinate categories was only slightly more than the number listed at the basic
level. Subjects listed different kinds of attributes at the different levels, as well. The
most frequent kind of attribute listed for superordinate categories was functional
(e.g., keeps you warm, you wear it). Subjects listed noun and adjective properties at
the basic level (e.g., legs, buttons, belt loops, cloth) and additional properties listed
at the subordinate level were generally adjectives (e.g., blue).

In a second study, Rosch et al. found that basic-level categories are the most in-
clusive categories for which highly similar sequences of movements are made to
category members. In this study, subjects were asked to write down the movements
they make when interacting with objects that belong to superordinate, basic, and
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subordinate categories. As with the attribute listing study, subjects listed many more
movements for basic and subordinate level categories (e.g., for pants: grasp with
hands, bend knee, raise and extend leg, and eight others) than for superordinate
categories (e.g., for clothing: scan with eyes and grasp). Similar results were obtained
when subjects actually performed the movements associated with each category.

Additional studies were directed at determining the visual similarity of objects at
different levels. Rosch et al. found that objects within basic and subordinate level
categories had shapes that were more similar than objects within superordinate
categories. They determined this by tracing the shapes of pictures of objects, and
for pairs of shapes, computing the ratio of the area the two shapes had in common
to their total areas. Furthermore, when the pairs of shapes were averaged to create
a single shape, subjects could easily identify averages from the same basic and sub-
ordinate level concepts but often could not identify averages of superordinate con-
cepts. These techniques are rather low-tech by current standards. They also involve
a number of difficult assumptions, such as finding corresponding views of different
objects. For example, a head-on picture of a cat would not be visually similar to a
picture of a curled-up cat. And what views does one use to compare the picture of
the cat and sock? Nonetheless, these studies at least demonstrate the intuition that
members of basic-level categories share visual properties.

Rosch et al. (1976) concluded, then, that members of basic-level categories are
similar to one another, and members of subordinates are only slightly more similar
to one another. This finding has implications for psychological processes involving
basic and subordinate concepts. For example, categories that have similar shapes
should be easy to mentally represent as images. Rosch et al. tested this idea by pre-
senting subjects with a category name and then asking them to identify a briefly
presented picture of an object in that category embedded in visual noise (to make it
harder to identify). Basic and subordinate level names helped identification more
than superordinate names, suggesting that subjects can construct a mental image
representing basic and subordinate categories, but not superordinate categories. In
a related study, subjects were faster at verifying that a picture of an object was a
member of a basic-level category than they were at verifying category membership
for either subordinate or superordinate categories. For example, after hearing a cate-
gory name and seeing a picture of a kitchen table, subjects were faster at verifying
that the picture was a table than they were at verifying that the picture was furni-
ture or a kitchen table. This result has been replicated in many other studies (e.g.,
Jolicoeur, Gluck, and Kosslyn 1984; Murphy and Brownell 1985; Murphy and
Wisniewski 1989; Smith, Balzano, and Walker 1978). Finally, Rosch et al. found
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that people almost exclusively use basic-level names when asked to name pictures of
objects. When shown a picture of a dog they call it dog (as I just did) rather than an
animal or bulldog. In fact, subjects used basic-level names 1,595 times in the exper-
iment, subordinate names 14 times, and superordinate names only once! There is
evidently a very strong preference for the basic level. (For whatever reason, later
studies have not found such a strong preference. Lin, Murphy, and Shoben 1997
found about 72% basic-level responding, with virtually all the remainder being sub-
ordinate names, similar to Tanaka and Taylor’s 1991 results, described below. What
is clear is that superordinate names are almost never used to refer to single items.)

There is also developmental evidence suggesting that basic-level concepts are
privileged. Basic-level categories are the first categories that children can sort and
the first categories that they name. Children also are able to learn novel basic cate-
gories before they can learn those at other levels in a category-learning experiment
(see Anglin 1977; Horton and Markman 1980; Mervis and Crisafi 1982; Rosch
et al. 1976; I will revisit this finding in chapter 10).

In summary, Rosch et al. (1976) found that basic-level categories were preferred
to other categories or had some advantage in a number of respects. In many tasks,
the basic level is spontaneously used by people or is easier to use than the other
levels. Table 7.2 presents a list of such findings, which is not exhaustive. As it shows,
the evidence for basic-level performance advantages is considerable. The question
arises, then, how we can predict which category level will be basic, and what psy-
chological principles underlie the observed preferences.

Metrics of the Basic Level

Rosch et al. (1976) argued that basic categories exist as inherently separable clusters
of objects in the world. The basic level is the level at which objects are most differ-
entiated in the environment. Rosch et al. suggested that one could find a metric for
identifying the best categories, based on their structure. Their own suggestion was
that basic-level categories maximize cue validity, the probability that a particular
object belongs to some category, given that the object has a particular feature, or
cue. For example, the cue validity for a winged thing being a bird is P(bird | wings),
which is the probability that something is a bird, given that it has wings. To calcu-
late this, you would have to know what proportion of things with wings are birds.
Since categories are associated with many features, the total cue validity for the
category is the sum of the cue validities of all the features possessed by category
members: P(bird | wings) 4+ P(bird | beak) 4 P(bird | lives in nest) + - - -. (This category
cue validity is no longer a probability, as it can exceed the value of 1.0.)
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Table 7.2.

Empirical advantages of basic level categories.

Topic

Advantage (Reference)

Feature listing/
Similarity judgments

Movements

Shapes
Priming

Categorization

Word use

Word structure

Basic categories much more informative than superordinates
(Markman and Wisniewski 1997; Mervis and Crisafi 1982;
Rosch et al. 1976; Tversky and Hemenway 1983, 1984)

Basic categories have many more movements in common than
superordinates (Rosch et al. 1976)

Basic categories have a common shape (Rosch et al. 1976)

Basic categories are more effective as primes for a visual
comparison task than superordinates (Rosch et al. 1976)
Pictures are identified as members of basic categories faster than
as superordinates or subordinates (Jolicoeur et al. 1984; Lin et
al. 1997; Murphy and Brownell 1985; Murphy and Smith 1982;
Smith et al. 1978; Rosch et al. 1976; Tanaka and Taylor 1991)
Basic categories are easier to learn (Horton and Markman 1980)
Basic categories are overwhelmingly preferred in free naming
(Cruse 1977; Lin et al. 1997; Morris and Murphy 1990; Rosch
et al. 1976; Tanaka and Taylor 1991; Tversky and Hemenway
1983)

Basic names are more frequently used in text (Wisniewski and
Murphy 1989)

Basic names are the first acquired by children (Anglin 1977,
Rosch et al. 1976)

Basic names are more frequently used in talking to children
(Anglin 1977; Callanan 1985)

Children interpret novel words as picking out basic concepts
(Callanan 1989; Golinkoff et al. 1995)

Superordinate names are often mass nouns (Markman 1985;
Wisniewski et al. 1996)

Subordinate names often include basic-level names (Berlin 1992;
Newport and Bellugi 1979; Rosch et al. 1976)

Superordinate names in American Sign Language are composed
of signs for basic-level names (Newport and Bellugi 1979; Rosch
et al. 1976)

Note: This list of effects is somewhat simplified, in that the basic-level advantage can in some
cases be altered by various manipulations. This list refers only to the simplest or neutral case.
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Rosch et al. (1976) argued that superordinates have lower cue validity than basic
categories, because they have fewer common attributes; for example, animals have
fewer things in common than birds do, so there aren’t as many cues that help you
identify something as an animal as help you identify something as a bird. Subordi-
nate categories were said to have lower cue validity than basic-level categories, be-
cause they share more attributes with contrasting subordinate categories than basic
categories do with contrasting categories at the same level. For example, knowing
that blue jays fly doesn’t help much in identifying something as a blue jay, because
many other birds fly. As a result, P(blue jay | flies) is quite low. In contrast, knowing
that birds fly helps identify something as a bird, because not many other animals
fly.

Contrary to Rosch’s suggestion, cue validity alone cannot account for the basic
level advantage (Murphy 1982). In fact, the superordinate level, being the most in-
clusive, actually has the highest cue validity. Because a superordinate includes lower
basic-level categories, its cue validity can never be lower than that of the categories
it includes. Consider the feature “has a tail” and the hierarchy of categories cat,
mammal, animal. P(cat | tail) is lower than P(mammal | tail), because there are many
mammals with tails that aren’t cats, like dogs and mice. Since the mammals category
includes all cats, as well as many other things with tails, if something has a tail, you
can be surer that it is a mammal than a cat. Likewise, P(mammal | tail) is lower than
P(animal | tail), because animal includes all mammals as well as other animals with
tails that aren’t mammals, like lizards and fish. For categories that are nested, cue
validity will never be lower for a more general category than for one of the cate-
gories it includes. Cue validity is therefore maximized not at the intermediate basic
level, but at the most general level (Murphy 1982).

An alternative possibility is that category validity can predict which level will be
basic. Category validity is the conditional probability of possessing a feature given
category membership, such as P(wings | bird). This is roughly opposite to the cue
validity measure, and as a result, the converse of the argument raised against cue
validity can be raised against category validity as a predictor of the basic level: Cate-
gory validity tends to be highest at the least inclusive or subordinate level (Medin
1983; Murphy 1982), as more specific categories tend to have less variability in
features. For example, P(tail | cat) is greater than P(tail | mammal), since there are
proportionally more mammals without tails than cats without tails.’

A third probability metric for predicting the preferred level of categorization is
category-feature collocation, which is essentially the product of cue and category
validity (Jones 1983). The idea here is to combine the properties of the two previous
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metrics. However, it has been argued that this model is also inadequate, for reasons
that go beyond the scope of this chapter (Corter and Gluck 1992). In part as a re-
sponse to Jones’s model, Corter and Gluck (1992) developed a metric that they
called category utility and demonstrated that it can correctly predict the preferred
level of categorization, as measured by reaction time to picture verification and
naming experiments. Category utility combines three kinds of information in one
measure: information about the base rate or frequency of occurrence of a category;
the category validity of the category’s features; and the base rates of each of these
features. This measure is higher for categories that are more general (having a higher
base rate) and that are very predictive of features. This metric is consistent with
psychological explanations for the advantage of the basic level, as will be seen in the
next section.

However, one problem with all of these metrics based on the frequencies of fea-
tures in various categories is that it is often difficult to specify which features should
be included (Murphy 1982; Murphy and Medin 1985). In deciding the cue validity
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of cat, should we include such features as “is larger than a beetle,” “can be picked
up,” or “is less than 100 years old”? If not, how do we decide which features are
included in the computation and which are not? One cannot simply accept any fea-
ture that is above a small frequency in the category, because some very silly features
could be highly frequent (e.g., “doesn’t own a raincoat” is true of almost all cats).
One answer is not to include all features that are empirically found in a category,
but only those features that people psychologically represent for the category—for
example, only the features that appear in subjects’ feature lists of a category. How-
ever, this approach introduces a certain amount of circularity into the enterprise.
The purpose of these metrics was to predict which categories would be psychologi-
cally basic, and if we now rely on data about psychological representations to make
this prediction, we are using the representation to predict itself. Indeed, I believe that
this is the reason that Rosch et al. believed that cue validity predicted the basic level.
If one looks at feature lists, the basic level does have high cue validity. The reason is
that people list features like “has a tail” for cat but not for mammal, even though
more mammals than cats have tails. Thus, such lists cannot be a measure of envi-
ronmental structure. (In fact, one can argue that Rosch et al.’s 1976 claims that
basic categories match the structure of the environment could not have been con-
firmed by any psychological experiment, since people do not have access to environ-
mental structures separately from their conceptual apparatus.) So far, the difficult
question of how to determine which features are really in the environment has not
been adequately addressed by metrics of the basic level, which may be one reason
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that they have received less attention than the psychological explanations to be
described next.

In spite of the problems of many of these metrics of the basic level, we should not
lose sight of the fact that it is possible to identify a basic level through performance
measures (see table 7.2). There is little difficulty in identifying which level is psy-
chologically basic; the problems arise in associating this with a measure of environ-
mental structure. Therefore, I will focus on behavioral measures of the basic level
from here on.

Psychological Explanations of the Basic Level

Given that there is good evidence for a preferential level of conceptual representa-
tion, a natural question is what psychological aspects of these concepts account for
their preference. This is a difficult question to answer, because most of the evidence
is correlational. That is, certain concepts have been found to be preferred, such as
dog, table, shirt, and so on. To explain why these concepts are basic, we need to
compare them to those of other concepts at different levels, such as animal, bulldog,
coffee table, clothing, and so on, and see how they differ. The problem is that it is
not clear which differences are causes and which are effects.

Consider one specific example. Basic category names are generally used more
frequently, including in speech to young children, possibly influencing language
learning (Callanan 1985). I have already mentioned Brown’s (1958a) observation
that parents are much more likely to call a dog a doggie than a bulldog or animal.
Parents’ choice of particularly useful names (and their consistency in using the same
name over and over) might be influential in vocabulary learning, Brown suggested.
One might argue from this that basic-level concepts are preferred because of their
frequency or early age of learning—not because of their conceptual structure. How-
ever, such arguments can cut both ways. Why is it that parents decide to use the
word doggie rather than another? What made them think that this (basic-level)
name would be particularly helpful? Such preferences and frequency effects may
themselves have causes in conceptual structure—perhaps parents use that name be-
cause it refers to a basic category.

In general, then, a variable that is related to basic-level structure could either be
contributing to the basic-level phenomenon or could be a result of such structure.
However, considerations of parsimony suggest that it is the conceptual structure
that is primary. Basic concepts generally have many positive characteristics asso-
ciated with them (e.g., have shorter names, are more familiar, are learned earlier,
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etc.). Rather than taking each characteristic as being coincidentally associated (it
just so happens that the words that are learned first are the same as the categories
that can be identified fastest), it is more parsimonious to argue that it is some
underlying variable that causes the concepts to be the most useful. The simplest ex-
planation is that useful concepts are used more often, learned earlier, have shorter
names, are preferred in naming, and have other similar advantages, because they are
useful. The main question, then, is what it is about basic-level concepts that makes
them more useful.

Differentiation Explanation

The most frequently given explanation for the preference for basic concepts is a
structural explanation, which I will call the differentiation explanation. 1 will focus
my discussion on the version proposed by Murphy and Brownell (1985), which was
itself partly based on Mervis and Crisafi (1982) and Rosch et al. (1976). On this
explanation, basic concepts are said to be the most differentiated, which involves
two properties: informativeness and distinctiveness.

The informativeness of basic concepts refers to the fact that such concepts are
associated with a large amount of information (see the first three entries in table
7.2). As a result, when you know what basic concept describes an object, you know
a great deal about the object. So, if you know that something is a dog, you can infer
that it barks, has four legs, has fur, eats meat, is a pet, chases cars, and possesses
a host of biological attributes (such as breathing, having a liver, having dogs as
parents). Thus, dog is a very informative concept, since so many features are asso-
ciated with it.

The distinctiveness of basic concepts refers to the fact that they are different from
other categories at the same level. For example, dogs are fairly different from cats,
horses, cows, raccoons, and other familiar mammals. These all look rather different
from most dogs, they don’t bark, most don’t live in the home as pets or are used as
guards, and so on.

There is descriptive evidence for the idea that basic concepts are highly differ-
entiated. As already mentioned, Rosch et al. (1976) showed that subjects list many
features for basic concepts, and only a few for superordinates. Basic concepts, then,
are much more informative. Mervis and Crisafi (1982) asked subjects to rate the
similarity of pairs of categories and found that basic concepts were highly distinctive
relative to their contrast categories. That is, they found that people rated pants
as quite different from other clothing such as socks and shirt. In fact, Mervis and
Crisafi constructed a differentiation scale that combined informativeness and dis-
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Table 7.3.

Differences among the category levels, according to the differentiation explanation.
Category Level Informative? Distinctive?
Superordinate No Yes

Basic Yes Yes

Subordinate Yes No

Atypical Subordinate Yes Yes

tinctiveness, and they found that basic-level categories were higher on this scale
than were other categories.®

Where do superordinates and subordinates fall down according to the differen-
tiation hypothesis? Subordinates are informative; in fact, they are slightly more
informative than their basic concepts, because they are more specific (Rosch et al.
1976). However, they are significantly less distinctive. A kitchen table is not very
different from a dining room table, and a coffee table is only slightly more different
from both; a sedan is quite similar to a compact car and to a station wagon. In
contrast, superordinates are very distinctive. Furniture in general is not very similar
to tools or clothing or plants. However, superordinates are very uninformative—
clothing differs considerably in its size, shape, material and specific use. Rosch et al.’s
subjects could list very few features that were common to superordinate categories.
In short, it is only basic concepts that are both informative and distinctive, as sum-
marized in table 7.3.

Why is differentiation such an advantage? The informativeness component means
that basic concepts are very useful; they communicate a lot of information. How-
ever, informativeness comes with a cost: When concepts are too specific, many more
of them are needed to cover all the objects in a domain. If informativeness by itself
were an unalloyed good, then people would form the most specific categories pos-
sible. In the limit, every object would have its own concept, and that would be the
preferred level. This would clearly take up too much room in memory, and one
would lose the ability to generalize across category members. Rosch (1978) argued
that there is a need for cognitive economy to counteract the pressure to create ever
smaller categories. (Note that this is a different form of cognitive economy than the
one discussed by Collins and Quillian 1969, above.) In short, the conceptual system
works better with a few fairly informative concepts rather than a very large number
of extremely informative concepts. Distinctiveness works to limit the number of con-
cepts. Nondistinctive concepts are harder to use, because it is difficult to tell them
apart. (Try to learn the different kinds of sparrows in a bird guide, and you will see
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the problem with subordinates.) When objects are quite similar, therefore, they tend
to be included in the same concept, rather than being split into finer groups. Of
course, these principles do not ensure that there are no concepts at higher or lower
levels than the basic level, but such concepts are less likely to be learned and used.
We will return to the other levels of categorization later in the chapter.

Experimental Evidence for the Differentiation Explanation

Studies testing explanations of the basic level can be separated into those using
novel artificial categories and those using familiar natural categories. I will discuss
them separately.

Experiments with artificial categories. One advantage of using artificial materials
is that variables like familiarity and frequency of names, age of learning, and the like
can be carefully controlled. In contrast, using natural materials requires the experi-
menter to simply accept the (usually unknown) variation in subjects’ experience
with different categories and names. An important finding in experiments using
artificial materials is that robust basic-level advantages are usually found (Corter
and Gluck 1992; Lassaline, Wisniewski, and Medin 1992; Murphy 1991; Murphy
and Smith 1982). This strongly suggests that the preference is caused by the struc-
ture of the concepts rather than less interesting causes such as familiarity and char-
acteristics of the names.

Murphy and Smith (1982) taught subjects hierarchies of tool concepts; an exam-
ple of two of the basic-level categories is shown in figure 7.2. The hierarchies fit the
differentiation explanation’s assumptions (table 7.3): The superordinates were
uninformative but distinctive; the subordinates were informative but nondistinctive;
and the basic concepts were both informative and distinctive. The superordinates in
this study were defined primarily by function, as are familiar artifact categories like
clothing or vehicles. Murphy and Smith varied the order in which subjects were
taught the different levels in order to discover whether the basic-level advantage
could be reduced to a learning order effect. After all the categories were learned,
subjects performed a timed categorization task, in which they heard a category name
and viewed a picture. They pressed a button to indicate whether the picture was in
the category indicated by the name. Rosch et al. (1976, Experiment 7) had found
that natural basic categories were the fastest in such a task.

Murphy and Smith found that the basic-level concepts that they constructed were
indeed the fastest in this task. The subordinate concepts were close behind, but the
superordinates were considerably slower. Interestingly, a basic-level advantage was
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Figure 7.2

Artificial tools used as stimuli in the experiments of Murphy and Smith (1982). The two pic-
tures on the left represent members of the same basic category, with the top one representing
one subordinate, and the bottom one a different subordinate. The pictures on the right are a
different basic category with its corresponding subordinates.

found regardless of which category level was learned first. Categories did benefit by
being learned first, but this did not change the reaction-time ordering of the three
levels. Of course, the order of learning in a single experimental session cannot be
easily generalized to effects of learning order that take place over months and years
in real-world categories, but the fact that order of learning did not change the rela-
tive speeds of the three levels suggests that the basic level cannot be completely
reduced to learning order.

Murphy (1991) found more support for the differentiation explanation using even
more artificial stimuli that did not resemble objects at all. Lassaline et al. (1992)
used more variable categories and also found a basic-level advantage. In short, the
finding of basic-level structure has been obtained in a number of studies using arti-
ficial stimuli and is robust to changes in stimuli.” Although there are inherent limi-
tations in using categories that are artificially constructed and learned within a
single experimental session, it is reassuring that the principles derived from natural
categories are able to predict processing advantages in novel category learning in
controlled experiments.
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Experiments using natural categories. Studies using natural concepts have not
always been able to distinguish the factors that are proposed by the differentiation
explanation from other possible factors. When different concepts are compared,
they always differ on a number of variables. Nonetheless, the results of such studies
support the differentiation explanation.

Murphy and Brownell (1985) examined atypical subordinates like penguin or
boxing glove in a picture categorization task. Because such items are atypical, they
are in fact distinctive: Penguins are not similar to other birds, and boxing gloves are
quite different from other gloves. And because they are subordinates, such items are
already informative. That is, unlike other subordinate categories, these atypical
subordinates have both the properties of basic categories (cf. table 7.3), and so they
should be easy to use. Contrary to the usual basic-level advantage, boxing glove
should be preferred to glove and penguin to bird. And in fact, this is just what
Murphy and Brownell found (see also Jolicoeur et al. 1984). (Note that this result
should warn us against taking the word “level” too literally in talking about the
basic level of categorization. Although penguin and robin appear to be at the same
level in one sense—both are kinds of birds—the first is treated much like a basic
category and the second is clearly a subordinate. Thus, it is probably best to think of
individual categories, rather than an entire “level” of categories, as being basic or
subordinate.) This evidence is particularly important, because it contrasts the cate-
gory structure with other potential determinants of basic categories. For example,
the word glove is much more frequent than the phrase boxing glove, is learned earlier,
is shorter, and so on, and yet people are faster at categorizing boxing gloves as a
boxing glove than as a glove. If the basic-level advantage resulted from some names
being preferred to others (due to frequency, etc.), then glove would be the basic
category for all kinds of gloves.

Murphy and Brownell (1985) further tested the differentiation explanation by
experimentally manipulating the distinctiveness of subordinate categories. Consider
a subordinate category trial that a subject might see in a typical experiment. First,
the name “robin” appears on the screen. After a certain period of time, the name
disappears, and a picture of a robin appears. This may appear easy to answer, but
the subject must make sure that the picture is indeed a robin and not a lark or dove.
(On some trials, difficult foils like these would appear.) Because subordinate cate-
gories like robin are not very distinctive, this decision is rather difficult. In contrast,
if the category name had been at the basic level, “bird,” then no difficult distinction
would have been required. That is, if the picture were not a bird, it would have been
something that looks quite different (perhaps a dog or snake). It is the similarity of
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robins to related subordinates, which are directly experienced on false trials, that
makes it a difficult category to verify on true trials.

Murphy and Brownell reasoned that the distinctiveness of subordinates could be
reduced somewhat by changing the nature of the false trials in this experimental
design. In their Experiment 2, the false trials consisted of category names and pic-
tures that were completely unrelated. So, if the category name were “robin,” the
picture on a false trial might be of a car or a hammer. Thus, subjects no longer had
to worry about the distinctiveness of subordinates (or any category) in this experi-
ment, because they no longer had to distinguish robins from larks, jays or doves—
such false trials never occurred. It took subjects some time to realize the nature of
the false trials that were being used, but by the end of the experiment, subjects were
in fact faster at the subordinate level than at the basic level. Since subordinates are
slightly more informative than basic categories, they actually become fastest when
distinctiveness is equated across category levels. This result suggests that the lack of
distinctiveness of the subordinates is responsible for their usual slowness in catego-
rization tasks, as the differentiation explanation proposes.

The Other Levels

One might wonder whys, if the basic level is so advantageous, people form concepts
at different levels. Of course, it is not only the ease of thinking about a concept that
determines whether it will exist. It is often useful to have extremely technical or
detailed concepts that are not of great use on most occasions, but that are important
for some specific endeavors. Experts in a field likely require much more specific,
detailed concepts than novices do. If one becomes an expert on a subclass of insects,
one can hardly call all of them bugs—precise categories will be necessary. But by
the same token, extremely general categories may be useful as well. For example,
sometimes one just wants “something to read” without caring whether it is a book,
magazine, or newspaper. Scientists may find generalities that are true of all mam-
mals or arthropods or animals. Such generalizations require categories that are more
general than beetle and horse.

Subordinate Level Categories

Subordinate categories have not been the subject of much investigation. (This is less
true in the study of children’s concepts, as will be discussed in chapter 10.) How-
ever, studies comparing all three levels of categorization have suggested some ways
in which subordinates differ from the higher levels. As already mentioned, sub-



224 Chapter 7

ordinates are more informative than basic categories and are also less distinctive.
What new information is added in going from the basic to the subordinate level? In
general, subordinates seem to differ from their basic category in terms of perceptible
details. That is, subordinates share the shape and general function of their basic
category but provide additional information about specific details of the object
(Tversky and Hemenway 1984). For example, different chairs tend to have the same
parts: a back, a seat, legs, and possibly arms. A dining room chair tends to have a
taller back and to be made out of wood. An armchair tends to be upholstered and
(obviously) to have arms. An office chair tends to swivel rather than to have legs. In
each of these cases, the basic shape, function and parts of most chairs are found in
the subordinates, but there is a modification in some part or attribute, along with a
consequent minor modification of function (e.g., an office chair allows you to swivel
in order to work at different parts of your office). This is a typical way in which
subordinates provide more information than their basic-level categories. This pat-
tern has been proposed as a possible explanation for the basic-level advantage. In
particular, it has been suggested that the fact that members of basic categories share
distinctive parts (but other levels do not) could explain their processing advantages.
However, at this point, the evidence seems to favor the differentiation explanation,
as a basic-level advantage can be found when normal parts are not present in the
stimuli; see Tversky and Hemenway (1984) and Murphy (1991) for discussion.

Because basic categories are more familiar and more generally helpful, there
appears to be a convention in discourse that people name objects by the basic cate-
gory label unless the information needed in the subordinate label is particularly rel-
evant (Cruse 1977; Murphy and Brownell 1985). For example, if you were to tell
someone, “My Jaguar is parked right outside,” you would be taken as boasting of
owning an expensive sports car. For most purposes, knowing that your car is
parked outside would be sufficient; it is only when the information added by the
subordinate is particularly relevant that it should be used (e.g., “We can’t all fit in
my Jaguar.”). Even when there is no question of boasting, using the subordinate
when it is not necessary seems peculiar. For example, if there were only one book on
the table and you were to say “Could you hand me that paperback novel?” your
addressee would wonder why you used this expression rather than book. Subordi-
nate labels are useful, however, when there is a domain that contains many mem-
bers of a basic-level category that need to be distinguished. While at the dog show,
speakers should not refer to every animal as dog, or else confusion will result.

In short, subordinates generally indicate minor changes in the features from those
usually expected in the basic category, but they preserve the general parts and
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functions associated with their basic category. They are useful in making fine dis-
tinctions when called for, but otherwise tend not to be used in discourse.

Superordinates

The superordinate level of categorization has been the subject of more research than
the subordinate level. Much of this work has come about in the developmental
literature, because young children have great difficulty learning superordinate cate-
gories (Horton and Markman 1980; Rosch et al. 1976). Although I cannot explore
the developmental issues in depth here, I will describe some of the results of Ellen
Markman’s studies of superordinate categories in adults and children. Markman
(1985) pointed out a somewhat surprising aspect of superordinate names: They are
often mass nouns, rather than count nouns. Count nouns are words like chair,
which can be pluralized and preceded by a number: five chairs, all the dogs, some
kettles. In contrast, mass nouns, which usually refer to homogeneous masses or
substances, cannot be directly counted or pluralized; all the following are ungram-
matical in neutral situations: five rices, all the muds, some waters. (There are actu-
ally interpretations of these phrases that are grammatical, but they usually require
assuming a missing element or an unusual interpretation—such as waters referring
to oceans.) Mass nouns generally require a classifier preceding them in order to be
counted, and it is the classifier that is pluralized: five grains of rice, all the piles of
mud, some pails of water. Semantically, mass nouns often refer to substances like
mud that cannot be easily separated into individual parts and so are treated as an
indistinguishable whole.

Markman’s discovery that superordinates are often mass nouns can be illustrated
with the following examples from English: furniture, jewelry, clothing, food, and
reading material. One would not say “I have only two furnitures in this room,” but
instead “I have only two pieces of furniture.” However, the basic-level names for
furniture are almost all count nouns. One can say “I have four chairs/sofas/tables/
lamps/beds/stereo sets....” That is, examples of furniture are not homogeneous
masses like mud, but individual objects; yet, syntactically, furniture is a mass noun.
This puzzling fact is not a quirk of English. In fact, Markman showed that it was
true in a wide variety of languages from different language families. For example, 16
of the 18 languages she sampled treated the word corresponding to food as a mass
noun, but none of the 18 languages treated egg as a mass noun, and only one
treated apple as a mass noun.

Markman argued that this syntactic difference between superordinate and basic-
level names reflects the way that superordinate names are normally used. In many
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cases, superordinates are used to refer to collections of a number of different items.
For example, in talking about a single couch, one is very unlikely to refer to it in a
form like “Let’s move that piece of furniture.” One would be much more likely to
use furniture in referring to a couch, two tables and some chairs all at once, as in
“Let’s move the furniture before we begin painting.” In fact, this property of super-
ordinates has been verified in written text (Wisniewski and Murphy 1989): Basic-
level names are most likely to be used to refer to single objects (70% of the time),
whereas superordinates are more likely to be used to refer to groups or an entire
class of objects (77% of the time). Markman’s argument, then, is that this pattern of
usage has the effect of making us think of superordinates as referring to multiple
objects.

There are three main pieces of evidence (beyond the linguistic patterns just de-
scribed) backing Markman’s conjecture (and see chapter 10 for more discussion).
First, when young children are taught new superordinates, they learn them slightly
better when the superordinate is used as a mass noun during training (Markman
1985). Second, young children will sometimes act as if they think that a super-
ordinate name must refer to multiple objects. For example, they might say that a
group of animals together can be called animal, but will deny this of a single cow.
When learning novel superordinates, even older children make this error (Mark-
man, Horton and McLanahan 1980). Third, in work on adults, Murphy and
Wisniewski (1989) showed that subjects were relatively faster at identifying ob-
jects at the superordinate level when they were presented in groups. When objects
were presented in isolation, basic categorization was significantly faster than super-
ordinate categorization, as usual. For example, a single couch would be categorized
faster as a couch than as furniture. However, when the couch was shown as part of
a living room scene, it was categorized equally fast as furniture and as a couch:
Presenting objects in groups aided superordinate classification. In sum, there is evi-
dence that the representation of superordinates may be different from that of lower
levels of categorization. How these different types of representations are reconciled
is not fully known.

In more recent work, Wisniewski, Imai, and Casey (1996) suggested that there is
an important difference between superordinates that have mass names, like furniture
and those that have count names, like animal. They argued that the mass super-
ordinates refer to collections of objects that occur together (as in Markman’s sug-
gestion), but that count superordinates are taxonomic categories that are interpreted
as describing individual objects. They provided evidence that exemplars of mass
superordinates occur together more often than do exemplars of count super-
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ordinates. When people list features of items, they are more likely to list locations of
mass superordinates, suggesting that the co-occurrence of such items is important.
In contrast, people are less likely to list parts for mass superordinates, because parts
are properties of individual items.

Thus, it may be that superordinate categories are not entirely homogeneous.
There may be principled differences between them that can be predicted based on
the properties of their names. Wisniewski et al. (1996) may take this conclusion to
an extreme, however, in arguing that ... it is inappropriate to view a mass super-
ordinate as a taxonomic category in which an object is linked to the category by an
IS A KIND OF [IS-A] relation” (p. 292). Although they do find that members of
mass superordinates occur together, for example, it is also the case that members of
many taxonomic categories occur together (e.g., trees, cushions, grackles). Further-
more, although mass superordinates had fewer parts listed than did count super-
ordinates, they still had a fair number listed (8.1 parts per category, in comparison
to 17.5 for count superordinates). Even mass superordinates give some information
about individual category members (e.g., items of clothing are likely to be made
of cloth, to be worn, to be colored; jewelry is likely to be made of some valuable
material, to be worn on the outside of clothes). It seems more likely that there
is a mixture of “taxonomic” properties (things that are true of individual items)
and “collective” properties in superordinates, and the mass/count distinction corre-
sponds to the relative amount of the two kinds of information rather than to a dis-
tinct boundary.

Another important difference between superordinates and lower levels was noted
by Rosch et al. (1976) and Tversky and Hemenway (1984). When subjects are
asked to list the properties of different categories, they are very likely to list abstract
or functional properties for superordinates. In contrast, specific categories are more
likely to have parts and concrete properties listed. It seems likely that the abstract
nature of superordinates is what encourages children to think of them as referring to
groups of objects. For example, if children do not immediately see what is common
to all furniture (which differ widely in shape and specific function), they may tend to
interpret the word furniture as referring to the collection of sofa, bookshelves, table
and chairs in the living room. It is only with greater experience and sophistication
that they can perceive the underlying functional properties common to furniture.

In summary, subordinate and superordinate categories are opposites in many
respects. Superordinates have only a few features in common, and these tend to be
abstract, functional properties. Subordinates have many features in common, but
most are also properties of their basic category; their novel properties tend to be
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minor perceptual or functional modifications of the typical properties at the basic
level. These different category structures have the similar effect of making the two
levels more difficult to use. They are both harder to learn, and children do not seem
to know the correct meanings of either level right away. Speakers tend to avoid
describing individual objects with names at either level. Nonetheless, both super-
ordinates and subordinates are necessary for people to represent the groupings of
entities in some situations.

The Basic Level in Nonobject Domains

The notion of a basic level within a hierarchical category structure was initially
developed by researchers studying object concepts but has since been applied to a
wide variety of nonobject domains, including person categories (Cantor and Mischel
1979), personality traits (John, Hampson, and Goldberg 1991), psychodiagnostic
categories (Cantor et al. 1980), emotions (Shaver et al. 1987), actions and events
(Morris and Murphy 1990; Rifkin 1985), scenes (Tversky and Hemenway 1983),
and computer programming operations (Adelson 1985). In many of these cases, re-
searchers found strong parallels between object and nonobject domains. Thus, the
findings of a basic level are generalizable across diverse categories. However, there
are also important differences between object and some kinds of nonobject cate-
gories, making the interpretation of such differences difficult.

One problem with some of this research is that the category hierarchy and the
categories themselves do not always seem to be ones that people normally use. For
example, person categories that have been studied, such as committed person or sup-
porter of the community orchestra may not be particularly widespread, and event
categories such as going to a horror movie may not be a separate concept for many
people. Part of the problem is that categories in some domains have no fixed names,
making it harder to identify and study them. I am not saying that people do not
have categories for personalities or events but that it can be difficult to know exactly
what they are and what they should be called. In some studies, there have not been
adequate measures taken to ensure that the tested categories are in fact the cate-
gories that the subjects normally use.

Another point to keep in mind when comparing the organization of concepts in
object and nonobject domains is that domains can differ in important ways. Objects
have many concrete, perceptual features (e.g., is red, has legs), while nonobjects
often possess more dispositional, abstract features (e.g., is greedy, is intended to
entertain). Similarly, the concepts in these domains may not be organized hierarchi-
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cally in every case. For example, John et al. (1991) studied trait categories such as
being talented and being musical. However, it is unclear whether traits are organized
hierarchically. Is being musical a kind of being talented? Or is being talented part of
being musical? Although one can ask subjects to list features and to categorize traits
in a way analogous to what Rosch et al. (1976) did with object categories and re-
port analogous results, if the traits are not organized in IS-A hierarchies, then they
could not have a basic level of categorization that is like that of object categories.

Researchers in some domains have developed nonhierarchical ways of relating
different concepts. For example, Vallecher and Wegner (1987) have argued that
actions can be conceptualized on different teleological levels. The same action could
be thought of as pressing buttons, making a phone call, or initiating a friendship.
Such goal-oriented categories do not form an IS-A hierarchy as found in object
concepts: Pressing buttons is not a kind of phone call, but pressing buttons might
be done in order to make a phone call, which might be done in order to initiate a
friendship. The hierarchies described in this chapter, then, probably cannot account
for all the ways people have of thinking about people, events, situations, scenes and
other nonobject categories.

Although it seems safe to say that there are probably basic categories in many
domains besides the much-studied realm of objects, it is also true that studies of
those domains have not been as careful and deep as that of Rosch et al.’s original
research. A more detailed review of studies of the basic level in nonobject concepts
can be found in Murphy and Lassaline (1997).

Expertise

When Rosch et al. (1976) first proposed the concept of a basic level, they also noted
that the specificity and nature of the basic level might well depend on a subject’s
expertise in the domain. In particular, they suggested that experts would know
much more about categories at specific levels of abstraction. Thus, although cate-
gories like trees might well be salient for tree experts, more specific categories like
maples and birches would be even more salient, because experts would know many
features that are distinctive to these categories.

Although Rosch et al. did not explicitly test this hypothesis, the anthropologi-
cal literature provided some evidence to support it. First, Rosch et al. themselves
found that the basic level of their subjects’ concepts of plants and animals was one
level higher than that found in anthropological studies of people in nonindustri-
alized societies (Berlin 1992; Berlin et al. 1973). Subsequently, Dougherty (1978)
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compared the naming of different types of plants by Berkeley, California children
with naming by Tzeltal Mayan children. She discovered that the American children
named plants at a level higher than the biological genus (e.g., they used tree rather
than maple), whereas Tzeltal children used genus-level names (like maple) very
often. She concluded that “In terms of both the number of distinctions acquired and
the specificity to which classifications can be extended, the eight-year-old Berkeley
child lags well behind the six-year-old Tzeltal child. As Chamber’s (n.d.) evidence
shows the ethnobotanical knowledge of urban American adults may develop mini-
mally beyond that of the eight-year-old child” (p. 75). In short, it seems that not
only individuals, but whole societies or cultures may differ in their preferred level of
categorization (see Malt 1995, for a review). These differences are domain-specific,
however: Although urban citizens may well not have elaborate biological categories,
they do have elaborate categories of colors, technological devices, legal terms, and
so on. Our urban society generally is not familiar enough with biological kinds to
classify them at specific levels, whereas isolated peoples living “closer to nature”
clearly have much more knowledge about the natural environment, though they do
not have as much knowledge about technology and science, for example. These are
essentially expertise effects at the level of a whole culture.

The psychological literature has focused on individual differences in expertise and
its influence on conceptual structure. Some of this literature has explicitly addressed
the issue of hierarchical classification, but most of it has not. Nonetheless, even the
latter has implications for understanding the basic level.

The most complete study of expertise and level of categorization was carried out
by Tanaka and Taylor (1991), and I will discuss it in some detail. Their study is of
particular interest for two main reasons. First, they examined categorization at the
basic, subordinate and superordinate levels. Second, they used a within-subject
design, in which they tested each subject in an area of expertise and in a domain
outside that area. This design avoids problems of irrelevant differences between
experts and novices that might explain the results. (For example, perhaps experts are
smarter or more dedicated than novices, which could explain their different perfor-
mance in an experimental task.) Their study examined the concepts of birdwatchers
and dog experts for both birds and dogs.

First, Tanaka and Taylor asked their subjects to list features of categories at all
three levels. In their novice domain, subjects listed many features at the basic level
and fewer at the subordinate level. (For consistency, I will refer to the category level
of dog, bird, cat, etc. as the basic level, even though the results will question whether
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this level is truly basic for all subjects.) In their domain of expertise, subjects listed
more features at the subordinate level. For example, dog experts didn’t list more
features of dogs than bird experts did, but they did list more features of collies. In
a free-naming study, Tanaka and Taylor showed subjects pictures of a variety of
objects and asked them to give the first name that came to mind. Like Rosch et al.,
they found that people virtually never use superordinate labels. In their novice
domain, subjects produced basic-level names the majority of times (76%). In their
expert domain, subjects were fairly likely to produce subordinate names. This ten-
dency was much more pronounced for bird experts, however, who used subordi-
nates 74% of the time, compared to 40% for dog experts; both were higher than
the subordinate labeling by novices. I'll return to the difference between dog and
bird experts later.

Finally, Tanaka and Taylor tested their subjects in a timed categorization task. As
a speeded perceptual task, its results may be more indicative of automatic pro-
cessing, rather than conscious strategies that subjects might have used in the free-
naming task (e.g., birdwatchers might feel they are expected to use the most precise
name they know in a free-naming task, even if it was not the first name that came to
mind). In the categorization task, subjects viewed a category name, followed by a
picture. They responded true or false as to whether the object depicted was in the
named category.

The results in the novice domain replicated those of Rosch et al. (1976): The basic
category was fastest, and the subordinate category slowest. However, in the expert
domain, the pattern was different: The basic and subordinate levels were equally
fast, and the superordinate level was slowest. The primary difference in the results
was that the subordinate level became much faster relative to the other levels in
the expert domain. Thus, this finding is consistent with the results of Tanaka and
Taylor’s other experiments, in showing that expertise primarily benefits the subordi-
nate level.

Tanaka and Taylor point out that this pattern is just what would be expected
from the differentiation explanation of the basic level (Murphy and Brownell 1985).
According to that explanation, subordinates are usually hampered by being rela-
tively nondistinctive—they do not have many features that are unique. However,
Tanaka and Taylor’s feature listing results show that experts do know a number of
features unique to subordinates—their subordinates are distinctive. Furthermore,
subordinates are more informative than basic-level categories. As a result, experts’
subordinates are much like their basic categories from the perspective of category
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structure. For experts, then, there may be no single level of categorization that is
“basic” according to the classic definition. Birdwatchers can easily use the category
bird, but they can also easily use the categories cardinal, plover, or kestrel.

Other studies of the relation between expertise and category structure have taken a
somewhat different approach, namely, investigating how experts’ advanced knowl-
edge might influence their concepts. Typically, these studies have not examined dif-
ferent levels of categorization, so I will only describe them briefly here. They are
relevant, however, because they address whether experts differ from novices pri-
marily in specific or more general categories.

Chi, Feltovich, and Glaser (1981) examined the categories of physics problems
formed by experts and novices. They discovered that novices (students who had
done well in the introductory physics course) tended to group the problems based
on superficial properties. For example, novices tended to categorize problems with
inclined planes together, separately from problems with springs or those involving
pulleys. In contrast, experts (advanced physics graduate students) categorized prob-
lems according to the physical principle involved in their solution. In some cases,
this meant grouping together problems that involved rather different objects, such as
a spring and an inclined plane. Although novices had taken the course that involved
problems of this sort, they did not have the facility with theoretical knowledge that
would allow them to see past the superficial similarities of the problems.

Murphy and Wright (1984) examined the feature listings of concepts from child
psychopathology. Their subjects ranged from complete novices (college under-
graduates with no experience with a clinical population) to experts with many years’
experience in diagnosing and treating children with psychological disorders. Sur-
prisingly, Murphy and Wright discovered that the categories of the novices tended
to be more distinctive than those of the experts. The main reason for this was that
novices only knew a few features of the category, which were usually superficially
related to the category name. For example, they listed features such as “angry” and
“hits other kids” for the category of aggressive-impulsive children, and they listed
features such as “feels sad” for the depressed-withdrawn category. In contrast,
experts in clinical psychology listed the features that they believe underlie many
psychological disorders for more than one category. For example, all three cate-
gories of children were said to have the symptoms ““feels sad” and “angry,” not
just depressed and aggressive children, respectively.

Together, the Chi et al. (1981) and the Murphy and Wright studies suggest that
expertise may not only have the effect of making categories more distinctive, as
Tanaka and Taylor (1991) found with bird and dog experts. Murphy and Wright
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found that experts knew both more distinctive features and more common features
than the novices. Chi et al.’s results show that experts may notice underlying sim-
ilarities between items that appear to be quite different. Thus, the influence of exper-
tise on levels of categorization is probably complex. Experts may be able to identify
objects more readily into specific categories than novices can, but they may also be
able to notice commonalities across a domain that novices are not familiar with
(e.g., the commonalities that allow spiders, shrimp, insects, and crabs to be grouped
together as arthropods). The findings that experts have more abstract knowledge
that unifies the instances of a domain does not conflict with the story derived from
Tanaka and Taylor’s results, but it does suggest a more complex effect of expertise
that is not fully understood.

Thus, expertise may not be susceptible to a simple account like: “Experts’ pre-
ferred level of categorization is lower than that of novices.” It may be that some
experts have different concepts or ways of organizing the domain than novices do,
in which case their taxonomies could be different from novices’. Whether this hap-
pens probably depends on the nature of the domain and of expertise within that
domain. For example, Tanaka and Taylor proposed that the differences between
dog and bird experts they found may be due to the different nature of expertise of
these two groups. Dog experts often tend to focus on one or two breeds of dogs that
they raise and show, and they become extremely familiar with the properties of
those breeds. In contrast, birdwatchers attempt to experience a wide range of birds
and to identify many different species as quickly and reliably as possible. This dif-
ference in the nature of expertise might account for why the bird experts were more
likely to supply subordinate-level names in the free-naming task. So, some experts
may have deep knowledge about a few categories, whereas the others may have less
detailed knowledge but be familiar with many more categories.

In short, there is considerable research still to be done on the nature of expertise
and its effect on conceptual organization. Expertise may have some influence on the
preferred level of categorization, but this influence will likely depend on the specific
domain and on the nature of the expertise that subjects bring to it.

Empirical Conclusion

The hierarchical structure of categories is a well-established phenomenon, which has
been identified in many different cultures. People rely on such hierarchies in order to
be able to generalize their knowledge productively: Once you learn that all animals
breathe, you don’t need to relearn it for dogs, poodles, miniature poodles, and so
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on. Nonetheless, it is still not fully known whether this hierarchical structure is built
into the conceptual system, in the form of taxonomies in the head, or is instead the
result of an inferential process. There is considerable evidence against a purely pre-
stored hierarchy, but it may well be that there is a mixture of different kinds of
conceptual structures. Some concepts may be explicitly connected by IS-A links (e.g.,
whale and mammal), whereas other hierarchical relations may have to be computed
(e.g., car seat and chair). The field is still awaiting an integrated model of all these
phenomena.

Findings of a basic level provide a more consistent picture. Most experiments are
consistent with the differentiation explanation of why basic concepts are preferred.
This explanation is primarily a structural one: It refers to the number of features
known about each category and their overlap with the features of other categories.
It can be applied to any domain, once the features people know about the categories
are determined. Perhaps it is worth emphasizing that this explanation is based on
the structure of the information people know about the categories, not environ-
mental structure per se. Although the properties of the environment will certainly
strongly affect one’s concepts of the world, we have seen a number of cases in which
the basic level is influenced by expertise and cultural knowledge and interest. Thus,
the differentiation explanation applies to what is known of the categories. The
question of whether basic categories are basic “out there” in the world is one that
psychology is not prepared to answer.

Surprisingly, given this overwhelming empirical support, some recent writers have
taken to criticizing the overall notion of basic categories. For example, Mandler
(1998, p. 289) complains that the quantitative measures for basic categories have
been largely unsuccessful and points to findings about the variability of the basic
level across domains and cultures as casting doubt on the whole concept of a basic
level. (Mandler also argues that even Rosch et al. did not find the basic level where
they expected it for biological categories. However, this seems an unfair criticism to
make of the very first experimental study of the basic-level phenomenon. It isn’t
surprising that the authors’ original expectations in advance of any data were in-
correct for one of their domains. Furthermore, the problem for biological categories
arises from the cultural differences discussed above, since Rosch et al. based their
predictions on anthropological studies of nonindustrialized cultures. Those cultural
differences confirm the differentiation explanation presented here rather than casting
doubt on it.) However, such criticisms have not sorted through the entire set of evi-
dence and explanations for basic categories given here and proposed an alternative
account for them—they are entirely negative in character. In fact, the evidence for a
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basic level is extremely impressive. Reading between the lines, I suspect that such
criticisms assume that the basic level is an immutable property of categories that is
predictable from the “objective category” itself. Findings of different basic categories
across cultures or development would therefore cast doubt on this notion. (However,
it is also significant that every culture seems to have a preferred level of catego-
rization, as concluded by Malt 1995, in a review of the anthropological literature.)
As just discussed, basic-level structure is a psychological construct, which depends
on what people know about the categories, and which can only be identified by
behavioral tests. To be compelling, such criticisms need to be backed by alterna-
tive, concrete proposals for the phenomena Rosch, Mervis and their colleagues
discovered. What is most impressive about the basic category construct is how it
predicts advantages in many different tasks, as summarized in table 7.2. No other
explanation has been offered that even attempts to account for these advantages.
Research outside the area of object categories has been less certain in demon-
strating basic-level structure. In general, this does not seem to be a shortcoming of
the theory of the basic level but rather a problem in identifying the categories that
are actually known and used by subjects in each domain, especially when the cate-
gories do not have familiar verbal labels. Also, studies in other domains have often
relied on a single task to measure basic-level structure, rather than repeating the
process of converging operations used by Rosch et al. (1976). In some cases, studies
have simply assumed that the concepts are hierarchically organized, rather than
empirically demonstrating this. One goal for future work on basic categories is to
elucidate the conceptual structures of new domains in a more complete way.

Theoretical Evaluations

Prototype Theory

When discussing feature models that might explain category judgments and the hier-
archical structure of concepts (e.g., Smith et al. 1974), I was essentially providing
the prototype theory for those phenomena. That is, concepts are thought to be rep-
resented by descriptions of their common components. One concept can be judged
to be a subordinate of another if its features are a superset of the other’s (see table
7.1). Because prototype theory thinks of categorization as being probabilistic, it
does not claim that all of the features of the superordinate will be exactly found in
the subordinate concept (Hampton 1993). Instead, it will only require that some
criterion number of features (weighted by their importance) is necessary. Further-
more, typicality effects can be explained by the assumption that atypical categories
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share fewer features with their superordinates, as seems to be the case (Rosch and
Mervis 1975). For example, an ostrich’s features do not match the features of the
category bird as well as a blue jay’s features do, and so it is more difficult to cate-
gorize. This theory can explain the finding that it is often more difficult to make
“long-distance” categorizations like bulldog-animal than closer categorizations like
bulldog-dog, by making the reasonable assumption that the closer two items are in
the hierarchy, the more features they share (assuming typicality is held constant).

In the above analysis, I have been assuming that category relations are computed
rather than prestored. However, there is no reason that prototype theory could not
be represented in a semantic network of the sort suggested by Collins and Quillian
(1969), in which category relations are prestored. However, one would then need to
make further assumptions, such as the IS-A links being weaker between atypical
items and their superordinates, and one would also have to explain why long-
distance categorizations are not always slower (e.g., why dog-animal is no slower
than dog-mammal), if a network is being traversed. Since these phenomena are pre-
dicted very naturally by featural overlap, the notion of a prestored hierarchy seems
less parsimonious at the present.

Basic-level structure does not appear to be a necessary prediction of prototype
theory. The phenomenon is certainly consistent with prototype theory, however, as
it can be explained by the number of features that a concept has and how many of
those features it shares with similar concepts. Dog is a basic-level concept, then, be-
cause it is informative (i.e., has many features) and distinctive (i.e., does not share
the majority of those features with bat, horse, mole, and other mammals). So, it is
very easy to explain basic-level structure in terms of feature descriptions of the sort
that prototype theory has proposed. However, there is nothing in prototype theory
itself that predicts (so far as I can tell) that differentiation is such a critical variable.
As Murphy and Smith (1982) pointed out, it could have been that the most abstract
categories were easiest to use, because they have fewer features: Identifying some-
thing as a tool might have been easiest, because there are only a small number of
features common to tools that need to be checked. (However, as mentioned above,
the features at the superordinate level tend to be much more abstract than those at
the lower levels, so a prediction based purely on the number of features is difficult to
make.) Similarly, identifying something at the lowest level could have been easiest,
because it would be expected to match an object most closely: A picture of a cross-
cutting handsaw (one of Rosch et al.’s 1976 stimuli) is closest to the category de-
scription of cross-cutting handsaws, and less close to the descriptions of saws or
tools.
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In short, I think that one could have made very different predictions from proto-
type theory about which level of categorization would be easiest if one had not
known anything about the phenomenon in advance. So, basic-level structure per se
does not appear to be a confirmation of prototype theory. However, the differentia-
tion explanation I have offered is very easy to integrate into the weighted-feature
prototype model (chapter 3) and so supports this approach in a general sense.

The Exemplar View

For the most part, exemplar models of concepts have not attempted to account for
basic-level structure. Although the existence of basic categories is not generally said
to pose a particular problem for exemplar models, accounting in detail for the per-
formance advantages may be more difficult. More critically, the entire notion of
hierarchical structure does not flow naturally from an exemplar view.

First, how can we explain the existence and advantage of the basic level in an
exemplar approach? Recall that the exemplar view proposes that people remember
instances of concepts and that when they retrieve a new instance, they access other
instances that are similar to it and use their category membership to categorize the
new item. The differentiation explanation given for the basic-level advantage seems
general enough to fit an exemplar approach to concepts. For example, the factor of
informativeness can be interpreted as the similarity of items within a category. The
more similar the exemplars are, the more informative the category generally is, be-
cause the more properties they will have in common. Similarly, distinctiveness can
be interpreted as the dissimilarity of exemplars across categories. If particular dogs
are different from particular cows, then these two categories are distinct from one
another. So, the overall structural differences between categories is easy to describe
in terms of exemplars.

At the same time, there are difficulties in specifying an exemplar-based process of
categorization that leads to the basic-level advantage. Let’s suppose you see Wilbur,
a bulldog, and have to decide if it is a dog (the basic category). You will now re-
trieve other items that are similar to Wilbur, most of which are presumably dogs,
and few of which are other animals. Therefore, you should be fast to identify
Wilbur as a dog. However, the exact same thing is true in deciding whether Wilbur
is a bulldog. As described in chapter 3, exemplar models are sensitive to very close
similarity to instances (e.g., via Medin and Schaffer’s 1978 multiplicative similarity
rule, or the Shepard exponential similarity rule, Nosofsky 1984). So, remembered
items that are very close to Wilbur are given great weight, and those that differ in a
few features have hardly any effect at all. Given this, the items that are highly similar
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to Wilbur would almost all be bulldogs, and so categorizing Wilbur as a bulldog
would be quite easy. This would especially be true in a psychology experiment, in
which a clear picture is shown of Wilbur in a canonical position, yet the basic-level
advantage is consistently found in such experiments. If the exemplar view is to pre-
dict the basic-level advantage here, it must assume that items have very high (not
just moderate) similarity to members of other subordinate categories, which add
up to a higher similarity score for dog. That is, Wilbur must be quite similar to a
dachshund or terrier in order to speed up basic-level categorization and slow down
subordinate categorization. It isn’t clear that this assumption is accurate. (For ex-
ample, J. D. Smith and Minda 2000, have noted that in some psychology experi-
ments, only a single, highly similar exemplar actually influences the decision of
exemplar models. If this is true in natural categorization as well, then the exemplar
model would not produce a basic-level advantage.)

Now consider superordinate categorization. If you are asked if Wilbur is an ani-
mal, you will retrieve very similar items and find that they are all animals. It must be
at least as easy to categorize Wilbur as an animal as it is to categorize him as a dog,
since all the dog exemplars you retrieved are also animals, and it is very likely that
any nondog exemplars you retrieved (if any) are also animals. It is hard to under-
stand, then, why an exemplar model would predict slower categorization at the
superordinate level. However, superordinates are often the worst level in catego-
rization tasks (e.g., Murphy and Brownell 1985).

One way out for exemplar models is to propose that the range of exemplars
retrieved is different for different questions. For example, when asked about super-
ordinates, perhaps subjects consider less similar instances than when asked about
basic categories. Without some further justification, this proposal is very ad hoc.
Why would subjects use this different strategy, which only results in slower, less
accurate responses? Why not rely on close similarity for all decisions? Explaining
categorization performance at different levels of categorization, then, is something
of a puzzle for the exemplar model.8

The problem of exemplar models goes even deeper, however. In most experiments
testing this view, subjects learn two categories and then are tested on old and new
items. Thus, there is only one level of categorization, and every item is tagged with
one category name. But in natural categories, each item is in many categories
simultaneously. If I see a squirrel run across my path on the way to work, do I en-
code that as a gray squirrel, a squirrel, a mammal, an animal and an entity? This
seems rather excessive. However, if I don’t encode it as a mammal, then how do I
decide how to answer questions like “Are squirrels mammals?” or to judge whether
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a picture of a squirrel should be categorized as a mammal? Exemplar theory requires
that I retrieve instances similar to the test item and see whether they have the cate-
gory name that is being tested. If I don’t encode the squirrel on the path as a mam-
mal, then wouldn’t it later count as evidence against the proposition that squirrels
are mammals?

This problem with exemplar models is illustrated by a recent article by Palmeri
(1999), who investigated how different models, two of them being exemplar ap-
proaches, could explain hierarchical classification. Palmeri found it necessary to
have different simulations of each model learn the different hierarchical levels,
making a “virtual” hierarchy. That is, no single model actually learned that Wilbur
is a dog and Wilbur is a bulldog; rather, different models learned these two facts.
This further supports my claim that exemplar models as they currently stand are ill-
equipped to handle hierarchies—and, indeed, any form of multiple categorization.’

In order to explain how people can answer questions about category membership,
exemplar theory may have to claim that every exemplar in memory is encoded with
all of the categories that it is a member of.10 Although not a logical impossibility,
this suggestion does not seem at all plausible. Furthermore, even if we do assume
this, more work is needed to explain why there is a basic-level advantage in catego-
rization tasks. If all squirrels are encoded as mammals, then any evidence that X is a
squirrel will also be evidence that X is a mammal. One way out of this conundrum
might be to assume that only one or two categories are encoded with each exemplar.
It may be that most of the time you see squirrels, you encode them as “squirrel,” but
only occasionally as “gray squirrel” or “animal.” When you retrieve instances that
are similar to the test item in an experiment, you would get many that are identified
as squirrels, but few as animals or gray squirrels, which could account for the basic-
level advantage. This explanation is rather circular, however. We want our theory
of concepts to explain the notion of a basic level. This explanation merely assumes
that basic categories are better (for some unexplained reason) and therefore are en-
coded with instances more often. One could attempt to refer to other, nonconceptual
variables as explaining why the basic category is most often encoded with the ex-
emplar, such as word frequency and the like. However, these variables have gener-
ally been shown not to account for the advantage (Corter and Gluck 1992; Murphy
1991; Murphy and Smith 1982), so considerable work would need to be done to
explain hierarchical classification on the exemplar view. Finally, if most squirrel
exemplars are not encoded as mammals or animals, then how does one evaluate
sentences like (as in Collins and Quillian 1969, and many experiments since) “All
squirrels are mammals”? The exemplar representations would seem to give the
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wrong answer to this question, as most retrieved squirrel exemplars would not be
coded as mammals.

Overall, then, there are many puzzles about how to account for hierarchical clas-
sification in general and the basic-level advantage in particular from the perspective
of the exemplar view. It is too early to say that these results are incompatible with
the view, but it is not too early to complain that insufficient attention has been given
to these concerns by proponents of this theory. As hierarchical structure is a major
component of human categorization, it is important for any theory of concepts to
explain the existence of different levels of categorization, as well as the basic-level
advantage.

The Knowledge View

The knowledge view is perfectly consistent with the idea that concepts are descrip-
tions of some kind, and so it is also consistent with the feature-based explanation of
hierarchical structure given here. The differentiation explanation of the basic level is
not so easily related to the knowledge view. It is primarily a structural explanation.
It refers to the number of features known about each category and their overlap
with the features of other categories. It can be applied to any domain once the fea-
tures of the categories are determined. Thus, it does not depend on complex knowl-
edge structures about a domain, which is one reason why basic-level phenomena
can be demonstrated with artificial stimuli and in many different domains. This
ubiquity suggests that the basic level is not heavily dependent on knowledge (Malt
1995), and so it is not predicted by the knowledge view. On the other hand, the
knowledge view also considers concepts to be summary representations, and so
basic concepts can easily be conceived of as those with many features and with few
features in common with other categories. That is, unlike the exemplar model, there
is no particular difficulty in representing the relations between categories in a way
that can accommodate basic-level structure. Furthermore, the knowledge view is
certainly consistent with the notion that people often have general category knowl-
edge of the sort “whales are mammals.” So, it seems that the knowledge view does
not explain the basic-category phenomena but is fully consistent with them.

The knowledge view expects there to be structural phenomena of concepts it
does not explain. That view does not argue that everything is due to background
knowledge—some of the basic content of a concept must be learned, and that learn-
ing process is no doubt subject to structural constraints that cut across domains.

There are however some signs even in this literature that knowledge has an effect.
For example, effects of expertise and cultural variation show that different interests
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and amount of knowledge can affect the basic level. In our culture, people know less
about biological kinds and so may have a higher basic level of categorization than
do people from other cultures. Whether this is truly an effect of “knowledge” in the
sense of domain-wide principles is not entirely clear, but it is clear that the environ-
ment itself does not completely determine the basic level.

Because domain knowledge tends to be about broad categories of things rather
than specific items, it is perhaps more likely to have an effect on superordinate cate-
gorization. A. Markman and Wisniewski (1997) argued that superordinates share
general frameworks or schemata rather than specific features. Consider vehicles for
example. Although not all vehicles have wheels, they all have something that allows
them to move over or through their medium. Not all have a steering wheel, but they
all have some mechanism for turning. Although vehicles differ in what they primar-
ily carry, they are all designed to carry something, from a single driver to many tons
of oil. These kinds of generalities are abstract ones that relate to the overall function
and place of vehicles in our society, which is what is captured by general domain
knowledge. So, one cannot say whether a given vehicle will have wheels, but one
knows that it will have wheels or wings or a hull or treads, and so on, because these
parts are necessary to allow the vehicle to move. The general schematic structure of
vehicles and other superordinates is tied to the knowledge we have about why such
things exist and how they operate.

All this having been said, I should reiterate that the knowledge approach does
not seem to be actually predicting the basic-level phenomena. Its proponents would
probably argue that background knowledge is a precondition for category learning
and use in general, but that it does not provide all the details of category structure.
For example, people list properties such as “has four legs” for the category of dogs,
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but they do not list “is found in North America,” ““is not found in Antarctica,
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eat pork products on Fridays,” “can be the same color as a bear,” and other un-
informative features. The knowledge view attempts to explain why people list fea-
tures such as ‘“has four legs” but not these (see chapter 6), and so it may be a
necessary part of explaining the informativeness and distinctiveness of basic catego-

ries, even if it does not directly predict them.!!
Conclusion
Of the three views, the prototype view seems to do the best in explaining levels of

categorization phenomena, because summary representations most naturally explain
the notion of category hierarchies and because the differentiation explanation
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proposed to explain basic-level structure is most easily construed in terms of concept
prototypes. At this stage, it is simply not clear how exemplar models will either
generate hierarchical structures or predict basic-level advantages in conceptual pro-
cessing. What is surprising is that there seems to be no careful attempt to address
these phenomena, even though they have been important ones in concept and se-
mantic memory research for over 25 years.

More generally, it should be noted that none of these theories actually predicted
(in the true sense of anticipating the results) basic-level structure and its explana-
tion—the account was post hoc for every theory. The reason for this is that Rosch
et al.’s (1976) findings were a genuine discovery. Previous writing in philosophy
and psychology on concepts did not lead us to notice these generalizations and
understand their importance. In this case, then, modern experimental psychology
has made an important contribution to our understanding of concepts at a descrip-
tive level, whatever theoretical explanation is eventually found to explain it.
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Induction

One of the major uses of categories is to make predictions about novel items. If a
friend calls me up and asks me to take care of her dog, as she cannot get home, I
know pretty much what to expect. Even if I have never met that individual dog, I do
know about dogs in general and what care they require. I don’t have to ask whether
I should water the dog, feed it, vacuum it, cultivate around its roots, launder it, and
so on, because I already know what sorts of things dogs need. In fact, it is exactly
this sort of inference that makes categories important. Without being able to make
sensible inferences about new objects, there would be very little advantage in know-
ing that something is a dog or couch or tree. Categorization in and of itself is not
useful—it is being able to apply category knowledge that is useful.

In the present chapter, when I talk about category-based induction, it is this sort
of inference process that I am referring to, that is, the extension of category infor-
mation to a new object or category. The term induction is quite broad, and it is also
used to refer to other aspects of conceptual processing. Most notably, induction is
the kind of reasoning that one uses when drawing conclusions about the category in
general, for example, in deciding that dogs generally drool and have fur based on a
few observed examples. (This is induction rather than deduction because it involves
drawing an uncertain inference to the category as a whole.) So, the initial learning of
a category is an inductive process. But the induction referred to here occurs with
categories that are already known. In one kind of induction, the target is an indi-
vidual object, like my friend’s dog. In another kind, one is attempting to draw con-
clusions about one category based on knowledge of another category. For example,
if I know that labrador retrievers are very friendly, will I conclude that golden re-
trievers are as well?

If one thinks of categories as grouping similar items, then the basis for induction
is pretty clear. Since dogs are generally similar, when I think about my friend’s dog,
I can assume that it shares properties common to dogs, such as needing food and
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water, having teeth, or barking. Thus, similarity is behind much of the logic of
induction. Categories whose members are extremely similar would have stronger
inductive power than those that are less similar. For this reason, more specific cate-
gories usually allow stronger inductions than general categories. If T know that my
friend has a pekinese, I can be more certain of what I will have to do than if all I
know is that my friend has a pet of some kind that needs care.

Category-based inductions are extremely common in communication. In talking
to people, we often refer to something by a simple category name and then assume
that they can draw the necessary inferences. “I have to go home because of my dog”
does not require any great effort to understand, because we know that dogs require
a high level of maintenance and cannot be left alone indefinitely. Speakers assume
that listeners will retrieve just this information about the category and use it to
comprehend the sentence (see chapter 11). One would not expect to be able to say
“I have to go home because of my couch” and get away without an explanation,
because couches in general do not have the high maintenance property.

It is not always clear in real life how much of an inference is derived from cate-
gory-based inference and how much comes about through information specific to
the individual object. For example, if you see a slavering doberman pinscher leaping
to the extent of its chain, snarling and barking, you may infer that it is aggressive.
Some of this may be due to your knowing that it is a doberman, but some of it is
clearly due to the properties of that particular animal. It is not known how those
two sources of information are integrated, as most experiments look solely at cate-
gory-level information, and the object is not described beyond its category mem-
bership. One exception was the developmental study of McCarrell and Callanan
(1995), who used pictures of animals with properties such as large eyes, large ears,
very long legs, and so on. They found that children drew inferences such as the
animals with large eyes being able to see in the dark. In a second experiment, they
manipulated whether the objects sharing such features were in the same category or
not. For example, children might be shown an animal with large eyes and told that
it could see well in the dark. Then they would be tested on animals that were similar
except that they had small eyes, or that had large eyes but differed in some other
dimension. Finally, sometimes the first kind of item had the same name as the target
item, and sometimes the second item did. McCarrell and Callanan found that pos-
session of the critical feature (large eyes in this case) was the most important factor
in children’s making the induction (seeing well in the dark); sharing the name had
only a small effect. These results suggest that information about a specific object can
override category-level information. For example, if the slavering, barking, snapping
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dog were an irish setter, you would probably conclude that this dog was very ag-
gressive, even if you believed that irish setters are remarkably pacific. However,
when the two sources of information, category and individual, are more ambiguous,
it is not clear to what degree they are integrated.

Although information about an individual may overrule it, true category-based
induction can be very important. In many cases, the property one is interested in is
simply not perceptible, either at the moment or permanently. I drew the inferences
about my friend’s dog before ever seeing it. If I were interested in biological prop-
erties of this dog, such as whether it has a spleen, I would have to base my conclu-
sion entirely on general category information, because it would take too much effort
to test a particular dog for a spleen. In these cases, people must rely on category-
based induction.

Research into category-based induction has typically used a kind of reasoning
task in order to investigate what influences the kinds of inductions people make.
The next sections describe this task, along with the basic results obtained. A subse-
quent section examines how multiple categories are used in making inductions when
categorization is uncertain. Finally, much work on categorical induction has been
done with children; this research is discussed in chapter 10.

Rips’s Induction Task

The modern study of category-based induction begins with Rips (1975), and much
of the subsequent research on the topic has used techniques based on his first ex-
periments. Rips began with measures of category structure in the domains of birds
and mammals. For simplicity, let’s just consider birds. He started with multidimen-
sional scaling solutions, or spatial representations, of the structure of the bird cate-
gory (from Rips, Shoben, and Smith 1973). These solutions provided information
about the similarity of the birds to one another and to the prototype of birds in
general. These measures of similarity and category structure were the bases for his
predictions of induction.

Another important aspect of Rips’s task was his choice of unfamiliar or blank
predicates. These are predicates that people do not already have very strong beliefs
about. For example, do birds have sesamoid bones? Most people do not know what
sesamoid bones are (though they can make general guesses), and so they cannot
answer directly based on their existing knowledge. Blank predicates like “has ses-
amoid bones” may tell us about category-based inductions in general, without any
influence of prior knowledge about the predicate. In contrast, suppose the question
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were about whether birds can fly. This predicate is something that people already
have many beliefs about, and so they might rely on their present knowledge rather
than on induction to answer questions about it. In the category induction task, sub-
jects are told a fact involving blank predicates for one category (or category member)
and then are asked whether the predicate applies to other categories (or members).
Rips used a single predicate in this study, namely whether members of a category
would catch an unknown disease. For example, if ducks had this contagious disease,
would robins be likely to get it? How about geese? Subjects had to provide the per-
centage of members of each category that they thought would catch the disease.
Thus, there are two main bases for drawing the induction: the given category (ducks
in the example) and the target categories (robins or geese).

Rips found that people’s willingness to extend this blank predicate to a new cate-
gory was increased by two things: the typicality of the given category, and the simi-
larity of the given to the target category. For example, inductions were stronger for
the given category of robins than for eagles; and an induction from geese to ducks
would be stronger than from geese to cardinals. The typicality of the target category
had no effect.! Why do these variables affect induction? The similarity of the two
categories is straightforward: If two things are similar, they are likely to share
properties. If ducks catch some disease, geese are likely to as well, given how similar
they are in many other respects. Less obvious is why typicality makes a difference.
According to Rips, the typicality of the given category bears on whether the predi-
cate is true of the entire category. “If a new property is known to belong to a typical
instance, subjects assume that it will belong to less typical instances as well, for
properties of typical instances tend to be widely shared. Conversely, if the property
is known to belong to atypical instances, subjects are hesitant to assume that it
could belong to more typical ones, since, by definition, many of the important
properties of atypical instances are idiosyncratic ...” (Rips 1975, p. 679). (I would
not say that less typical items have fewer common features by definition, but it cer-
tainly is empirically the case, as shown by Rosch and Mervis 1975, and as discussed
in chapter 2.) In short, when a robin catches the disease, people may well think that
this is a disease that all birds are subject to; when a duck catches it, they are less
likely to think so. This argument is supported by later findings that “category cov-
erage” is important, as I will discuss shortly.

It is worth emphasizing, then, that Rips’s account has a categorical and non-
categorical component. The similarity of the given and target items is not a ques-
tion of what category or categories they belong to. Indeed, the given and target
items could be individual objects not known to be in any category. However, the
typicality question is obviously a matter of categorization. That is, the fact that
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robins are typical birds is relevant to the induction from robins to ducks, on
Rips’s account, even though the question does not mention or ask about birds
in general. Most subsequent theories of category-based induction have also used
these two components, one based on the items’ similarity and one using category
information.

One counterintuitive consequence of Rips’s model is that the induction from X to
Y is not in general the same as from Y to X (see also Tversky 1977). For example,
the induction from a robin to a goose is more certain than the induction from a
goose to a robin. Although the similarity between the two items is the same in both
directions (in Rips’s model, though not in all), robin is much more typical than
goose is, and so it provides a better basis for induction. This prediction was con-
firmed by Osherson et al. (1990), as well by Rips.

For some reason, Rips’s results did not generate much interest in category-based
induction, and few studies were done on the topic for a number of years. The revival
of interest in this subject was probably due to the work in developmental psychol-
ogy of Gelman and Markman (1986), discussed in chapter 10. As this and subse-
quent work made clear that induction was a complex matter that children do not
master immediately, greater interest in the processes of adult induction also arose. In
any case, there is now a larger body of work on how categories and category struc-
ture influence induction in adults, much of it starting from Rips’s initial methods
and theory.

The Osherson et al. (1990) Model of Categorical Induction

One important set of studies was carried about by Osherson, Smith and their
students, who developed a formal model of reasoning that was closely related to
the Rips induction task. They generally presented arguments and asked subjects to
judge their confidence in the conclusion.? Here are two examples of such arguments
(from Osherson et al. 1990). Note that the premises are written above the line, and
the conclusion below the line. So, in reading the argument out loud, one should read
the line as saying “‘therefore.”

(1) Mosquitoes use the neurotransmitter Dihedron.
Ants use the neurotransmitter Dihedron.

Bees use the neurotransmitter Dihedron.

(2) Grizzly bears love onions
Polar bears love onions.

All bears love onions.
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These arguments again use blank predicates, as most people do not know what
neurotransmitters different insects use, nor do they know whether bears like onions.
Such arguments are an example of category-based induction because information is
provided about some categories, and then the conclusions are drawn about other
categories. The conclusion categories are typically categories at the same level and in
the same domain as the premise categories (e.g., bees are like ants and mosquitoes in
being a type of insect—or, at least, that’s what subjects believe), or else are super-
ordinates to the premise categories (e.g., grizzly bears and polar bears are types of
bears). Argument (1), then, is like Rips’s (1975) question in which one category was
given and another from the same superordinate served as a target. However, Osher-
son et al. allow more than one category to be in the premise, as in (1), and this will
generate important phenomena, as we shall see.

Osherson et al. developed a model of how people reason about such arguments,
based on the similarity of the categories involved. The model has two main parts. The
first is the similarity of the premise categories to the conclusion category. In (1), this
would be the similarity of mosquitoes and ants to bees; in (2), this would be the simi-
larity of grizzly bears and polar bears to bears. For cases like the latter, the similarity
of categories to a more inclusive category was calculated as the average similarity of
the items to the whole category. For cases like the former, the similarity they used was
the highest of the similarities of the premise to conclusion categories. For example, if
mosquitoes are highly similar to bees, but ants are not very similar, the overall sim-
ilarity of the premises to the conclusions would be the highest one—in this case, the
similarity of mosquitoes to bees. (Osherson et al. describe all this formally, and T am
slightly simplifying their proposal for expository purposes.) The first component of
their model, then, is the similarity of the premises to the conclusion.

The second component of their model is coverage—how well the premises cover
the smallest category that includes all the items in the problem. For example, in (1),
the smallest category would be insects; in (2), it would be bears. The basic predic-
tion is that when the premises are distributed across this category, subjects can be-
come more confident that the property is true of the entire category. For example,
suppose you know that dolphins, cows, and rabbits all use Dihedron. You might
feel pretty confident that mammals in general use Dihedron. In contrast, suppose
you know that dolphins, whales, and seals use Dihedron. You would probably be
less confident now that all mammals use Dihedron: You can’t generalize from these
examples to very different mammals.3 In general, then, the more diversity there is in
the premises, the stronger your induction should be. The important thing to note,
however, is that coverage is important not only in making judgments about whole
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categories, like mammals, but also about individual subcategories. For example, in
problem (1) the question is about a specific category, bees, rather than about insects
as a whole. Nonetheless, the degree to which the premise categories, mosquitoes and
ants, cover the insect category should influence the answer for bees. As coverage of
the smallest superordinate category increases, the strength of the argument increases.

Osherson et al. show that their model can explain a number of interesting phe-
nomena of inductive reasoning. I will present and analyze only a subset of the phe-
nomena they describe.

Premise typicality. In general, the more typical the item or items in the premise, the
stronger the argument is. So, (3) is stronger than (4):

(3) Robins have a high potassium concentration in their blood.

All birds have a high potassium concentration in their blood.

(4) Penguins have a high potassium concentration in their blood.

All birds have a high potassium concentration in their blood.

This result follows from the model because robins are on average more similar to
other birds than penguins are (Rosch and Mervis 1975). Thus, the model’s first
factor, premise-conclusion similarity, is greater for (3) than (4).

Premise diversity. The more diverse the premise categories, the stronger the argu-
ment. So, (6) is stronger than (5):

(5) Hippopotamuses require Vitamin K.
Rhinoceroses require Vitamin K.

Humans require Vitamin K.

(6) Hippopotamuses require Vitamin K.
Bats require Vitamin K.

Humans require Vitamin K.

The smallest category including the premise and conclusion categories is mammals
in both cases. Argument (6) has much better coverage of the mammal category than
does argument (5). (Similarity to humans is no greater in (6), since bats are not at all
similar to humans.) People judge arguments like (6) to be stronger, giving evidence
for the importance of the coverage variable.

Premise monotonicity. If you add more categories (all of them being at the same
level) to the premises, the argument gets stronger.
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(7) Foxes have sesamoid bones.
Pigs have sesamoid bones.

Gorillas have sesamoid bones.

(8) Foxes have sesamoid bones.
Pigs have sesamoid bones.
Wolves have sesamoid bones.

Gorillas have sesamoid bones.

As you add more categories, you must be increasing (or at least not decreasing) both
the similarity of the premises to the conclusion and the coverage of the category.
That is, with more categories, the diversity of the premises must be increasing, and
so you are covering the category better.

The inclusion fallacy. Finally, their model predicts a reasoning error similar to that
of the conjunction fallacy of Tversky and Kahneman (1982). Argument (9) is judged
to be stronger than argument (10):

(9) Robins have an ulnar artery.

Birds have an ulnar artery.

(10) Robins have an ulnar artery.

Ostriches have an ulnar artery.

That is, people sometimes claim that the argument is stronger when the conclusion
is a whole category than when it is a subset of that category. This must be an error,
however, because if something is true of all birds, then it is true of ostriches as well.
So, if robins having a property makes you think that birds have the property, you
should think that ostriches have it at least as much. (Indeed, because it is possible
for ostriches to have it without all other birds, like penguins or seagulls having it,
you should probably be feel that (10) is stronger, though that is not logically
required.)*

This fallacy follows from the Osherson et al. model, however. The coverage of the
premises of (9) and (10) are the same, because the premises are identical. However,
the similarity of the premise and conclusion category are not the same: Robins are
similar to birds in general but not very similar to ostriches in particular. Thus, (9)
appears to be a stronger argument, even though (10) is logically entailed by it. This
kind of fallacy will occur when the premise is very typical, and the specific conclu-
sion (as in (10)) is very atypical. It is not that surprising that people do not follow



Induction 251

logic: They hardly ever do. What is impressive is that the model can explain this
kind of fallacy, along with the other phenomena of induction.’

This group has extended their work into related areas, often addressing issues in
the psychology of reasoning rather than concepts (e.g., Osherson et al. 1991).
Although beyond the scope of our discussion, such work gives greater evidence for
the similarity-based approach they adopt for categorical inductions. Sloman (1993)
extended this model with a more detailed representation of similarity that, he
argued, obviated the need for coverage as a component in the induction process.
However, his overall approach is actually fairly consistent with that of the Osherson
et al. approach.

Although this chapter is not primarily focusing on developmental issues, it is
nonetheless interesting to discover that the model can explain important aspects of
children’s inductive ability. Lopez et al. (1992) examined many of the phenomena
that Osherson et al. (1990) did (e.g., the typicality, diversity and monotonicity phe-
nomena described earlier). They found that kindergartners (5-year-olds) demon-
strated phenomena that relied primarily on the similarity component of the model.
For example, they judged that inductions from dogs to all animals were stronger
than those from bats to all animals. However, they did not show evidence of using
the coverage component of the model. For example, as more premise categories
were added, kindergartners did not find the argument to get stronger (cf. premise
monotonicity above), nor did they use premise diversity.

By second grade (8 years of age), children did use the coverage component, in
some situations at least. For example, they recognized that all animals would be
more likely to have a property shared by cats and buffalos than one shared by cows
and buffalos. However, even 8-year-olds did not use coverage when they were re-
quired to figure out the covering superordinate category on their own. That is, they
used coverage when the target category was all animals but not when it was an in-
dividual animal. Lopez et al. speculate that this could reflect the children’s limited
ability to categorize at the superordinate level (see chapter 10).

Thus, these results give evidence for the two processes Osherson et al. (1990)
proposed as being involved in category-based induction. The similarity process is a
very basic one, probably the same one used in categorization and typicality judg-
ments, and therefore it is available for reasoning processes at an early age. Lopez
et al. (1992, p. 1075) suggest that the coverage computations may be too difficult
for very young children to calculate, which is why they take longer to develop. An
alternative possibility is that children do not understand the principle behind the use
of coverage, that diverse evidence provides a stronger basis for inductions than does
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uniform evidence. One suggestion that this might be true is the finding that adults
in some different cultures also do not appear to use the coverage component, even
though they do use the similarity component (Lopez et al. 1997). Coverage may be a
specific piece of cultural knowledge or practice that needs to be acquired, rather
than a cognitive universal that everyone eventually develops. Perhaps, then, kinder-
gartners simply have not acquired this piece of knowledge, and second-graders have,
to some degree. In any case, the developmental and cross-cultural results give gen-
eral confirmation of the notion that two different processes are involved in category-
based induction, as described by Osherson et al. (1990).

Limitations of the Osherson et al. (1990) Model
There has been some criticism of the Osherson et al. approach, however. These
criticisms have claimed that global similarity is too broad a measure to account for
subtler effects of induction, much like other arguments about the limitations of
similarity in concept theory (see chapter 6). Most of these effects come about when
predicates are not entirely “blank.” Of course, the examples used above are not en-
tirely blank in that people have some idea of what they mean, even if they do not
know which categories have the properties. So, if I am asked to judge whether bees
use the neurotransmitter Dihedron, I know that Dihedron is a neurotransmitter, and
I know something about what neurotransmitters are and what they do. I know even
more about “love onions” in argument (2) (this presumably refers to loving to eat
onions rather than an emotional attachment, and I have some inklings about what
bears might eat). To completely avoid any effect of knowledge, one would have to
use phrases such as “has property P,” which give no clue as to the property’s nature.
But such examples might not tell us much about real-world induction, since the
properties of real categories are quite meaningful. So, it is important to know
whether results from such experiments can be extended to familiar predicates.®
Heit and Rubinstein (1994) carried out an important study of how categorical
induction depends on the predicate. They proposed that induction depends on the
relation between the property and the basis of the similarity between the premise
and conclusion categories. (They considered only the two-category case.) For ex-
ample, animals can be similar because of their biology or because of their behavior
and ecologies. Whales and sharks may have similar behaviors but are different in
important aspects of their physiology and anatomy. In contrast, whales and rabbits
share some important biological structures but are extremely different in most other
respects. The Osherson et al. model relies on only one similarity measure to predict
induction, and so the fact that items are similar or dissimilar in different respects
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is not relevant. Furthermore, the particular predicate used does not influence per-
formance in their model (though note that they explicitly restricted it to blank
predicates).

Heit and Rubinstein constructed arguments of the following sort:

(11) Given that tuna/rabbits have blood that contains between 2% and 3%
potassium, how likely are whales to have blood that contains between 2% and 3%
potassium?

(12) Given that tuna/rabbits usually gather a large amount of food at once, how
likely are whales to usually gather a large amount of food at once?

Some subjects would see the questions with tuna and others with rabbits. Heit and
Rubinstein predicted that when the predicate was a biological one, like (11), the in-
duction would be stronger for biologically related pairs like rabbits and whales. But
when the predicate was behavioral, like (12), the induction would be stronger for
behaviorally related pairs, like tuna and whales. Because an interaction is being pre-
dicted, the overall likelihood of the conclusion (e.g., whales eating a large amount of
food at once) is controlled for. The results confirmed their prediction (and see Ross
and Murphy 1999 for another example).

A similar demonstration was carried out by Kalish and Gelman (1992). Because
this is described in some detail in chapter 10, I will discuss it only briefly here. Kalish
and Gelman gave children combined concepts such as wooden pillows and asked
them whether they would be hard or soft. The two concepts conflicted in their impli-
cations for these properties: Pillows are soft, but wooden things are hard. Nonethe-
less, children could figure out which category should control the property, saying
that wooden pillows are hard. This was not solely a bias toward wooden things (in
this example), because the children said that wooden pillows would be kept in the
bedroom, like other pillows. In general, whether a predicate can be generalized across
category members depends on knowing the kinds of predicates that are appropriate
for induction in each domain (what Goodman 1965 called overbypotheses). This, in
turn, may require sophisticated knowledge and reasoning ability. Heit and Rubin-
stein (1994, p. 420) point out that it would be awkward to use different simi-
larity metrics to try to account for each kind of property induction. Instead, they
suggest that “prior knowledge could be used dynamically to focus on certain fea-
tures when similarity is evaluated. In this conception, inductive reasoning is an
active process in which people identify the features in the premise and conclusion
categories that are relevant to the property being inferred.” So, rather than judging
overall similarity, as in the Osherson et al. model, people may more specifically
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focus on the particularly relevant way in which the categories are related. One way
to think of this is that the similarity computation is based not on the concepts’ total
properties but on the properties that are specifically relevant to the predicate under
question (Heit and Rubinstein, p. 421).

A somewhat different question investigated by Coley, Medin, and Atran (1997)
turns out also to have implications for the Osherson et al. model. These authors asked
whether induction shows a basic-level advantage. In particular, they asked whether
one would find a pattern in induction similar to that in feature listing or other tasks
investigated by Rosch et al. (1976; see chapter 7). In feature listing, for example,
subjects list many properties for basic-level categories, and only a few for super-
ordinates. Subordinates added only a feature or two to the basic categories. Thus,
the basic level is a kind of “break point,” because basic categories carry much more
information than more general categories but little less than more specific categories.
If induction follows the same pattern, then people should be willing to draw induc-
tions for basic-level categories (like hammers) but not for superordinates (like tools).
The strength of induction for subordinates (like claw hammers) should only be
slightly greater than that for the basic categories.

Coley et al. first tested Itzaj Mayan Indians in Guatemala. The Itzaj, like many
other traditional agricultural societies, seem to form their basic level for biological
kinds at the genus. For example, they tend to identify a bird as a hawk rather than
as a red-tailed hawk (species) or bird (lifeform). If the basic category hawk is the
privileged level for induction, then subjects should be willing to draw inductions
from one kind of hawk to hawks in general. However, they should be less willing to
draw an induction from, say, hawks to birds in general. This is exactly the pattern
that was found. When the Itzaj subjects were told that one category could get a
disease, they inferred that other members of the species or genus would also get the
disease. However, they did not infer that members of the lifeform or kingdom (ani-
mals and plants) would get the disease. Thus, the genus level—apparently the basic
level—served as a break point for induction as just described.

Coley et al. (1997) also investigated the inductions of American college students.
The picture here is a bit more complex, however, because most Americans have
their basic level at a different level than do traditional societies. That is, for Ameri-
cans, the basic level is bird, tree, or fish, instead of sparrow, oak, or trout (genera).”
Rosch et al. (1976; and Dougherty 1978) argued that Americans’ lack of knowledge
about the genus categories makes these categories less distinctive. For example, most
Americans do not know enough about trout, bass, and perch to be able to tell them
apart very reliably. As a result, concepts at this level do not add much more infor-
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mation than the concept fish, and so they are subordinates, like claw hammer or
dining room table. If one makes predictions based on Rosch et al.’s (1976) findings,
then, the preferred level of induction for Americans should not be the genus level, as
it was for the Itzaj, but should be at the lifeform level—bird, fish, tree, and so on.

In a number of experiments, Coley et al. found that this was not the case. Instead,
the American subjects also showed a pattern in which the genus was the preferred
level for making inductions. Although the pattern did not seem as strong as that for
the Itzaj, it was clear that Americans did not prefer to draw inductions from, say,
sparrows to all birds, as they should have if they preferred to draw inductions at
their basic level. Coley et al. suggest that subjects may be able to recognize that dif-
ferent genera are biologically distinct, even if they do not know features that distin-
guish them. This is clearly related to the idea of an essence underlying biological
kinds (Medin and Ortony 1989): People think that oaks are a coherent biological
class with similar genetic, evolutionary, and physiological properties, even though
they cannot say what those properties are. This belief drives their inductions, rather
than the actual knowledge that they have about oaks. The unsolved question is
exactly why they have these beliefs about oaks and hawks and salmon. One possi-
bility Coley et al. propose is the structure of the names: Oak is a monolexemic name
like hammer, and its subordinates have names that are modifications of it, like bur
oak or pin oak. This pattern suggests that oaks are the basic kind rather than a
higher or lower level.

In any case, one implication of these interesting results is that induction cannot be
driven only by similarity structure. Rosch et al.’s feature-listing results show that
American subjects know a lot of common properties of trees, but little more about
oaks (to pick one example). Thus, according to Osherson et al.’s model, subjects
should have been very willing to draw an induction from one kind of tree (say, oak)
to another kind (say, maple), because oaks and maples would be very similar. But
this did not happen. If Coley et al.’s (1997) explanation for their results is correct,
it suggests that induction is at least partly determined by more general beliefs and
expectations about the domain, rather than by simple similarity. Although Ameri-
cans may not know enough about oaks and maples to distinguish them very well,
they believe that they are biologically different, and this belief, rather than their
perceived similarity, drives the induction decisions.

A more radical departure from the Osherson et al. model (and indeed the whole
general approach to category-based induction) is seen in recent findings in which
people appear to use an entirely different basis for making inductions. For example,
Lin and Murphy (2001) found that people were willing to make inductions from
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one category to a very different one that was related by being found in similar
situations, a thematically related item. For example, using the feature “having a
new bacteria,” they found that most subjects preferred to make inductions from
cat to kitty litter over inductions from cat to lion; similarly, they preferred induc-
tions from toothbrushes to teeth over toothbrushes to hairbrushes. If similarity were
the primary basis for induction, subjects would have always preferred the taxo-
nomically related items (cat-lion; toothbrush-hairbrush), which were much more
similar. However, subjects apparently reasoned quite differently, thinking that bac-
teria are transmitted by spatial proximity, and so things that are close together will
be more likely to share bacteria. Note that none of the previous studies discussed
could have revealed this (or an analogous) result, since they only used taxonomi-
cally related items.

Recent work by Proffitt, Coley, and Medin (2000) gives a similar example. These
researchers asked tree experts to make inductions about disease. That is, given that
tree X had a disease, would tree Y or tree Z be more likely also to have the disease?
The subjects also explained their decisions. Although the experts sometimes used
similarity of the sort Osherson et al. would have expected, they also frequently used
other strategies, such as reasoning about ecological relatedness (“trees X and Y are
both swamp trees”) or about specific mechanisms of disease and a tree’s suscepti-
bility to disease. Essentially, the experts appeared to be developing a causal expla-
nation of how the disease might spread from one tree to another, rather than simply
relying on category membership and similarity. Lopez et al. (1997) report similar
evidence in their stud