

ffirs 19 August 2011; 15:40:2

MAKING SENSE OF DATA III

ffirs 19 August 2011; 15:40:2

ffirs 19 August 2011; 15:40:2

MAKING SENSE OF DATA III
A Practical Guide to Designing
Interactive Data Visualizations

Glenn J. Myatt
Wayne P. Johnson

ffirs 19 August 2011; 15:40:3

Copyright r 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,

except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley &

Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and authors have used their best

efforts in preparing this book, they make no representations or warranties with respect to the

accuracy or completeness of the contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose. No warranty may be created or

extended by sales representatives or written sales materials. The advice and strategies contained

herein may not be suitable for your situation. You should consult with a professional where

appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any

other commercial damages, including but not limited to special, incidental, consequential, or other

damages.

For general information on our other products and services or for technical support, please contact

our Customer Care Department within the United States at (800) 762-2974, outside the United

States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic formats. For more information about Wiley products, visit our

web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Myatt, Glenn J., 1969-

Making sense of data III : a practical guide to designing interactive data visualizations / Glenn

J. Myatt, Wayne P. Johnson.

p. cm

Includes bibliographical references and index.

ISBN 978-0-470-53649-0 (pbk.)

1. Data mining. 2. Information visualization. I. Johnson, Wayne P. II. Title.

III. Title: Making sense of data 3. IV. Title: Making sense of data three.

QA76.9.D343M93 2012

006.3u12–dc23
2011016267

Printed in the United States of America

oBook ISBN: 978-1-118-12161-0

ePDF ISBN: 978-1-118-12158-0

ePub ISBN: 978-1-118-12160-3

eMobi ISBN: 978-1-118-12159-7

10 9 8 7 6 5 4 3 2 1

ffirs 19 August 2011; 15:40:3

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

CONTENTS

Preface ix

Acknowledgments xiii

1 Introduction 1

1.1 Overview / 1

1.2 Visual Perception / 2

1.3 Visualization / 5

1.4 Designing for High-Throughput Data Exploration / 9

1.4.1 The IA (Intelligence Amplified) System / 9

1.4.2 Design / 10

1.4.3 Data / 15

1.5 Summary / 18

1.6 Further Reading / 18

2 The Cognitive and Visual Systems 20

2.1 External Representations / 21

2.2 The Cognitive System / 24

2.2.1 The Matter of Thought / 25

2.2.2 Mental Processes and Internal Representations / 28

2.3 Visual Perception / 29

2.3.1 The Problem of Scene Recognition / 30

2.3.2 Levels of Explanation / 30

2.3.3 Illuminating the Environment / 31

2.3.4 The Eye and Visual Pathways / 32

2.3.5 Processing the Retinal Image / 36

2.3.6 Color / 45

v

ftoc 19 August 2011; 15:41:25

2.4 Influencing Visual Perception / 53

2.4.1 Eye Movements / 54

2.4.2 Attention / 56

2.4.3 Memory / 60

2.5 Summary / 62

2.6 Further Reading / 63

3 Graphic Representations 65

3.1 Jacques Bertin: Semiology of Graphics / 66

3.1.1 The Essence of Semiotics / 66

3.1.2 The Properties and Structure of the Information / 71

3.1.3 The Properties of the Graphics System / 75

3.1.4 Constructing Efficient Graphics / 82

3.2 Wilkinson: Grammar of Graphics / 86

3.2.1 The Graphic Pipeline / 87

3.2.2 The Graphic Specification / 88

3.2.3 Components of the Grammar / 91

3.3 Wickham: ggplot2 / 96

3.3.1 The Graphic Pipeline / 97

3.3.2 The Graphic Specification and Components / 98

3.4 Bostock and Heer: Protovis / 101

3.5 Summary / 102

3.6 Further Reading / 103

4 Designing Visual Interactions 104

4.1 Designing for Complexity / 104

4.2 The Process of Design / 107

4.2.1 Analyze / 110

4.2.2 Design / 114

4.2.3 Prototype / 120

4.2.4 Evaluate / 121

4.3 Visual Interaction Design / 121

4.3.1 Visual Interfaces / 123

4.3.2 Visualizations / 131

4.3.3 Graphics / 137

4.3.4 Real-Time Constraints / 142

4.4 Summary / 143

4.5 Further Reading / 144

vi CONTENTS

ftoc 19 August 2011; 15:41:25

5 Hands-On: Creating Interactive Visualizations
with Protovis 146

5.1 Using Protovis / 146

5.1.1 Overview / 146

5.1.2 Getting Started / 147

5.1.3 Chapter Overview / 150

5.1.4 Exercise / 151

5.2 Creating Code Using the Protovis Graphical Framework / 151

5.2.1 Overview / 151

5.2.2 Panels / 152

5.2.3 Marks / 154

5.2.4 Using Functions / 157

5.2.5 Variables / 160

5.2.6 Exercises / 162

5.3 Basic Protovis Marks / 163

5.3.1 Bar / 163

5.3.2 Label / 166

5.3.3 Dot / 171

5.3.4 Line / 174

5.3.5 Area / 177

5.3.6 Wedge / 181

5.3.7 Images / 184

5.3.8 Exercises / 186

5.4 Creating Customized Plots / 187

5.4.1 Colors / 187

5.4.2 Formatting / 191

5.4.3 Anchors / 194

5.4.4 Rule / 198

5.4.5 Scales / 200

5.4.6 Exercises / 210

5.5 Creating Basic Plots / 211

5.5.1 Overview / 211

5.5.2 Handling Arrays and Data / 211

5.5.3 Reading Data from Files / 212

5.5.4 Worked Examples / 214

5.5.5 Exercises / 222

5.6 Data Graphics / 223

5.6.1 Frequency Histograms / 223

CONTENTS vii

ftoc 19 August 2011; 15:41:25

5.6.2 Box-and-Whisker Plots / 228

5.6.3 Scatterplots / 232

5.6.4 Exercises / 235

5.7 Composite Plots / 237

5.7.1 Creating Grouped Plots Using Multiple Panels / 237

5.7.2 Inheritance / 238

5.7.3 Property Chaining / 240

5.7.4 Creating Plot Matrices Using Multiple Panels / 242

5.7.5 Layout Management / 253

5.7.6 Networks / 254

5.7.7 Hierarchies / 257

5.7.8 Sparklines / 260

5.7.9 Exercises / 262

5.8 Interactive Plots / 263

5.8.1 Overview / 263

5.8.2 Tooltips / 263

5.8.3 Hyperlinks / 264

5.8.4 Local Variables and Events / 266

5.8.5 Behavior / 267

5.8.6 Exercises / 271

5.9 Protovis Summary / 273

5.10 Further Reading / 275

Appendix A Exercise Code Examples 277

Bibliography 361

Index 365

ftoc 19 August 2011; 15:41:25

viii CONTENTS

PREFACE

Across virtually every field in science and commerce, new technologies are
enabling the generation and collection of increasingly large volumes of complex
and interrelated data that must be interpreted and understood. The changes are
pushing visualization to the forefront and have given rise to fields such as visual
analytics, which seeks to integrate visualization with analytical methods to
help analysts and researchers reason about complex and dynamic data and
situations. Visual systems are being designed as part of larger socio-technical
environments based on advanced technologies in which work is done colla-
boratively by various experts. The boundaries between the design of visual
interfaces, information visualization, statistical graphics, and human-computer
interaction (HCI) are becoming increasingly blurred. In addition, design of
these systems requires knowledge spread across academic disciplines and
interdisciplinary fields such as cognitive psychology and science, informatics,
statistics, vision science, computer science, and HCI.

The purpose of this book is to consolidate research and information from
various disciplines that is relevant to designing visual interactions for complex
data-intensive systems. It summarizes the role human visual perception and
cognition play in understanding visual representations, outlines a variety of
approaches that have been used to design visual interactions, and highlights
some of the emerging tools and toolkits that can be used in the design of visual
systems for data exploration. The book is accompanied by software source
code, which can be downloaded and used with examples from the book or
included in your own projects.

The book is aimed toward professionals in any discipline who are interested
in designing data visualizations. Undergraduate and graduate students taking
courses in data mining, informatics, statistics, or computer science through a
bachelors, masters, or MBA program could use the book as a resource. It is
intended to help those without a professional background in graphic or
interaction design gain insights that will improve what they design because
many smaller projects do not include professional designers. The approaches
have been outlined to an extent that software professionals could use the book
to gain insight into the principles of data visualization and visual perception to
help in the development of new software products.

ix

fpref 19 August 2011; 9:41:55

The book is organized into five chapters and an appendix:

� Chapter 1 Introduction: The first chapter summarizes how visual percep-
tion affects what we see, provides a brief history of the use of visualization
in data exploration, and outlines the design process.

� Chapter 2 The Cognitive and Visual Systems: The second chapter describes
how various drawings, maps, and diagrams (known as external represen-
tations) are understood and used to extend the mind’s capabilities. It
introduces the computational theory of the mind in the context of how the
mind perceives and processes information from the external world. Based
on research from vision science, this chapter describes how the human
visual system works, how visual perception processes what we see, and
how visual representations can be designed to influence visual perception.

� Chapter 3 Graphic Representations: The third chapter discusses the
seminal work of Jacques Bertin, a cartographer who applied semiotic
theory to statistical graphics. After introducing semiotic theory, the chapter
discusses Bertin’s ideas of the structure and properties of graphics and his
observations on ways to construct graphics that communicate efficiently.
The chapter also outlines the grammar of graphics developed by Leland
Wilkinson and two grammar-based software libraries: ggplot2 for the
System R statistical environment by Hadley Wickham and Protovis for
Web browser environments by Michael Bostock and Jeffrey Heer.

� Chapter 4 Designing Visual Interactions: The fourth chapter assumes that
the designs of visual interactions are for complex data-intensive systems.
Beginning with a discussion of how the perception of complexity differs
from operational complexity, the chapter then outlines in detail the four
stages of the process of design: analysis, design, prototyping, and evalua-
tion. It covers some of the important principles and strategies for
designing visual interfaces, information visualizations, and data graphics
as well as the time thresholds for various cognitive and perceptual
processes that impose real-time constraints on design.

� Chapter 5 Hands-On: Creating Interactive Visualizations with Protovis:
The fifth chapter provides an in-depth explanation of the capabilities of
the Protovis toolkit. The chapter leads you through the creation of a series
of visualizations and graphics defined by the Protovis specification
language, beginning with simple examples and proceeding to more
advanced visualizations and graphics. It includes a discussion of how to
access, run, and use the software. Exercises are provided at the end of each
section.

� Appendix A Exercise Code Examples: This appendix provides the source
code for the exercise examples in Chapter 5.

This book assumes that you have a basic understanding of statistics. An
overview of these topics has been given in Chapters 1, 3, and 5 of a previous

x PREFACE

fpref 19 August 2011; 9:41:55

book in this series: Making Sense of Data: A Practical Guide to Exploratory
Data Analysis and Data Mining.

The book discusses visual interaction design starting with an explanation of
how the mind perceives visual representations. Knowing the perceptual and
cognitive framework allows design decisions to be made from “first principles”
rather than just from a list of principles and guidelines. The “Further Reading”
section at the end of each chapter suggests where you can find more detailed
and other related information on each topic.

Accompanying this book is a Web site (www.makingsenseofdata.com/) that
includes the software source code for the examples and solutions to the
exercises in Chapter 5.

PREFACE xi

fpref 19 August 2011; 9:41:55

fpref 19 August 2011; 9:41:55

ACKNOWLEDGMENTS

In putting this book together, we thank the National Institutes of Health for
funding our research on chemogenomics (Grant 1 R41 CA139639-01A1). Some
of the ideas in this book came out of that work. We thank Dr. Paul Blower for
his considerable help in understanding chemical genomics and the ways in
which visualizations could be used in that field, and for allowing us to try new
ways of prototyping design concepts. We thank the staff at John Wiley & Sons,
particularly Susanne Steitz-Filler, for their help and support throughout the
project. Finally, Wayne thanks his wife, Mary, for her support throughout this
project.

xiii

flast 19 August 2011; 9:39:20

flast 19 August 2011; 9:39:20

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Across the spectrum of human enterprise in government, business, and science,
data-intensive systems are changing the scale, scope, and nature of the data to
be analyzed. In data-intensive science (Hey et al., 2009), various instruments
such as the Australian Square Kilometre Array (SKA) of radio telescopes
(www.ska.gov.au), the CERN Hadron particle accelerator (http://public.web.
cern.ch/public/en/lhc/Computing-en.html), and the Pan-STARRS array of
celestial telescopes (http://pan-starrs.ifa.hawaii.edu/public/design-features/
data-handling.html) are complex systems sending petabytes of data each year
to a data center. An experiment for drug discovery in the pharmaceutical and
biotechnology industries might include high-throughput screening of hundreds
of thousands of chemical compounds against a known biological target, or
high-content screening of a chemical agent against thousands of molecular
cellular components from cancer cells, such as proteins or messenger RNA.
Data-intensive science has been called the fourth paradigm that requires a
transformed scientific method with better tools for the entire research cycle
“from data capture and data curation to data analysis and data visualization.”
(Hey et al., 2009)

In 2004, the Department of Homeland Security chartered the National
Visualization and Analytics Center (NVAC) to direct and coordinate research

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1

c01 19 August 2011; 11:12:17

and development of visual analytics technology and tools. Its major objectives
included defining a long-term research and development agenda for visual
analytics tools to help intelligence analysts combat terrorism by enabling
insights from “overwhelming amounts of disparate, conflicting, and dynamic
information.” (Thomas & Cook, 2005) This has given rise, more broadly, to the
emerging field of visual analytics. The field seeks to integrate information
visualization with analytical methods to help analysts and researchers reason
about complex and dynamic data and situations. But why the emphasis on
visualization as a key element in the solution to helping with the problem of
data overload?

In 1994, Frederick Brooks in an acceptance lecture given for the ACM Allen
Newell Award at SIGGRAPH said:

“If indeed our objective is to build computer systems that solve very challenging

problems, my thesis is that IA.AI; that is, that intelligence amplifying systems

can, at any given level of available systems technology, beat AI [artificial

intelligence] systems. . . . Instead of continuing to dream that computers will

replace minds, when we decide to harness the powers of the mind in mind-machine

systems, we study how to couple the mind and the machine together with broad-

band channels. . . . I would suggest that getting information from the machine

into the head is the central task of computer graphics, which exploits our

broadest-band channel.”

As shown in Fig. 1.1, to effectively design intelligence amplifying (IA)
systems requires an understanding of what goes on in the mind as it interacts
with a visual system. Clues about how the mind interprets the digital world
come from what is known about how the mind interprets the physical world, a
subject that has been studied in vision science.

1.2 VISUAL PERCEPTION

Imagine yourself driving into an unfamiliar large metropolitan city with a
friend on a very crowded multilane expressway. Your friend, who knows the
city well, is giving you verbal directions. You come to a particularly compli-
cated system of exits, which includes your exit, and your friend says “follow
that red sports car moving onto the exit ramp.” You check your rearview

The human
mind

Visual system

FIGURE 1.1 Intelligence amplified through visual interaction

c01 19 August 2011; 11:12:17

2 INTRODUCTION

mirror, look over your shoulder, engage your turn signal, make the appropriate
adjustments to speed, and begin to move into the space between the vehicles
beside you and onto the exit ramp. Had this scenario taken place, you would
have been using visual perception to inform and guide you in finding your way
into an unfamiliar city.

The human visual system, which comprises nearly half of the brain, has
powerful mechanisms for searching and detecting patterns from any surface
that reflects or emits light. In the imagined scenario, the optic flow of
information moment by moment from various surfaces—the paint on the
road dividing the lanes, the vehicles around you, the traffic signs, the flashing
lights of turn signals or brake lights—creates scenes taken in and projected onto
the retinas at the back of the left and right eyes as upside-down, two-
dimensional (2-D) images. The visual system, through various processes
executed by billions of highly connected biological computational elements
called neurons operating in parallel, extracts information from a succession of
these pairs of images in a fraction of a second and constructs a mental
representation of the relevant objects to be aware of while navigating toward
the exit ramp and their location in the external world.

The perception of a scene from a single moment in time is complex. A 3-D
world has been flattened into a pair of 2-D images from both eyes that must be
reconciled and integrated with information from past experience, previous
scenes, and other sources within the brain to reconstruct the third dimension
and generate knowledge relevant to the decisions you are making. There are
several theories about how the various perceptual processes work, the repre-
sentations of their inputs and outputs, and how they are organized. But a
generally accepted characterization of visual perception is as stages of infor-
mation processing that begin with the retinal images of the scene as input and
end with some kind of conceptual representation of the objects that are used by
thought processes for learning, recall, judgment, planning, and reasoning. This
information-theoretic approach divides the general processing that takes place
in vision into four stages as shown in Fig. 1.2.

Image-based processing includes extracting from the image simple 2-D
features, such as edge and line segments or small repeating patterns, and their
properties, such as color, size, orientation, shape, and location.

Image-based
processing

Surface-based
processing

Object-based
processing

Category-
based

processing

feedback

FIGURE 1.2 Information-theoretic view of visual perception

c01 19 August 2011; 11:12:17

1.2 VISUAL PERCEPTION 3

Surface-based processing uses the simple 2-D features and other information
to identify the shapes and properties of the surfaces of the objects in the
external world we see, and attempts to determine their spatial layout in
the external world, including their distance from us. However, many surfaces
of objects are hidden because they are behind the surfaces of objects closer to us
and cannot be seen.

Object-based processing attempts to combine and group the simpler features
and surfaces into the fundamental units of our visual experience: 3-D
representations of the objects and their spatial layout in the external world
of the scene. The representation of an object is of a geometric shape that
includes hidden surfaces, the visible properties of the object that do not require
information from experience or general knowledge, and 3-D locations.

Category-based processing identifies these objects as they relate to us by
linking them with concepts from things we have seen before or are part of our
general understanding of the world, or that are being generated by other
systems in the brain such as those processing speech and language. Classifica-
tion processing uses visible properties of the object against a large number of
conceptual patterns stored in our memory to find similar categories of objects.
Decision processing selects a category from among the matching categories
based either on novelty or uniqueness.

The visual processing just described is a simplification of the process and
assumes a static scene, but the world is dynamic. We or the objects in our visual
field may be moving. Moment by moment we must act, think, or reflect, and the
world around us is full of detail irrelevant to the task at hand. The optical flow,
a continuous succession of scenes, is assessed several times a second by small
rapid movements of our eyes called saccades that sample the images for what is
relevant or interesting. In between, our gaze is fixed for only fractions of a
second absorbing some of the detail, for there is far too much information for
all of it to be processed. The overload is managed by being selective about
where to look, what to take in, and what to ignore. Vision is active, not passive.
What we perceive is driven not only by the light that enters our eyes but also by
how our attention is focused. Attentional focus can be elicited automatically
by distinct visual properties of objects in the scene such as the color of a surface
or the thickness of a line, or by directing it deliberately and consciously. We can
intentionally focus on specific objects or areas of the scene relevant to the task
overtly, through movement of the eyes or head, or covertly within a pair of
retinal images, through a mental shift of attention.

In the imagined scenario earlier, by uttering the phrase “follow that red
sports car,” your friend defined for you a cognitive task—move toward an
object on the exit ramp—and described the particular object that would
become the target of a visual query with distinct properties of color and shape
to help you perform it. The instruction triggered a series of mostly unconscious
events that happened in rapid succession. Based on the goal of looking for red
objects along exit ramps and prior knowledge that exit ramps are typically on
the outer edge of the highway, the attentional system was cued to focus along

c01 19 August 2011; 11:12:17

4 INTRODUCTION

the outer edge of the expressway. Eye movements, closely linked with attention,
scanned the objects being visually interpreted in this region. The early part of
the visual processing pathway was tuned to select objects with red color
properties. Red objects within the focal area, assuming there were only a few
in sight, were identified almost immediately by the visual system and indexed in
a visual memory buffer. These were categorized and considered by later-stage
cognitive processes, one at a time, until the red sports car was found.

The goal shifted to tracking and following the sports car. Your eyes fixed on
the sports car for a moment and extracted information about its relative
distance from you by processing visual cues in the images about depth. These
cues included occlusion (the vehicles whose shapes obscure other vehicles are in
front), relative size (the longer painted stripes of a lane divider are closer than
the shorter ones), location on the image (the closer painted stripes are below the
farther painted stripes of a lane divider), and stereopsis (differences in location
of the same object in the image from the left and right eye that allowed
calculation of the object’s distance from you). The eyes then began a series of
saccades targeting the vehicles in front of and next to you to build up the scene
around your path as you maneuvered toward the exit.

Every day as you reach for the handle of a cup, scan the spines of books on
the shelves of a library or surf the Web, your eyes and brain are engaged in this
kind of interaction and activity to parse and interpret the visual field so that
you can make decisions and act. Yet you are mostly unaware of the many
complex transformations and computations of incoming patterns of light made
by the neural cells and networks of your brain required to produce a visual
experience of a spatially stable and constant world filled with continuous
movement. Replace the scene of the external world with visual forms that can
be displayed on computer screens, and the same neural machinery can be used
to perceive an environment of digital representations of data to make different
kinds of complex decisions. If the visual forms are carefully designed to take
advantage of human visual and cognitive systems, then we will more
easily find or structure individual marks such as points, lines, symbols, or
shapes in different colors and sizes that have been drawn to support various
cognitive tasks.

1.3 VISUALIZATION

The scenario in the previous section used visualization—imagining what was
not in sight—to introduce the human visual and cognitive systems. The
technical fields of scientific, data, and information visualization and visual
analytics use the term visualization differently to mean techniques or technolo-
gies that can be thought of as visualization tools (Spence, 2001) for making
data visible in ways that support analytical reasoning. The essence of this
definition includes the person doing the analysis, the user interfaces and

c01 19 August 2011; 11:12:17

1.3 VISUALIZATION 5

graphics that we will call visual forms, and the data. We cannot design effective
visualization tools or systems without thinking about the following:

� The analytical tasks, the work environment in which these tasks are done,
and the strategies used to perform them

� The content and structure of the visual forms and interaction design of the
overall application and systems that will incorporate them

� The data size, structure, and provenance

In the earliest days of computer-supported data visualization, the tasks focused
on preparing data graphics for communication. Data graphics were the points,
lines, bars,orother shapesand symbols—marksonpaper—composedasdiagrams,
cartographic maps, or networks to display various kinds of quantitative and
relational information. The questions included how graphics should be drawn
and what should be printed to minimize the loss of information (Bertin, 1983).

With advances in computation and the introduction of computer displays, the
focus began to shift to exploratory data analysis andhow larger datasetswithmany
variables could be visualized (Hoaglin et al., 2000). Three examples follow. John
Tukey and his colleagues introduced PRIM-9 (1974), the first program with
interactive graphics for multivariate data that allowed exploration of various
projections of data in space up to nine dimensions to find interesting patterns
(Card et al., 1999). Parallel coordinates (1990), a visualization tool formultidimen-
sional space, showed how a different coordinate system could allow points in a
multidimensional space to be visualized and explored just as 2-D points are in
scatterplots using the familiar Cartesian coordinate system. SeeNet (1995), a tool
foranalyzing largenetworkdata consistingof a suiteof threegraphical displays that
included dynamic control over the context and content of what was displayed, was
developed to gain insight about the sizes of network flows, link and node capacity
and utilization, and how these varied over time (Becker et al., 1999).

The last example in the previous paragraph shows the influence of advances
from the human-computer interaction (HCI) community that were made in the
1980s and 1990s in the user interfaces of the three displays of the SeeNet tool
and how it changed the way work was done. Instead of using traditional
methods of data reduction that aggregated large numbers of links or nodes,
averaged many time periods, or used thresholds and exceptions to detect
changes, the dynamic controls allowed changes to display parameters that
altered the visualizations so all of the data could be viewed in different ways
(Becker et al., 1999). The user interface techniques of direct manipulation and
interaction, important to the tasks of exploration, had taken priority over the
quality of static graphics. For data-intensive analysis, data visualization and
user interfaces were converging, and exploration was being done not just by the
statistician, but also by domain experts, in this case, engineers in telecommuni-
cation responsible for the operations of large networks.

Alongside the new directions in data visualization, the HCI community was
taking advantage of advances in computer graphics that included a new

c01 19 August 2011; 11:12:17

6 INTRODUCTION

understanding of the human-computer interface as an extension of cognition;
an expanded definition of data, which included abstract or nonnumeric data; and
the emerging World Wide Web. Important new user-interface techniques
and visualization tools were introduced that gave rise to the field of information
visualization. A sample of these techniques and tools include the following:

� Dynamic queries that could be performed through user-controlled sliders
in the user interface instead of through text-based queries, and provided
immediate and constant feedback of results through a visual form
(Ahlberg & Shneiderman, 1999).

� Techniques to support the need for seeing context and detail together and
for seeing different information in overviews than for detailed views.

� A general-purpose framework that used panning and zooming—a form of
animation—to see information objects in a 3-D space at different scales
(Bederson et al., 1994). Google Mapst mapping service and Google
Eartht mapping service are examples of this approach.

� Information visualization workspaces that allowed direct manipulation of
the content so that the user could focus only on what was relevant,
reorganize it into new information, or prepare it for presentation (Roth
et al., 1997).

Information visualization had broadened the definition of exploratory data
analysis. It now included tasks such as searching, dynamically querying
information, grouping and reorganizing data, adjusting levels of detail,
discovering relations and patterns, and communication. Interactive visual
forms could operate with numeric or abstract data, allowing for the results
of statistical calculations or data-mining computations to be linked to the
information objects from databases or data tables or to other complex objects
such as chemical structures from which they were derived.

The past couple of decades have also seen the emergence of data-intensive
science. Projects in the physical and life sciences generate large amounts of data
that originate from a variety of sources and flow into data centers from
complex collections of sensors, robotics, or simulations from supercomputers
or grid computing. Data capture, curation, and analysis are done by teams of
individuals who are often geographically dispersed and have expertise in IT,
informatics, computational analysis, and a scientific discipline. This has given
rise to high-throughput data analysis and exploratory tools.

The data comes in all scales. It might be a large dataset with values from a
single experiment or a family of datasets from related experiments. For
example, the National Institutes of Health (NIH) has carefully defined sets of
rules and procedures—protocols—for conducting experiments that allow
chemical compounds screened against a set of cancer cell lines to be compared
with the values of data from the screens of other cellular parts—for example,
genes, messenger RNA, or micro RNA—across the same set of cancer cell lines

c01 19 August 2011; 11:12:17

1.3 VISUALIZATION 7

using microarray technology. The ability to integrate data across experiments
provides insight into various mechanisms involved in cancer.

The data to be analyzed can come from one of several stages of processing.
For example, in a microarray biology experiment, the amount of each gene
expressed in a cell can be measured by the intensity of light at a point on a
microarray where the mixture containing the gene has been spotted. From
the microarray, a machine produces a digitized graphic image. Image analysis
converts the digital image to a matrix of numbers. The image analyst might
explore the analog signals from the laser scanner, the statistician might explore
the matrix of numbers, and the biologist might explore the genes of a particular
group discovered by clustering or the factors of a principal component analysis
generated by the statistician.

A broad collection of computational tools and algorithms are available to
support high-throughput analysis tasks, which include many of the same
tasks described for data and information visualization. These tools and
algorithms are drawn from classical statistics, machine learning, and artificial
intelligence (AI).

The data is distributed across a network and stored in a variety of formats
under control of different data-management systems. Some of it may contain
data called metadata, that describes the raw data. For example microarray
experiments are recommended to contain the minimum information about a
microarray experiment (MIAME) needed to interpret and reproduce the
experiment. The information includes the raw data, the normalized data, the
experimental factors and design, details about each item in the microarray, and
the laboratory and data processing protocols (FGED, 2011). Other associated
data will also need to be linked. For example, the IDs of genes that reside in the
headings of a microarray matrix of numeric expression values can be used to
retrieve information about their function or their sequences.

Once again, the definition of exploratory data analysis has broadened. The
data to be analyzed is no longer only within a single file or data table. Even
if the primary focus is on numeric data, the objects or observations from which
the numbers were derived—abstract data—and information about the prove-
nance of the data or details about the experiment are important aspects of
exploration that are integrated into the user interface with the visual forms. The
data may require stages of processing where the output of any stage may be of
interest. It may require subsets to be retrieved through queries to remote
servers. The computational tools may run on the same machine as the visual
tool, as a service accessible via the Internet, or as a large-scale computation
distributed over many computers. Teams of experts with different skills—
for example, a molecular biologist, a bioinformatics specialist, and a computa-
tional biologist—may be required to analyze the data.

The fields using computer graphics for visual forms—data graphics, infor-
mation visualization and user interfaces—have rich traditions of design.
Interaction techniques are increasingly being added to data graphics, new
visualizations are being invented to handle the much larger scale of data being

c01 19 August 2011; 11:12:17

8 INTRODUCTION

generated by data-intensive methods, and a greater variety of information is
being linked into exploration. As this continues, the boundaries between the
three kinds of visual forms within a visualization application will eventually
disappear if it is designed without seams. The visualization systems for
exploration in data-intensive environments will benefit from the considerable
body of research and practical knowledge on design that comes from these
traditions, and we will draw on each of them in this book.

1.4 DESIGNING FOR HIGH-THROUGHPUT DATA EXPLORATION

Whereas the concern of the analyst is exploring the data, the concern of the
designer is to create a visualization tool through which the analyst “sees” the
data but not the tool. For the work the tool is designed to support, interaction
with the tool should be engaging and not interrupt the flow of thought. This is
the ideal for usability. The fields of human-computer interaction (HCI) and
interaction design (ID) have spent decades studying how to achieve this in
interactive computing systems and various products, technologies, systems, and
services. For aspects of the visual forms that are static, rules and principles that
have evolved from centuries of print tradition can also inform design.

1.4.1 The IA (Intelligence Amplified) System

A conceptualization of the IA system for high-throughput data exploration,
which is the focus of our design, is shown in Fig. 1.3.

The analyst, referred to in design as the user, is the primary focus. For those
coming from engineering or computer science without a design background, it
is important to recognize the shift in perspective from technology to user. To a
designer, technology is a design material—something usually selected later in
the design process to solve the needs of the user after they are understood. The
visual and cognitive systems of the brain have already been introduced. They
are the critical part of the overall IA system and these systems interpret and act
on the visual information that is a source for analytical thinking. Viewed as
information-processing systems, the visual and cognitive systems that comprise
the mind have constraints that must be considered in design.

Visual interface,
visualizations,

graphics,
interaction

Local or distributed;
numeric, abstract,

metadata
Cognition

Visual
perception

The Mind Visual System Data

FIGURE 1.3 The IA (intelligence amplified) system

c01 19 August 2011; 11:12:17

1.4 DESIGNING FOR HIGH-THROUGHPUT DATA EXPLORATION 9

The visualization system is a computational system capable of interacting
with the user through high-resolution displays and interaction devices, and of
accessing data from one or more sources on the same machine or on the
Internet. It might be implemented as a Web browser running on a PC or a
handheld tablet, the client application running on the laptop of a distributed
system, or a set of components that controls user interaction with a wall-
mounted display.

The visual representation displayed by the visualization system is generically
called visual forms (Card et al., 1999, p.17). Visual forms are compositions of
user interface components and controls, graphics of numeric data, or visualiza-
tions of abstract data. All interact with the user using the same display and
interaction devices and are drawn in a visual language of graphical elements—
points, lines, planes, volumes, and so on—with visual properties such as
position, color, shape, size, orientation, and texture. The graphical elements
are designed to relate to one another in a way that communicates information.
For example, a visual form might be a scatterplot with sliders to set the limits
on the x-axis and y-axis and filter the points displayed in the plotting region, or
an interactive visualization showing the groups of a clustering algorithm, each
of which can be selected to retrieve more information about the elements in the
group.

The data being analyzed and explored by the users of the visualization system
can only be accessed through the visual forms. How and where the visual form is
stored is irrelevant to the user but of great importance to the designer. Access to
all or part of the visual form comes at a cost in time: data stored locally on the
same machine that is generating the display is generally accessed much faster
than data stored at a remote site. Certain visual forms may require significant
computational time to generate. The response time for user actions affects the
interaction and must be taken into account during design.

1.4.2 Design

Every product, physical or not, has an interface. The interface is the point of
interaction. Teapots have handles which are part of the physical form of the
container. Windows have latches to help you lock them. Figure 1.4 shows
the control panel of a dishwasher with buttons to let you choose how to
wash and dry dishes. The panel has been designed to access the hidden
functions programmed into the electronics of the machine. By looking at and

My
favourite

Power
plus

Normal
wash

Quick
clean

Top
rack

Add rinse aidHold 2x

Energy
saver

Rinse
only

Wash
pressure

Wash
temp Dry

Heavy
Medium
Low

Units
Hi temp
Normal

Power plus

1-24 hrs

Delay
start

START
cancel

Hold to lock

Heat
Air

FIGURE 1.4 Dishwasher control panel

c01 19 August 2011; 11:12:18

10 INTRODUCTION

experimenting with the interface, we begin to develop a mental model of what
functions the dishwasher provides, how it works, and how to interact with it.

Because of the layout of the visual elements, we unconsciously perceive a
hierarchical organization: starting from the left there is a cluster of seven
groups, followed by a cluster of three groups, and then two groups. Every
group has text with a black square below; some groups have one white circle,
some have three white circles with text to the right, and some have no white
circles. What is the meaning of the various combinations of text, black squares,
and white circles?

From prior experience with these kinds of panels, the groups leave the
impression of buttons. The text of some buttons use terms familiar to anyone
who works in the kitchen such as “wash,” “clean,” “wash temperature,” “dry,”
or “heat.” Every group has text and a black square; these must be buttons.
Because the text in the cluster of seven buttons seems to relate to how dishes get
washed—“normal wash” or “quick clean,” these must be buttons that represent
a way to set the method for cleaning dishes. The organization in the cluster of
three groups is different. If the text and black square represent the function, then
maybe the text and white circles are ways to vary that function by degree. The
wash temperature is “sanitize,” “hi temp,” or “normal.” Sanitize is not normally
associated with temperature, but because the white circle with the “sanitize” text
is above “hi temp,” and the white circle with “normal” text is below, “sanitize”
must mean very high temperature. Seven buttons relate to a way of cleaning
dishes and three to setting different degrees of water temperature, pressure, and
drying temperature, but how do we make it work? How are the selections for
water temperature and pressure, and drying temperature made? Can “energy
saver” and “top rack” be selected simultaneously? Does “energy saver” have any
effect on “rinse only”? Which combinations make a difference?

Even in this simple interface, you can see the design questions about how the
visual form of the interface relates to function, how the interface reveals and
constrains the actions that can be performed, and what the sequence and flow
of the interaction should be to support the tasks. No matter how complicated
interactive visual forms become, they play the same role for the analyst in their
domain as the dishwasher panel does for the cook in the kitchen. The visual
forms that the visualization system presents is the only way to see and initiate
actions that transform the data, but, as we have seen in the previous example,
the design of these forms is critical to how quickly and easily they can be
interpreted and understood. So how do we begin to design the interface and
interaction with the visualization system?

Interaction design is a highly dynamic process that consists of four basic
steps: identify the user’s needs, develop alternative designs, prototype, and
evaluate. Although it is presented as a sequence of steps, what is learned in
each step provides feedback that may change the result of another step.
For example, during prototyping, insight may be gained when converting a
low-fidelity prototype—for example, one implemented on paper or a PDF
document—to a high-fidelity working prototype that reveals software and

c01 19 August 2011; 11:12:18

1.4 DESIGNING FOR HIGH-THROUGHPUT DATA EXPLORATION 11

hardware bottlenecks requiring changes to the requirements. (Note: Because we
are focusing only on the design of the system as it pertains to the visualization
of data, we will ignore those aspects of design that would be addressed if a
commercial product were being created. These include the context in which it
will be used and other aspects of design that include standards, integration with
other systems, and portability.)

1. Identify the user’s needs, and establish initial requirements. Getting a feel
for the work and how the system may be used requires a thorough understand-
ing of the following:

� Who will use it

� The driving problem behind the analysis

� The analysis tasks, and the concepts and actions needed to perform them

� The source, content, and processing of the data

� The usability goals as they relate to user performance

For many data-intensive projects, there may be several people who directly
use the system: an informaticist who manages the systematic collection and
organization of data so that it can be retrieved or searched, a computational
specialist who is trained in statistical and data-mining methods, and a domain
expert with knowledge about the relevant subject area such as biology,
marketing, telecommunications, or finance. If, for example, a system is being
designed to explore the integrated data of biological targets or chemical
compounds generated by high-throughput screening or microarray technology
in order to study cellular mechanisms of cancer, the users might be molecular
biologists, medicinal chemists, and cheminformatics or bioinformatics experts
and the domains would be molecular biology, medicinal chemistry, computa-
tional biology, bioinformatics or cheminformatics, and statistics.

Becoming familiar with the domain implies becoming immersed in the field.
It may include reading textbooks, technical material, or important papers that
have been published; interviewing and talking with experts in the field; or
attending a conference or workshop. The ideas for design come from a depth of
understanding. An understanding of the field provides a foundation for seeing
through the users’ descriptions about the steps they take in performing their
tasks or the feedback they provide during evaluation to intent: what the user is
really trying to accomplish. With many experts, the intent may be buried from
years of practice so that it is no longer noticed and cannot be articulated.
Knowing the intent or goal that the user is trying to accomplish allows
alternative designs to be considered that may do things in a different but
more efficient way.

Usability, a term used by designers, is a way to think about the usefulness of
the analysis system with which the user will interact. Most usability goals
include practical measures for assessing them. The goals include the following
(Shneiderman & Plaisant, 2010):

c01 19 August 2011; 11:12:18

12 INTRODUCTION

� Time to learn. How long does it take to learn to do the tasks? The length of
time it takes to learn is more of a problem for systems that are used
infrequently than it is for a system that will be used daily.

� Performance. How long does it take to do each task once the user is
proficient?

� Accuracy. How many and what kinds of errors are made? Errors refer to
any action that does not accomplish what the user intended.

� Memorability. How easy is it to remember how to use the system the next
time the user interacts with it, for instance, after a day or a week? A complex
system that is used infrequently can be as frustrating as a simple system that
is used frequently but lacks keystroke shortcuts or functions that allow
expert users to adjust parameters. There are trade-offs to consider.

� Satisfaction. Did users respond positively or negatively to specific visual
forms or areas of the user interface? How did they experience the system as
a whole? Qualitative assessments not only provide insight into specific
aspects of the design, but psychology research shows that emotions affect
how the mind solves problems. Positive experiences open our minds and
make us more creative and better able to learn. Negative experiences
narrow our thoughts to the problem at hand (Norman, 2004).

The outcome of studying users and their work leads to preliminary
requirements that are stable enough to begin design and a set of benchmark
analysis tasks that can be used for prototype evaluations.

2. Develop alternative designs. For many software developers or program-
mers, the first step in design is to begin by sketching ideas about what the
interface should look like. However, designers begin by designing a conceptual
model focused on the tasks and goals of the user that will, in turn, guide the
physical design that includes the details of the interface and interaction.

A conceptual model is a simplified, high-level model of the system that
designers want to communicate to the users to make it easier for them to
understand and use. The interface will be designed to convey and support the
conceptual model. Preferably the conceptual model is drawn from the task
analysis because the task descriptions contain important words that identify
the concepts that users are most familiar with; but the conceptual model
could also be based on metaphors or analogies. A widespread example is the
office metaphor first introduced in the Xerox Star and now widely used in the
Macintosh and Windows PCs. This conceptual model includes a desktop,
folders, files, pictures, notes, mail, and other objects. Folders or files can be
created or deleted. Files are stored in folders. A file can be edited and its content
copied onto a clipboard and pasted into another file. The familiarity of the user
with physical objects from the office (desktop, file cabinets, folders, files) allows
the actions (move, cut, paste, select, edit) associated with a visible representa-
tion of the object on the display to make sense.

c01 19 August 2011; 11:12:18

1.4 DESIGNING FOR HIGH-THROUGHPUT DATA EXPLORATION 13

The most important component of the conceptual model is the object-action
model, which identifies each conceptual object that will be visible in the interface,
and each object’s actions, attributes, and relationships to the other objects.

Two other areas must be considered in the design that may affect the
conceptual model: the style of interaction and the type of interface. These are
outside the scope of this book, but we introduce them briefly here and refer you
to the end of the chapter for sources of further reading about these areas.

An interaction style characterizes how the user interacts with the system and
can be categorized as follows (Sharp et al., 2007):

� Command. The user directs the system by entering text in a command
language, speaking, selecting menu items from a menu tree, and so on.

� Conversational. The system has an ongoing dialog with the user through
speech or text.

� Direct manipulation. The user initiates actions by selecting an object that
is displayed on the screen and choosing an associated action; this style is
also known as point-and-click.

� Exploration. The users explore a virtual or physical space, for example,
virtual reality or smart rooms.

We will assume direct manipulation for the visualization system because it
is most widely in use. The Protovis visualization toolkit we will introduce
in Chapter 5 for creating visualizations in a Web browser supports direct
manipulation.

Many new interface types have been invented recently and are becoming
available as design material (Sharp et al., 2007). However, these are not widely in
use. We will assume that visualization systems have a presentation layer or client
application that runs on a desktop PC or laptop with a high-resolution display, a
keyboard for entering text, and a mouse or touchpad as a pointing device.

3. Prototype. Prototypes are not a replacement for analysis and design. They
are visualizations of some or all of the requirements, benchmark tasks, and
conceptual model—a way to see what has largely been verbal descriptions of
the tasks to be performed and the steps to perform them that were developed in
the previous stages of design. For individuals participating in design, they are
helpful for thinking through the details of interface and interaction, for quickly
generating designs that can be assessed and incorporated or discarded, and for
deciding which alternatives are best to advance. The type of prototype and its
role changes as the design process progresses. Prototyping is highly iterative.

At the beginning of physical design, low-fidelity prototypes are used to
explore designs. Low-fidelity prototypes include sketches of single screens with
the user interface components and controls along with visualization or data
graphics, paper prototypes, storyboards of task sequences, or high-quality
digital sketches exported from illustration drawing or slide presentation

c01 19 August 2011; 11:12:18

14 INTRODUCTION

software applications. Using combinations of these approaches is also effective.
Whatever method is used, it should support the ability for users to physically
interact with the prototype to execute limited tasks selected from those
developed in task analysis.

As the physical design progresses, high-fidelity prototypes are used to explore
issues related to critical areas or to develop a working prototype with interaction
sequences and flows. The working prototype can evolve into a proof-of-concept
system that can be demonstrated outside the design team. High-fidelity proto-
types take longer to build, so they should be used for areas of the interface where
the design is considered stable and changes are infrequent.

4. Evaluate. The goals for evaluation for design differ from the goals of
evaluation that are intended to assess usability. Evaluation for design is
intended to provoke discussion about better ways to the structure the system,
or to uncover tasks that aren’t necessary or may be more or less important than
initially thought. The evaluation stage is iterative and must be a fundamental
part of the design process from the beginning.

Usability testing, on the other hand, is done in the late stages of develop-
ment. It measures the users’ performance on a set of predefined tasks. It is
intended to uncover small problems or areas that are found to be difficult to
understand. The changes made are to polish the interface and improve the
interaction to refine the product. If the prototyping has been done well, there
should be no major surprises.

1.4.3 Data

Data is captured or collected from sensors and sources that range from arrays
of charge-coupled devices (CCDs) in telescopic cameras to electronic cash
registers in retail stores. The data that is collected—raw data—is stored in many
ways: into files in proprietary or standard formats, with or without metadata;
and into all sorts of databases with various schemas. Before trying to use the
raw data for visualization, it is helpful to transform it into a standard data table
as shown in Fig. 1.5. The data-processing pipelines that convert raw data
to data tables depend on the kind of data collected. For example, preparat-
ion for the mining and analysis of numeric data often includes cleaning,
transformations, reduction, and segmentation, which results in tabular data
(Myatt & Johnson, 2009).

Visual
forms

Visual System

User
 Data sources

(including
tables)

Raw data
Clean and

normalize data

Computation
and

simulation

FIGURE 1.5 Data-processing pipeline

c01 19 August 2011; 11:12:18

1.4 DESIGNING FOR HIGH-THROUGHPUT DATA EXPLORATION 15

Different methodologies and techniques for data preparation are used
in various scientific disciplines, computer science, and statistics (Myatt &
Johnson, 2009). When referring to tables, different terms are used for similar
concepts or the same term for different concepts. Spreadsheet, row, column,
entity, object, relation, table, tuple, record, attribute, property, dataset, case,
observation, variable, matrix, and metadata are terms used to describe different
perspectives on what is commonly understood as a table of rows and columns
as shown in Fig. 1.6. As a guide through the literature and to clarify our use of
the term data table, we provide a summary of the different ways terms are used
and a definition.

In relational databases, data is logically stored in tables of rows and
columns. The terms relation, tuple, and attribute are from the mathematical
theory of relations that underlie the relational model developed by E. F. Codd.
A tuple represented a thing or object in the world and its associated attributes.
For example, a machine part in an inventory system was a tuple, and its serial
number, name, size, and quantity were attributes. A relation was a set with
special properties: all tuples in the set were of the same type, they were
unordered, and there could be no duplicates (Codd, 1990). The relational
model is at the heart of relational database management systems. Figure 1.7
shows the mathematical terms and others that are commonly used today.

In statistics, dataset refers to a collection of information often in a tabular
format. For example, the dataset might be a collection of data on patients or

Row

Column

FIGURE 1.6 A simple table and its nomenclature

Tuple/object/entity/record

Attribute/property

Relation

FIGURE 1.7 A relational table and its informal nomenclature

c01 19 August 2011; 11:12:18

16 INTRODUCTION

cars. The patients or cars are objects. In the dataset, each item in the collection
is an observation, and there may be many observations for a particular object.
The observations may be described in various ways. For example, a car has a
vehicle identification number, a manufacturer’s name, and a weight. Each of
these features describing the car is a statistical variable. The variables play a role
similar to the one attributes play in database relations. Smaller datasets are
often stored in files. In these files, the first row is often made up of the names
of column headings, and the first cell of each row is an ID of the object whose
values are represented by the remaining cells in the row. The terminology used
in statistics is shown in Fig. 1.8.

In visualization, the dataset of statistics is called a data table, but the
variables are rows, and the cases are columns as shown in Fig.1.9 (Card
et al., 1999). Jacques Bertin, whose work we will study in Chapter 3, uses this
orientation of the data table, but he refers to variables as characteristics
and cases as objects. The Protovis toolkit that we will explore in Chapter 5
also uses this orientation of the table and expects input to the visualization
pipeline as a “variables by cases” array.

Observation/case

Variable

Dataset

Var A Var B Var C Var D

ID-1

ID-2

ID-3

FIGURE 1.8 A dataset and its nomenclature; a dataset with row and column headings

Variables

Cases

Data table

Objects

Characteristics

Bertin’s
table

FIGURE 1.9 A data table and Bertin’s table with terminology

c01 19 August 2011; 11:12:18

1.4 DESIGNING FOR HIGH-THROUGHPUT DATA EXPLORATION 17

The definition of data table used in this book adheres to the one commonly
used in statistics and data mining: the observations are rows, and the variables
are data columns. If datasets include row and column headings, they are treated
as metadata. If the first column contains the IDs of the observations and these
IDs are not considered values of the dataset the ID values are treated as
metadata.

1.5 SUMMARY

Data-intensive systems are changing the scale, scope, and nature of the data to
be analyzed. The human visual system, which comprises nearly half of the
brain, has powerful mechanisms for searching and detecting patterns. This
capability has given rise to the field of visual analytics, which seeks to exploit
these capabilities.

To effectively design IA (intelligence amplified) systems requires an under-
standing of what goes on in the mind as it interacts with a visual system.
Information-based theories divide visual perception into four stages that
transform the image in the retina of the eye to concepts that we understand.
In the image-based stage, simple features are extracted. In the surface-based
stage, the simple features and other information are used to find the surfaces of
the objects in the external world. In the object-based stage, the simpler features
and surfaces are combined and grouped into 3-D representations of objects and
their spatial layout. In the category-based stage, the objects are identified,
classified, and linked to concepts we have seen before or are part of our general
understanding of the world.

The visual exploration of data is an interaction between user and system. We
cannot design effective visualization tools or systems without understanding
the work, the work environment, the form and content of the visual representa-
tions, and the data. Designing visual interactions is a highly iterative process
that consists of identifying the user’s needs, developing alternative designs,
prototyping, and evaluation. This results in visual systems that, even if
complex, are understandable and allow the tasks they were designed to support
to be efficiently performed.

1.6 FURTHER READING

There are several references that go more deeply into the topics introduced in
this chapter.

� The Foreword by Gordon Bell and the overview of eScience by Jim Gray
in The Fourth Paradigm: Data-Intensive Scientific Discovery provide
further background on data-intensive science and the challenges involved
in capturing, curating, and analyzing data (Hey et al., 2009).

c01 19 August 2011; 11:12:18

18 INTRODUCTION

� The idea of AI was presented in a lecture by Frederick Brooks given in
acceptance of the ACM Allen Newell Award at SIGGRAPH in 1994
(Brooks, 1996). The lecture emphasized the role of computer scientists as
makers of tools and the importance of using an interdisciplinary collabo-
ration on a real and complex problem as a driving problem for research. It
also provides insights into issues that arise when doing user-centered
design.

� The first chapter in Readings in Information Visualization (Card et al.,
1999) provides a detailed overview of information visualization. This is
essential reading.

� Chapters 1, 3, and 5 of Making Sense of Data: A Practical Guide to
Exploratory Data Analysis and Data Mining (Myatt, 2006) provide an
overview of data preparation and the use of statistics in exploratory data
analysis and data-mining applications.

� The first chapter in Vision Science: Photons to Phenomology (Palmer,
1999) gives an introduction to vision science that includes a description of
the problems in scene recognition, the human visual system, and visual
perception.

� Two chapters of Illuminating the Path: the Research and Development
Agenda for Visual Analytics provide helpful background. In the context of
providing support for analyzing security threats to a nation, Chapter 2
discusses the science of analytical reasoning, and Chapter 3 discusses
various visual representations and interaction technologies.

c01 19 August 2011; 11:12:18

1.6 FURTHER READING 19

CHAPTER 2

THE COGNITIVE AND VISUAL
SYSTEMS

Physical tools have long been crafted from natural material to overcome our
inherent physical limitations and do things—such as cut down trees, move
heavy objects, and shape and fasten pieces of wood into shelters—to improve
our well-being. Cognitive tools, although they have a much shorter history,
were invented to extend our mental capacities. Even before written language
emerged, depictions were being used in abstract ways that included recording
transactions and ownership of property or keeping track of the balance of
accounts (Tversky, 2003).

In maps, space and elements referred to things that could be seen in the
world such as geographical areas and major cities or trade routes. The elements
were symbols of the things they stood for, and their position in space
represented the relationships between them. Just as a hammer is a physical
tool that increases and directs the force of the arm through the hammer’s head
into the nail, a map is a cognitive tool that extends memory, organizes and
archives knowledge, and reduces the mental effort in drawing certain conclu-
sions about the world. For the hammer, the material it is made of—wood or
metal—conveys the force; for the map, the force is conveyed through a
representation of the world.

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

20

c02 19 August 2011; 15:46:45

2.1 EXTERNAL REPRESENTATIONS

Cognition, the process of thought, derives its power from representation and
abstraction. A representation consists of symbols, which refer to things in
the world, and a specification—rules, constraints, or relationships—for how the
symbols are structured or relate to each other. The representing world consists
of the symbols encoded in some physical system—for example, marks on a
piece of paper, the magnetic orientation of bits on a computer disk, or the beads
on an abacus—that refer to something in the represented world. The repre-
sented world—physical or abstract—is what is being represented in the external
world or environment. For the representation to be effectively used, it must
make only the relevant details explicit; in other words, it must be at the right
level of abstraction (Norman, 1994).

Imagine a soccer coach with a playbook of plays similar to the one shown in
Fig. 2.1. Each play is a diagram where X represents a member of the team, O
represents a member of the other team, and the rectangle represents part of the
playing field. The Xs and Os are marked on a diagram of a soccer field drawn
to scale. The coach’s intent is to teach the team some plays. The Xs, Os, and
lines are the symbols. The condition of the field, such as the kind of grass used
for the field or whether it slopes in one direction or another, is irrelevant and
not shown in the diagrams. For how it was intended to be used—to convey
positions and the movement of players on the field—the play diagram is at the
right level of abstraction.

External representations are cognitive tools that exist outside our minds, and
we use them all the time. The map and the playbook just described, shopping

GOAL

G

BALL

SW

CFB

CMF LF

LMF

LFBRFB

RMF

RF

CF

HALFWAY LINE

FIGURE 2.1 Example of an external representation from a soccer playbook

c02 19 August 2011; 15:46:45

2.1 EXTERNAL REPRESENTATIONS 21

lists, multiplication tables, bank statements, and various diagrams, graphics,
and pictures are all examples of external representations that make explicit
specific kinds of information structured in various ways. Internal representa-
tions are the representations inside the mind that are created by one of
the senses—seeing, hearing, touching, smelling, tasting—and encoded in the
biological machinery of the mind which is made up of networks of neural
cells. The information these contain is all we can know of the world.

For the external representations that we design, any particular representa-
tion makes explicit certain details at the expense of others. This imposes a
trade-off: one representation may make some operations easier to do than
another and make other operations more difficult. Different representations of
the represented world can result in dramatic differences in how a cognitive task
is done and how quickly it can be performed. For example, an unordered
grocery list sitting next to the refrigerator may make it easy to write down items
as they run out, but these items then have to be mentally reordered at the
grocery store to efficiently navigate the aisles. A list categorized by the aisle or
area the product is in has the opposite effect. Which you use depends on how
frequently you shop and how many items are on the list.

External representations are not just inputs to the mind as are the scenes we
see of the world; instead, they are deliberately designed to convey meaning.
They can be referred to, studied, or shared; the symbols can be manipulated or
operated on independently of what they represent. For many cognitive tasks,
they guide and constrain the work itself, and they play many important roles
such as the following:

� Aiding memory. When asked how to spell a word that we know but don’t
often use, we will often write down the word in different ways to see which
“looks” right. Icons in the buttons on toolbars or items in the menus of
computer interfaces remind us what actions we can take. What we cannot
recall may be retrieved through perception by seeing the right form.

� Making abstract concepts visible. The concept of a right triangle is more
easily understood by the diagram shown in Fig. 2.2 than by saying “a right

A

B

C

c

b

a

FIGURE 2.2 A right triangle

c02 19 August 2011; 15:46:45

22 THE COGNITIVE AND VISUAL SYSTEMS

triangle is a triangle where two sides are at angles perpendicular to each
other.” The diagram takes advantage of the natural 2-D space of the
medium to show the relationship. Similarly, spatial distance could be used
to show the distance of other abstract relations as in, for example, a
dendrogram that shows the similarity of items and groups that have been
clustered by some algorithm. The dendrograms at the top and right of the
heatmap in Fig. 2.3 are used to determine which rows or columns belong
in a group and how closely they are to each other or other groups.

� Solving problems. Before the advent of computers, the mental effort of
solving a linear equation was made easier by using pencil and paper and a
representation of numbers and variables. The use of pencil, paper, and

FIGURE 2.3 Heatmap (Image courtesy of Wikipedia: http://en.wikipedia.org/wiki/

File:Heatmap.png)

c02 19 August 2011; 15:46:45

2.1 EXTERNAL REPRESENTATIONS 23

representation as a cognitive tool made the process straightforward and
largely error free. The steps could be done in any order; and the person
solving the equation could be interrupted without having to recalculate
intermediate results.

� Supporting decision making. Different representations of the same infor-
mation, such as a table, graphic, or list, can significantly change decision-
making strategies. In Table 2.1, the information is structured to be read
across to see the times for a single flight or down to see depature and
arrival times as well as the duration of segments of a trip.

� Modeling real or imagined worlds. To make it easier to learn, inform, or
understand, representations may include, exclude, distort, or exaggerate
certain features so that what remains is essential and not irrelevant.
Architectural design drawings used to explain form and function to the
homeowner focus on outside views and floor plans, whereas blueprints
contain the detail about construction that is required for a builder to plan
and build.

� Clarifying or sharpening our thinking. The act of writing down our
thoughts or sketching out ideas can be part of a reflective process that
helps us learn and discover.

External representations—the user interface, visualizations, or data graphics—
in visualization systems are the starting points for what will be perceived through
the eyes. But to design a visualization system as a cognitive tool, we need to know
something about the human mind that wields it and how the representations the
system presents are processed by the human visual system.

2.2 THE COGNITIVE SYSTEM

The information-processing paradigm views perception, feeling, and thought as
the result of biological computation. Some of it we are aware of, but the early
stages of processing, during which incoming information from various senses
is encoded, happens unconsciously. Somehow the visible external representa-
tions, such as a diagram, spreadsheet, or scatterplot, are converted into
representations inside our minds. These internal representations are eventually
transformed into a language of thought, which is the structure for the knowledge

TABLE 2.1 A Structured Presentation of a Flight Schedule

Flight Departure Arrival Duration

AA 631 7:30 AM EST 10:10 AM EST 2:40

UA 732 12:30 PM EST 3:45 PM EST 3:15

US 1250 7:05 PM EST 8:25 PM EST 1:20

c02 19 August 2011; 15:46:46

24 THE COGNITIVE AND VISUAL SYSTEMS

that we remember, reason about, and reflect on. The word “computation” elicits
analogies to the computer: the input and output channels; the various forms of
memory: disks, computer memory, and computer caches; and the graphics,
central processing units, and other components that transform input to output.
Although there are similarities, there are many more differences that make the
computer a weak metaphor for what happens in the mind (Pinker, 1997).

2.2.1 The Matter of Thought

Until the 1950s, the brain as a biological organ was just gray matter, and its
functions were not understood. It had taken many years to determine that
neurons, the fundamental cells of the nervous system that includes the brain,
were only loosely connected to each other and that they communicated through
electrical and chemical signals.

A neuron, as shown in Fig. 2.4, is a complex cell in the nervous system that is
still not fully understood. The features of interest are dendrites, axons, the cell
body, and the connections between neurons called synapses. Incoming signals
travel along dendrites; an outgoing signal from the cell body travels along an
axon to other connected neurons. (Although only one axon extends from the
cell body, the axon may branch many times, and each branch may form a
connection.) There is a gap where the ends of the outgoing axon meet the ends
of the dendrites of the neurons it is connected to. The gap is part of a specialized
junction called a synapse. The way the signal passes through the synapse—how
much and whether it is positive or negative—is controlled chemically. The
synapse can be altered to strengthen or weaken the connection for short or long
periods of time based on how much the connection has been used and other

Dendrite

Nucleus

Cell body

Axon

FIGURE 2.4 A neuron cell

c02 19 August 2011; 15:46:46

2.2 THE COGNITIVE SYSTEM 25

factors. This alteration is considered to be one of the foundational mechanisms
for learning and memory.

The most significant thing a neuron does, conceptually, is add a set of
quantities and indicate whether the sum is greater than some threshold. A
model of a neuron is shown in Fig. 2.5. Only when the threshold is exceeded will
the neuron send out an electrical signal through its axon. When this happens,
the neuron is said to have fired. The activity level of a neuron is affected by the
incoming axons from other neurons connected to its dendrites and the synapse
at each connection. The strength of the synapse ranges from negative to zero to
positive. The synapse inhibits if it’s negative, has no effect if it’s zero, and
excites if it’s positive. The activation level of each incoming dendrite is a
product of the synaptic strength and the activation level of the axon connected
to it. If the sum of the incoming levels is higher than the threshold, the neuron
fires, which propagates a signal along its axon to any connected neurons.
During the period when the neuron is not firing, it is in its resting state and
considered to be off. When the activation levels become elevated above the
threshold, it is on. The neuron is always firing at some rate, either slower or
faster. The firing rate represents the intensity of the stimulus.

A set of connected neurons is called a neural network. The drawing shown in
Fig. 2.6 is of a small neural network in a pigeon’s brain. There are estimated to
be up to 100 billion neurons in the human brain, and each may have hundreds

0.3 �0.20.3 �0.2�0.2 �0.20.3�0.2

FIGURE 2.5 A model of a neuron

c02 19 August 2011; 15:46:47

26 THE COGNITIVE AND VISUAL SYSTEMS

of connections. There are trillions of synapses, each too small to be seen as
something other than a point under a light microscope, although they can be
seen clearly with an electron microscope.

It was not until the advent of the computer and the development of
physiological techniques that allowed the recording of electrical impulses of a
single neuron’s response to stimuli that the brain began to be seen as an
information-processing organ. In 1951, the mathematician John von Neumann

FIGURE 2.6 Drawing of a portion of a neural network from a pigeon’s brain (Image

courtesy of Wikipedia, http://en.wikipedia.org/wiki/File:PurkinjeCell.jpg)

c02 19 August 2011; 15:46:47

2.2 THE COGNITIVE SYSTEM 27

directly compared the neural electrical spikes along the axon to a digital
code. These events, among others, attracted interest in biological information
processing that eventually led to an understanding of vision and the visual
system. Although few neuroscientists today would agree with Von Neumann’s
analogy, the idea that the brain processes information took hold (Palmer,
1999).

2.2.2 Mental Processes and Internal Representations

The computational theory of the mind views the brain as a system of mental
organs—or modules—that processes information. Those that process language
and what we see or hear and that help us remember, make plans, set goals, and
focus our attention are mostly spread across the uppermost layers of the brain
in the cerebral cortex just inside the skull. Many of these modules are highly
specialized to carry out specific functions.

Although the term “module” is used to describe them, computation should
not be confused with computers. They are unlike the physical components
that can be identified inside the case of a computer. At the physical level,
mental modules are highly adaptable networks of neural cells connected to
each other within and between modules. Small differences in the connection
patterns can produce very different programs. They are woven into a folded
sheet of layers of cellular tissue whose boundaries cannot be marked. Clues
about which behavioral functions are controlled by which areas of the
sheet come from studying patients with brain damage and through various
techniques that probe, record, or image individual neural cells or regions of
the brain.

The information from the world that flows through the senses into the mind
become patterns of neural data — internal representations — of the external
world. Once again, we encounter the concept of representation: symbols that
stand for something and rules for how to operate on those symbols. But this
time, the symbols are not marks on paper or a display screen, as they would be
in some external representation, but are instead neural encodings; and the rules
are the mental modules that operate on them. The symbols have been created as
patterns of activity by physical things in the world that interact with the senses,
for example, photons of light reflected off surfaces or sound waves from a
violin. The mental modules process information by mapping one representation
to another. Through a series of transformations, the initial input of the senses
becomes the language of thought.

How the mind works has been studied for more than half a century, and we
are just at the beginning. Although there are other theories, the computational
theory of the mind is still widely held, and the approach has been successfully
used to develop computational models and various algorithms that have helped
to understand the human visual system. Figure 2.7 shows a high-level diagram
of the cognitive architecture that emphasizes the stages of processing involved

c02 19 August 2011; 15:46:47

28 THE COGNITIVE AND VISUAL SYSTEMS

in visual perception. The designer needs to be aware of the processing pathways
and key modules that affect the interpretation of the visual forms.

2.3 VISUAL PERCEPTION

“Vision is a process that produces from images of the external world a
description that is useful to the viewer and not cluttered with irrelevant
information” (Marr, 2010). This definition by David Marr, the neuroscientist
and psychologist who pioneered much of the early work on computer vision,
emphasizes the active role that the visual system plays in shaping the informa-
tion of the world we see to our advantage. So prevalent is the camera as a device
for recording images of scenes we have taken that we assume our own visual
system works in much the same way. The lens (eye) faithfully records an image
(sees) by allowing light to strike an array of receptors (retina) at the back of the
camera. This much of the processing is largely governed by optics, and there are
similarities between the two systems. But here the similarities end, for there is
nothing in the camera that takes the image and produces from it knowledge
that can be used.

The emphasis on usefulness rather than fidelity should not be surprising
because we do not see the world in the same way as do other species with visual
systems. The compound eye of a common housefly, for example, is designed
to be hypersensitive to motion to help it avoid in-flight obstacles and allow it to
land, sometimes inverted, toward the center of surfaces that loom nearby
(Marr, 2010). A key role of the visual system is to create an internal model of
the environment—a description—that helps us predict what will happen and
know how we should respond.

Audition

...

Motor
control

Image-
based

processing

Surface-
based

processing

Object-
based

processing

Category-
based

processing

Vision

Short-term
activated memory

Long-term
memory

Movement

...

Sound

Light

FIGURE 2.7 The cognitive architecture emphasizing vision

c02 19 August 2011; 15:46:48

2.3 VISUAL PERCEPTION 29

2.3.1 The Problem of Scene Recognition

The hard problem of vision starts where the camera’s duty ends. To interact
with the environment we see, we must establish our relationship with the
objects in our environment. From the 2-D image recorded on the retina at each
moment, the visual system must reconstruct a 3-D understanding of the objects
in the scene. To grasp the handle of a cup of coffee, the mind must know at each
moment where the handle is, where the hand is, and how to move the hand and
everything connected to it—the arm and the body—in an efficient path to the
handle. The starting point for processing these scenes is the retinal image, which
is in essence two matrices—one from each eye—of numbers that represent the
intensity of light striking the receptors that comprise the retina.

Each moment presents a new scene—another set of numbers—in which the
visual system must do the following:

� Identify where an object ends and the background begins. The scene is made
up of many colored patches like a quilt or a stained glass window. Having
access only to the variations of intensity, such as where big numbers
appear next to small numbers, the visual system must determine the effects
of shadow, the overlay of one object on another, and whether the object
is opaque or transparent.

� Determine what objects are made of. The amount of light reflected from a
lump of coal in broad daylight as measured by a light meter is greater than
the amount of light reflected from a snowball inside a dimly lit room, yet
we see the coal as black and the snowball as white.

� Reconstruct the third dimension. The image is two dimensional. The same-
size shape projected on the image can come from a large object far away,
from a smaller one that is nearer; or from an object in one of many
orientations. From the pair of images that come from the left and right
eye, the depth must be reconstructed so that we can determine how far
away the object is from us in order to know how to interact with it.

� Recognize the object. A kitchen table seen from different perspectives and
at different times of the day projects onto the retinal image shapes of
different sizes and shades of color. Yet we recognize all those differently
shaded shapes on the image as the same kitchen table. However, recogni-
tion is deeper than just knowing what the object is. The mind must assign
meaning to the shapes so that we know, for example, that the trapezoid on
the image is the surface of the table that we will set with dishes and where
food will later be served.

2.3.2 Levels of Explanation

Understanding any complex information-processing system requires explana-
tions at different levels. Any theory of information processing can be broken
into three levels (Marr, 2010):

c02 19 August 2011; 15:46:48

30 THE COGNITIVE AND VISUAL SYSTEMS

� At the computational level—the highest level—the system is characterized
only by a mapping from its input to the output. It describes what needs to
be computed and the information on which the computation will be based,
without saying how it will be done. The visual system can be characterized
as having four stages of processing as shown in Fig. 2.8.

� At the algorithmic level, the specific algorithm that performs the operation
is described as well as details of the representation of the input and output.
The algorithm is defined in terms of specific operations that will be
performed on the input. Each of the preceding four stages includes various
algorithms. An example of algorithms is shown in Fig. 2.9. These
algorithms are implemented by the modules that transform the retinal
image into a surface-based representation of the scene. Algorithms will be
alluded to but not discussed in detail.

� At the implementation level, the specific physical system that will imple-
ment the algorithm is described. For example, the same algorithm could
run as computer-based models or in the biological system. We will
describe the anatomy of the eye and visual pathways through regions of
the brain, but only to the extent that it helps to understand the
representations and processing relevant to designing visual forms.

2.3.3 Illuminating the Environment

Seeing requires the interaction of light with surfaces that reflect it and a visual
system that can perceive what is reflected or emitted. The visual processing
begins when photons—small wavelike packets of light energy—from some

Image-based
processing

Surface-based
processing

Object-based
processing

Category-
based

processing

Retinal
image

FIGURE 2.8 The four stages of visual perception

Surface-based
representationTexture

Image-based
representation

Stereo

Motion

Shading

… and other features ...

FIGURE 2.9 Flowchart of major operations performed during visual perception

c02 19 August 2011; 15:46:48

2.3 VISUAL PERCEPTION 31

source such as the sun, a lightbulb, or the diffuse light from the sky on a cloudy
day bounce off surfaces through the lens of the eye, and stimulate the photo-
receptors of the retina lining the inner surface at the back of the eye. Light that
reflects from a surface either changes direction or scatters and mixes with the
light from other surfaces or light that is emitted by the source. Light comes from
all directions, and more of it reaches the eye from some directions than
from others. We see only what reflects from the surfaces of the objects facing us.

The relationship of the geometry of the surface of objects in the environment
is preserved in the retinal image because the light focused by the lens onto the
retinal photoreceptors obeys the perspective projection laws. The 3-D object’s
surfaces are projected into the 2-D image upside-down.

However, information is lost about the hidden part of the object and objects
that lie behind the surfaces we see. The light converging on the eye is a complex
optical structure. The perception psychologist J. J. Gibson called it the ambient
optic array (Palmer, 1999), and the eye is responsible for converting these
arrays to retinal images.

2.3.4 The Eye and Visual Pathways

The eye is a complex organ. It is the portal for the optic array from a scene or
external representation that the eye converts into neural activity. The wave of
activity—the electrochemical signals that travel through the optic nerve into the
visual centers of the brain—that the eye generates is the retinal image. The
retinal image is the initial internal representation that is the input to the first
stage of visual perceptual processing. The image contains values of light
intensity for each point in the image.

A simplified cross section of the human eye is shown in Fig. 2.10. Light
enters through the circular opening—or pupil—in the lens. The lens can be
adjusted by ciliary muscles to bring close or distant objects into sharp focus
on the retina as shown in Fig. 2.10. The iris controls the amount of light that
enters the eye by increasing and decreasing the size of the opening of the pupil.
It adjusts the pupil to compensate for lower or higher levels of illumination.
The retina is a layer of tissue containing photoreceptors. It lines the curved
surface at the back of the eye. Rods and cones—the names describe their
shapes—are two kinds of photoreceptors. Rods, which are extremely light-
sensitive, are spread throughout the retina except for a small area at its center
called the fovea. There are more rods (about 120 million) than cones (about
8 million). The rods contribute little unless there are low levels of light such as
at twilight or in dimly lit areas. The cones are responsible for the light and
colors we experience in normal lighting conditions. We will discuss how in a
later section on color.

Unlike the receptors in a digital camera, the receptors in the retina are not
uniformly spread across the surface. The fovea is critical for our ability to see
fine detail sharply. It is densely packed with cones, with many fewer cones
spread in the areas outside. The fovea, which covers an angle of about 2 degrees

c02 19 August 2011; 15:46:48

32 THE COGNITIVE AND VISUAL SYSTEMS

of the field of view or about a thumbnail at arm’s length, provides almost all of
the detail needed for tasks that require visual acuity such as reading, driving, or
texting. In the areas outside the fovea, the image is blurred because the density
of cones is much smaller. Most of the retinal image comes from about 5% of
the field of view, and the mind creates an abstract description of the entire scene
through rapid eye movements that scan the environment.

The field of view is the extent of the world we can see from both eyes as
shown in Fig. 2.11. The objects in this field of view, by the way light is directed
into the eye, project an upside-down image. The patterns in the image of each

Field of View

Seen by both eyes

Seen by right eyeSeen by left eye

FIGURE 2.11 The field of view is what we see with both eyes

Retina

Fovea

Ciliary muscle

Lens

Pupil

Iris

Optic nerve

FIGURE 2.10 A simplified cross section of the human eye

c02 19 August 2011; 15:46:48

2.3 VISUAL PERCEPTION 33

eye are mostly similar, although the image in each eye has patterns from its
inner edges that are not in the other image because they come from the
periphery of the field of view.

The photoreceptors in the retina are connected indirectly to a layer of
ganglion cells in the retina that are, in turn, connected to the optic nerve fibers.
The processing performed by the ganglion cells include refining images and
identifying locations in the image that have recently changed. Information from
the image flows to various areas of the brain.

The cortex of the brain is split in two halves, and each half is divided into
four broad regions as shown in Fig. 2.12: the frontal lobe at the front of the
head, the parietal and temporal lobes in the middle, and the occipital lobe at
the back of the head. The visual cortex refers to those areas of the cortex that
process information from the pair of retinal images. One of the distinguishing
characteristics of a visual area is that it is organized topographically to
preserve, qualitatively, the spatial relationships of points on the retinal image.
The effect is similar to sketching a line drawing on a flat balloon and then
inflating it: the lengths of the lines change, but they still keep the same spatial
relationship with each other. The visual cortex has many small topographical
maps that it uses to encode aspects of the image such as brightness, color,
shape, texture, motion, and depth. Most of the early-stage visual processing is
done in the primary visual cortex occipital lobe, but later-stage processing
is done in the temporal and parietal lobes.

The optic nerve that enters the brain from the back of the eye has more than
100 million connections. The optic nerves from both eyes meet at the chiasma
as shown in Fig. 2.13, where the circuits are combined and then rerouted. The
circuits that correspond to the left half of the visual field are directed to
the right side of the brain, and those that correspond to the right half go to the
left side of the brain. Two pathways lead out from the chiasma. The smaller

Parietal lobe Frontal lobe

Occipital lobe

Temporal lobe

FIGURE 2.12 Hemisphere showing the four lobes without pathways

c02 19 August 2011; 15:46:48

34 THE COGNITIVE AND VISUAL SYSTEMS

pathway goes to a nucleus in the brain stem—the superior colliculus—which is
thought to extract information about where objects are in the environment and
contribute information needed for eye movement and other responses. The
larger pathway goes through the LGN (lateral geniculate nucleus), which relays
information to the primary visual cortex known as area V1 where the earliest
stage of scene recognition takes place. V1 is the most studied of the visual areas.

Ignoring the enhancements to the image that may already have been made in
the retina, the process of reconstructing mental descriptions of concepts from
patches of light begins in V1. Information flows through processes in different
areas, and the patterns become increasingly complex. A widely accepted theory
known as the “two streams hypothesis” is that from V1, the processing
separates into two pathways. One pathway—the dorsal pathway or the “where”
or “how” pathway—culminates in descriptions about the location of the object
relative to the viewer so that actions such as eye movements or reaching can be
planned and guided. This pathway ends in the parietal lobe. The other
pathway—the ventral or “what” pathway—culminates in descriptions that
allow the recognition of objects or concepts that we have in our memories.
This pathway ends in the temporal lobe.

Optic chiasma

Primary visual cortex
Lateral geniculate body

FIGURE 2.13 Visual pathways

c02 19 August 2011; 15:46:48

2.3 VISUAL PERCEPTION 35

The connections between visual centers are complex. Throughout the visual
processing, information flows to later-stage processes through forward connec-
tions, but feedback from later-stage processes can also influence earlier
processing by feedback provided through backward connections. Although we
will summarize the forward flow of processing, the more advanced stages have
the ability to tune earlier neural networks so that they are activated only when
there are certain combinations of patterns. The extent to which various
processes can be influenced and how they can be influenced is debated. Some
argue, for example, that early-stage visual perception is impenetrable by
cognitive processes. But whatever the mechanism, there is agreement that
later-stage thought processes, such as where we focus our attention, can affect
what we see. We will return to this topic in a later section.

2.3.5 Processing the Retinal Image

From some scene in the world, the eye has generated the retinal image: an array
of numbers that represent the intensity of light from reflected surfaces. The
hard problem of vision, as described earlier in the chapter, is how to recover
from these numbers information about our relationship to these objects that
includes where they are in the world, what they are made of, and how we should
interact with them. To understand how difficult this problem is, imagine how
you would reconstruct a scene given only the light intensity values taken from it
as shown in Fig. 2.14.

FIGURE 2.14 A numerical array of values from the intensity of light

c02 19 August 2011; 15:46:48

36 THE COGNITIVE AND VISUAL SYSTEMS

In the following sections, we describe the reconstruction of a scene through
classical information-processing theory using the framework developed by
Marr and extended by Palmer. (Note that although our experience of motion
comes from the visual processing of changes in the images that occur over time,
understanding how design of real-time interaction affects this experience is
outside the scope of this book. The analysis of motion, although it makes
important contributions throughout the stages, will not be discussed in the
following sections.) At the algorithmic level of explanation, vision is a process
of four stages: image-based, surface-based, object-based, and category-based.
The names reflect the kind of descriptions that each stage generates. The stages
presume a sequence of representations that build progressively from simple
graphical primitives into a complex pattern that describes an object indepen-
dent of the direction in which that object is being viewed. We will describe the
processing using the simple scene created by Adelson called the checkershadow
illusion as shown in Fig. 2.15.

Image-Based Stage. The goal of this stage is to find and combine small
patterns in the retinal image. The retinal image is an array of light intensity values
for each point in the image. This stage looks for spatial structure in the image by
analyzing variations of intensity—low numbers next to high numbers—across the
image. The small, local patterns it finds are called features. The features that are
spatial primitives include edge segments or small repeating or random patterns
called textures. The primitive features are further combined into longer lines, line

FIGURE 2.15 The checkershadow illusion (Image courtesy of Edward H. Adelson:

http://persci.mit.edu/gallery/checkershadow)

c02 19 August 2011; 15:46:49

2.3 VISUAL PERCEPTION 37

contours or blobs.Marr described the output of this stage as the primal sketch. It is
like an incomplete 2-D line drawing defined by the contrasts in light intensity in
the image.

Surface-Based Stage. The goal of this stage is to generate descriptions
about the surfaces in the 3-D environment that created the lines, edges, or
contours in the sketch. We perceive volumes, but we see surfaces. We see them
in perspective as orthogonal projections of 3-D surfaces onto the 2-D retinal
image, in many shades of light and color illuminated by direct sunlight or under
the clouds of an overcast day, at many different angles, and as one in front of
another. This stage uses specialized processes to identify the surfaces and
extract information about their shape and depth.

An object can project many different shapes onto the image depending on
the location from where it is being viewed and its distance from the viewer.
Surfaces are made of many different kinds of material that may absorb, scatter,
or reflect the light back at different wavelengths and amounts. Shadows may
fall across parts of a continuous surface. The color of the illuminating source
may be different. Materials and lighting can be combined in an infinite number
of ways to produce the reflected value.

The checkershadow scene illustrates some of the problems that must be solved.
The image has 36 shaded shapes—29 trapezoids and 7 irregular shapes, 5 of which
are partially hidden trapezoids under the cylinder. (This may be difficult to see
because our vision automatically processes the shapes so that they appear as
objects. Try to look at each differently shaded area separately from the others.) A
shadow is cast by the cylinder, which darkens some of the shapes. The squares
labeled A and B are printed in the same color ink. The side of the cylinder is partly
in light and partly in shadow.Fromonly the edges, lines, and contours, the regions
within them must be separated into 36 shapes and other blobs as if they were
mosaic tiles with similar color and texture. The processes in this stage must label
each shape or blob with information about which surface it likely belongs to and
determine its distance from the viewer and orientation in a 3-D space.

Depth, our sense of distance to the surface of the object, is recovered
through specialized modules. Some of these analyze stereoscopic information
that come from differences in the location of the overlapping areas of the visual
field in the images from the left and right eye. Other depth information comes
from tension in the muscles that focus the eyes on an object: closer objects have
a higher angle of convergence than do objects farther away. The thickness of
the lenses also provides feedback because closer objects require a thicker lens.
Other processes embody various kinds of heuristics or assumptions:

� Nearly parallel lines converge if they extend toward the horizon line
(railroad tracks).

� Objects closer to the horizon line, below or above, are farther away, for
example, the trees of a forest below the horizon and the clouds above.

c02 19 August 2011; 15:46:49

38 THE COGNITIVE AND VISUAL SYSTEMS

� Objects of similar height are smaller on the image if they are farther away.
The members of a marching band in a parade are about the same height.
Their relative sizes on the image conveys their relative distance.

Other modules help recover depth by analyzing edges or edge intersections.
Illumination edges separate areas of a surface that fall into shadow, reflectance
edges separate areas where the amount of light changes as a result of reflection
from different material, depth edges result from a closer surface hiding part
of a surface behind it, and orientation edges show where surfaces meet. Edge
intersections appear in the image as Ls, Ts, Ys, crow’s feet, or as gradients, and
these help analyze whether the surfaces that intersect at the junction are convex
or concave.

Surface orientation affects the way light is reflected from the illuminating
surface back toward you as shown in Fig. 2.16. A flat surface may slant toward
one side or another or tilt away from or toward you. A continuous rounded
surface has an infinite number of orientations. The analysis treats surfaces as
composed of many small flat surfaces that, in the case of curved surfaces, can be
reduced to the size of a point. Some processes use the patterns of variation of
the amounts of reflected light from these points to recover information about
depth and orientation (Pinker, 1997).

FIGURE 2.16 Checkboard and cylinder showing how surface analysis might analyze

local regions. (Redrawn. Original image courtesy of Edward H. Adelson: http://persci.

mit.edu/gallery/checkershadow)

c02 19 August 2011; 15:46:50

2.3 VISUAL PERCEPTION 39

The result of this stage of processing is a 2.5-D representation that includes
information about only those surfaces that can be seen. The representation of a
surface is as many small flat elements whose properties include color, slant, tilt,
texture, and distance from the viewer. It is called 2.5-D because the representa-
tion lies between the 2-D image representation and a full 3-D representation of
objects.

Object-Based Stage. The goal of this stage is to organize the edge and
surface elements into a meaningful hierarchy of 3-D objects, parts, and groups.
In the preceding example, we see a checkerboard with four edges—two that our
mind fills in—and a solid gray cylinder casting a shadow over the board. We
see equally sized squares even though the shapes on the image are trapezoids
and the lengths of the sides of the trapezoids in the back are shorter than the
ones in the front. We see squares that alternate consistently between dark and
light gray even when some of the light and dark squares have the same intensity
of light. We see 25 squares on the board even though only 19 are fully visible, 5
are partially visible, and 1 is hidden. We don’t see—unless we attend closely to
the details—many edges, shaded trapezoids and ellipses, or other irregular
patches of light. How this happens raise questions of interest to the designer
about the following:

� Perceptual organization. What gives rise to the particular structure of the
scene that we perceive when there are many alternatives that could be
reconstructed from the retinal image?

� Visual interpolation. How do we see shapes that are partially obscured? Or
what patterns of shapes give rise to objects that don’t exist?

� Visual constancy. Why do we see properties, such as color, as if they were
intrinsic to the object, even though lighting conditions and other objects in
the environment, such as the cylinder casting a shadow on the squares,
create conflicting properties on the corresponding shapes in the image?

� Shape recognition. How do we recognize groups of shapes as an object?

Max Wertheimer, one of the founders of the Gestalt school of psychology,
described the problem of perceptual organization in a seminal paper (Werthei-
mer, 1923). He argued that we do not experience the world as many individual
elements, but as complex wholes consisting of elements separate from but
related to each other. The elements have been structured by perception in ways
we cannot control. Further, he argued, this could only be explained by looking
at the entire context and not just at the elements. A simple example is shown in
Fig. 2.17. On the left, we see four individual circles; on the right we see two
groups of two circles. In the image on the right, it is almost impossible to see the
image as a group of one circle next to a group of three. We cannot explain this
by saying that the whole—a group of two circles—is the sum of its parts—a
circle plus a circle. It can only be explained by knowing the larger context: it is

c02 19 August 2011; 15:46:50

40 THE COGNITIVE AND VISUAL SYSTEMS

the proximity of a circle to the other circles that makes the difference. Proximity
was the first of Wertheimer’s laws of perceptual organization.

The classical principles of perceptual grouping that grew out of the work of
the Gestalt psychologists and the extensions proposed by Palmer are shown in
Fig. 2.18. Groups are perceived when elements are close to each other
(proximity); are similar in color, size, or orientation (similarity); have symmet-
ric or parallel patterns; or move together (common fate). Elements that have a
smooth continuous boundary are grouped (continuity). In the figure, the arc is
seen as a single line and not as three separate segments. Elements that form a
closed figure are grouped (closure). In the figure, the two circles with edges
touching are perceived as two circles instead of a “figure eight.” Palmer
proposed additional principles. Elements within the same region are grouped
(common region). Elements connected by other elements are grouped (element
connectedness). These principles apply if only one is operating at a time. There
is no set of rules that predictably describes what will be perceived if combina-
tions of the factors are present. How the visual system structures the scene
when more than one factor is involved is not yet fully understood.

FIGURE 2.17 Example of the Gestalt proximity principle

Proximity

Similarity

Common fate

Continuity

Closure

Common region

Element
connectedness

No effect

FIGURE 2.18 Gestalt principles with extensions by Palmer

c02 19 August 2011; 15:46:50

2.3 VISUAL PERCEPTION 41

Perceptual organization begins by performing region analysis to partition
the 2.5-D representation. The analysis finds mutually exclusive regions of
similar visual properties such as luminance, color, or texture. Each partition is
further organized by separating the object that appears to be in the foreground
(figure) from the background (ground), grouping elements into a complex
object, or parsing an object into its parts. Figure 2.19a shows examples of two
scenes. In each scene, two circles are connected by an edge. Either scene could
produce the whole/part hierarchy in Fig. 2.19b. The figure—everything not
gray or textured—is separate from the ground. The elements are grouped
together. Grouping combines the circles and edge into a complex object of
circle-edge-circle. Finally, the complex object is parsed into the parts we
perceive as being separate but also as belonging to the object.

Other combinations of shapes may result in different perceptual structures.
Sometimes perception fills in missing parts of an object or creates the outlines
of objects that don’t exist, an effect called visual interpolation.

When an object is in front of another, the closer object’s surface may
partially hide—or occlude—the surface of the one in the back. In the check-
ershadow example, the cylinder hides part of five of the squares, but perception
fills in these squares.

Certain patterns of shapes can also give rise to contours that don’t exist such
as the triangle shown in Fig. 2.20.

Translucent objects, such as a tinted window, reflect only some of the light of
the objects behind it. Transparency will be perceived only when the shapes
combine in certain conditions as in Fig. 2.21a but not the others.

(a)

(b)

Superordinate units

Entry-level units

Subordinate units

Grouping

Parsing

FIGURE 2.19 Separation of figure and ground

c02 19 August 2011; 15:46:50

42 THE COGNITIVE AND VISUAL SYSTEMS

So far, we have been describing the role perception plays in organizing the
features, surfaces, regions, and shapes it has recognized. Perception structures
the environment into the 3-D internal objects that correspond with objects
in the environment. But another important role it plays is to make the
properties of these objects appear stable and constant even though much of
the underlying retinal image changes as we or the objects move about in space.
In the checkershadow example, if we were to move around the board, changes
in internal representation are taking place at all stages of perception—light

FIGURE 2.20 An illusory triangle

(a)

FIGURE 2.21 The perception of translucency requires certain conditions

c02 19 August 2011; 15:46:50

2.3 VISUAL PERCEPTION 43

intensity, length and orientation of edges, and the shapes. Yet we perceive the
board and cylinder at all times as having intrinsic properties that have not
changed: the board has 25 light gray and dark gray squares, and the cylinder is
a solid gray. This is known as visual constancy. The perceptual processing
makes adjustments to internal representations to achieve this. We have already
seen an example of color constancy: how the square labeled B appears a lighter
gray color than the light intensity would predict that it should when compared
to the square labeled A. There is also constancy of size, shape, orientation, and
position of objects. The processes involved in making these adjustments are
spread across all stages and rely on assumptions, which if violated, result in
illusions, which are perceptions that don’t match reality (Adelson, 2011).

The result of the object-based stage is a 3-D internal representation
corresponding to objects in the environment that include descriptions of shape
primitives. These representations are not internal 3-D replicates of the objects
we see. We experience the cylinder as a round barrel and the checkerboard as
having a particular thickness as well as width and height. The experience is the
content of the internal 3-D representation but not its form (Pylyshyn, 2003).

Category-Based Stage. The goal of this stage is to determine how to interact
with the perceived objects; that is, what is their utility, function or meaning? We
are now at the border between perception and cognition because the definition
of cognition includes the processes of knowing: attending to, remembering, and
reasoning. These same cognitive processes integrate information from other
sensory and language systems. Palmer argues that although this stage would not
ordinarily be included in the classical definition of perception, how we come to
knowanobject’s function is an essential part of perception. It is certainly essential
for designing the interaction of visualizations.

How do we perceive the function of an object we see in everyday life and the
actions it will support? A physical object’s form provides clues about how it
should be used. The street is to be walked on, a chair is at the right height to sit
on, and the handle of the cup is to be grasped. The actions we can take for these
kinds of objects can be directly perceived, and what we do with them largely
involves motor skills such as walking, sitting, or reaching. These actions are
done unconsciously without accessing memory, and visual perception takes
place largely in the “where/how” pathway, which leads to an action-oriented
system that coordinates motor activity. The visual processing is very fast and
automatic.

For the control panels of modern appliances, mobile devices, or application
interfaces, the functions are not so directly and easily apprehended. Their
functions have been learned by experience and are stored in our memories with
the objects that we see. Using primarily the shape of the object, but also its
other visible properties such as color and size, the object is perceived indirectly
in a two-step process: classify, then retrieve. The object is classified as a member
of one of the many categories stored in memory. The category provides access
to the large amounts of information associated with these objects, including

c02 19 August 2011; 15:46:50

44 THE COGNITIVE AND VISUAL SYSTEMS

their functions. Categorization requires that a perceived object and the
categories stored and organized in memory have internal representations that
can be compared and that there are processes for comparing and deciding on
which category best describes the object. The visual processing takes place in
the “what” pathway and is slower than for direct perception.

Perceptual classification has been measured and includes the following
results of interest for design:

� Categories have a canonical perspective that allow us to more quickly and
accurately classify an object. For example, a horse seen from the side will
be classified more quickly than one seen from the front.

� An object being seen again, even if the first time it was seen was a few
hours prior, will be classified more quickly the second time. The effect is
known as priming.

� Objects in normal positions will be classified more quickly than if they are
rotated. The difference in reaction time increases with the angle of
rotation, as if the viewer was mentally rotating the object back to its
normal position to classify the object.

� In a complex object with parts, the parts are critical to object classification.

� Context plays an important role in classification speed and accuracy when
what is being classified is ambiguous or is a part of an object. For example,
we do not always recognize the face of someone we know from our home
city if we were to see them in a place far away because we are not expecting
to find them in the remote location. Appropriate context facilitates
categorization, whereas inappropriate context hinders it.

2.3.6 Color

We see blue skies, a forest of green trees, or a blazing orange sun at sunset, and
we attribute the color to the skies or trees or sun. But color is not an intrinsic
property of the object; rather, it is our experience of light. Isaac Newton
discovered this in the seventeenth century when he used the prism to split
sunlight into a rainbow of hues and saw that it was composed of many colors.
In his treatise on optics, he wrote that the rays were not colored, but they had a
power to stir up the sensation of color (Palmer, 1999).

Color is a byproduct of the way light is processed by the visual system. The
energy of light is converted into channels of color information that comprise
the retinal image. Later-stage visual processing associates color properties with
surface and object representations. These augmented representations give rise
to the experience that color is an intrinsic property of the objects we see.

The Physics of Light. Photons, the elements of light, are small packets
of undulating electromagnetic radiation that are both particle and wave.
When we described them earlier in their role in forming the optic array, it

c02 19 August 2011; 15:46:50

2.3 VISUAL PERCEPTION 45

was as particles bouncing off surfaces. Here we are interested in their wavelike
nature because it is the wavelength—the distance between each crest of the
wave—that determines which colors we can see. Wavelength is used to classify
the electromagnetic spectrum. It starts with small gamma rays (10-16 m—meters
in scientific notation) and ends with long radio waves (108 m). The part of this
spectrum that is visible, called the visible spectrum, falls in the range from 400 to
700 nanometers, where a nanometer is 0.000000001 meters (10-9 m). The
electromagnetic spectrum is shown in Fig. 2.22.

A beam of light consists of a number of photons at each wavelength of the
visible spectrum, and the count of photons can be plotted against the
wavelength to produce a spectral diagram for that beam of light (assuming it
is not mixed with light from any other source). The spectra for an incandescent
lightbulb and sunlight are shown in Fig. 2.23. A laser beam has only one
wavelength, and it emits monochromatic light. Its spectra is a flat line. The bulb
and sunlight emit polychromatic light. From the perspective of physics, the
visible light from a particular source is a mixture of photons of different
wavelengths, and its spectrum is its physical representation.

The Experience of Color. The colors a person with normal vision perceives
is often represented as a color space in three dimensions: hue, saturation,
and lightness. (Saturation is sometimes called “chroma,” and lightness is

10�16 10�14 10�12 10�10 10�8 10�6 10�4 10�2 0 102 104 106 108

γ-rays X-rays UV IR Microwave Radio Long radio

Visible Spectrum (400–700 nm)

Wavelength

FIGURE 2.22 The electromagnetic spectrum

of

 P
ho

to
ns

Wavelength (nm)

700400 500 600

Lightbulb

of

 P
ho

to
ns

Wavelength (nm)

700400 500 600

Daylight

FIGURE 2.23 Spectra for a tungsten lightbulb and daylight

c02 19 August 2011; 15:46:51

46 THE COGNITIVE AND VISUAL SYSTEMS

sometimes called “value.”) This color model, shown in Fig. 2.24, was devised by
the artist and art teacher Albert Munsell (1905). Hue is the essential color we
associate with a surface and references a particular wavelength of light in the
visible spectrum. Saturation is the intensity of the hue: how much or how little
red or yellow there is in the color, for example. Lightness is the amount of light
reflected by the surface: the more the light is reflected, the lighter it is. A black-
and-white image has only degrees of lightness. (Lightness is the amount of
reflected light. The term brightness is used when describing the amount of
emitted light.) The actual colors we perceive are a subset of this space because
we cannot make as fine a distinction as the model allows.

In the behavioral experiments conducted after Newton’s discoveries, various
phenomena about color perception were observed that had to be explained by
the theories of color:

� Light as mixture. Only a small number of the colors we see correspond
directly with monochromatic light in the visible spectrum, which are
colors of the rainbow. From Newton’s discovery forward, efforts were
made to understand the relationship between light and color. Newton
developed a color wheel that had three primary colors opposite what he
thought to be their complements—green�magenta, blue�yellow, and
red�cyan. It was a way to visualize how the primary colors could be
added together to produce other colors. Sir Thomas Young (1802)
hypothesized that there were three types of color receptors in the eye
that produced the red, green, and blue primary colors we see. James Clerk
Maxwell (mid-1800s) picked up Young’s work and conducted experiments
to understand the laws of composition, the smallest number of standard
colors, and the relationship of the light’s spectrum to the standard colors.
He found that many different combinations of wavelengths of light—
metamers—could produce the same color sensation. In other words, light
was an infinite-dimensional space that had to be mapped to the 3-D
perceptual color space. Hermann von Helmholtz, a contemporary of
Maxwell, postulated that each of the receptors responded to different
wavelengths as shown in Fig. 2.25. One receptor was most sensitive to

Lightness

Hue

Saturation

FIGURE 2.24 The Munsell color model

c02 19 August 2011; 15:46:51

2.3 VISUAL PERCEPTION 47

short wavelengths, the second to medium wavelengths, and the third to
long wavelengths. Young’s initial theory combined with the later exten-
sions to it eventually became known as the Young�Helmholtz trichro-
macy theory.

� Color afterimages. Staring at intense colors for an extended time—for
example, up to half a minute—and then looking at a white background,
will produce an image of the initial colors’ complements. If the intense
colors were red and blue, the afterimage should appear as green and
yellow.

� Color blindness. A small percentage of people—8%male and 1% female—
cannot match colors produced by a mixture of three colors that the rest of
the population sees. Those with normal vision—trichromats—can see all
colors; dichromats can see a mixture of two; and monochromats see only in
black and white. The fact that the loss comes only in pairs of colors, such
as red and green or yellow and blue, and never as individual colors left the
trichromatic theory without an explanation.

� Simultaneous contrasts. The color of a foreground shape may be affected
by the color of its background. The strongly colored background of a gray
circle that passes through a square subdivided into squares of red, green,
yellow, and violet will pick up the complement of the color of the square.
A similar effect happens with lightness contrasts as shown in Fig. 2.26.
The inner rectangle has the same gray print color in both squares, but the
perceived color is adjusted by the perceptual processing.

Besides the significant fact that in color blindness only pairs of colors were
lost, other phenomenon began to create problems for the trichromacy theory:

� We can sense colors that mix red and green, red and yellow, red and blue,
blue and green, and yellow and green. But we cannot sense colors that

R
ec

ep
to

r
re

sp
on

se

Wavelength (nm)

700400 500 600

Violet
Blue

Green
Yellow

Orange
Red

FIGURE 2.25 Trichromatic theory: color arises from overlapping receptor responses

c02 19 August 2011; 15:46:51

48 THE COGNITIVE AND VISUAL SYSTEMS

result from mixing red and green, or blue and yellow (ignoring the mixing
of inks or paint that work by filtering light—subtracting—rather than
combining it—adding).

� Yellow was supposed to result from mixing red with green, but the
experience of yellow is not the same as that of purple, which results from
mixing red and blue. Subjectively, yellow is experienced as a primary color.

Ewald Hering (1878) developed the opponent process theory as shown in
Fig. 2.27 that explained these and other discrepancies. The theory held that
there are three basic mechanisms, and shifts in the signal in each mechanism
between positive and negative poles create the experience of a color or its
complementary color, or of light and dark. The theory also stated that blue/
yellow and red/green are the chromatic channels, black/white is the achromatic
channel, and there are four primary colors.

The opponent process theory explained many anomalies of the trichromacy
theory but was subjective; the trichromacy theory, on the other hand, predicted
important observed behavior. Eventually, the dual-process theory emerged.
Experiments have shown that networks of cells in the retina perform both
stages of processing.

FIGURE 2.26 The perceived color of an object depends on contrast

Light-mediating substance
B

lue

Y
ellow

G
reen

R
ed

W
hite

B
lack

� � �� � �

Neural responses

FIGURE 2.27 Mechanism for opponent process theory

c02 19 August 2011; 15:46:51

2.3 VISUAL PERCEPTION 49

Creating the Retinal Image. Earlier, we mentioned that the types of
photoreceptors in the retina responsible for the light and colors we experience
in normal lighting conditions are called cones. There are three types of cones
that absorb and convert light to electrochemical signals. The percentage of light
absorbed is the absorption spectra as shown in Fig. 2.28. Their names indicate
the wavelength of light at the peak of the signal. Short-wavelength cones (S)
peak at 440 nanometers, medium-wavelength cones (M) at 530 nm, and long-
wavelength cones (L) at 560 nm. The ratio of L to M to S cones is 10:5:1, and
they are not distributed evenly across the retina; there are almost no S cones
near the very center of the fovea.

The signals from these three types of cones combine as the trichromatic theory
predicted. But the discovery of color-sensitive cells in the retina and visual
pathways whose responses corresponded to the opponent process theory led to
questions about how the three types of cones could produce the opponent-like
patterns of responses. Artificial neural networks have been proposed showing
how the S/M/L input could be transformed into one luminance channel of black/
white, and two chromatic channels of red/green and blue/yellow. As discussed
earlier, any representation makes explicit certain things that make some calcula-
tions easier and others harder. A trichromatic representation is useful for
transforming the spectral information in light. The opponent representation is
useful for comparing differences in the level of illumination (changes in
luminance) or surface reflection (changes in chromaticity) in adjacent areas of
the image. Being able to compare differences in separate channels supports
processing that, for example, identifies features in the image or makes adjust-
ments for shade falling across a surface. The opponent representation is the basis
for the input to later stages of visual processing.

R
el

at
iv

e
ab

so
rb

an
ce

 (
%

)

Wavelength (nm)

S M L

440 530 560

FIGURE 2.28 Absorption spectra

c02 19 August 2011; 15:46:51

50 THE COGNITIVE AND VISUAL SYSTEMS

Processing Color in the Retinal Image. We see the surfaces of objects as
having color, but color is a psychological property, not an intrinsic property of
the object. Look at a color sample inside a paint store under a normal lightbulb
and take it into the sunlight outside, and its color will change. What is intrinsic
to the surface is how much (percentage) of the incident light is reflected at each
wavelength. The amount of light falling on the surface from the light is the
illumination spectrum. The percentage of light that will be reflected regardless of
the light source is the reflectance spectrum; it is a function of the material and
composition of the surface. The eye sees the light illuminated by a particular
light source reflected from the surface. The resulting spectrum is the luminance
spectrum, which is a product of the illumination spectrum and the reflectance
spectrum:

Illumination Spec: ðIwÞ3Reflectance Spec: ðRwÞ 5 Luminance Spec: ðLwÞ

Iw is the number of photons emitted, Rw is the percentage of photons reflected,
and Lw is the number of photons reflected. An example of the spectra and their
relationships is shown in Fig. 2.29.

The visual system tries to maintain our perception that the color-related
properties of objects are invariant: white snowballs always look white regard-
less of whether they are in bright sunlight or shadow. This is known as lightness
constancy and color constancy. To determine the properties of the surface—the
material it is made of or the color it was painted—the visual system must
somehow recover just the reflectance spectrum. The processing is done in the
surface-based stage.

The edges between regions play an important role in recovering information
about reflectance and illumination. Edges are created by contrasts in the
amount of light from one region to another. Even if the overall luminance

L
ig

ht
bu

lb
D

ay
lig

ht

L
um

in
an

ce

700400

R
ef

le
ct

an
ce

700400

Il
lu

m
in

at
io

n

700400

� �

Il
lu

m
in

at
io

n

Wavelength (nm)
700400

L
um

in
an

ce

700400

R
ef

le
ct

an
ce

700400

� �

Wavelength (nm) Wavelength (nm)

FIGURE 2.29 (# photons emitted) 3 (% photons reflected) = (# photons reflected)

c02 19 August 2011; 15:46:51

2.3 VISUAL PERCEPTION 51

across all regions increases because of a brighter light source, the relative
amounts of light between regions remains mostly the same. In the example
shown in Fig. 2.30, the ratios of the luminance in the first and second images
remain the same.

The retinex theory (Land and McCann) provides an explanation of how the
relative lightness between two regions can be recovered by integrating
the luminance ratios of just the edges between them as shown in Fig. 2.31. The
emitted light, as measured by the illumination level, is stronger at the top (100)
than at the bottom (40). Surface A reflects 20%of the light, B reflects 40%, andC
reflects 80%.L (luminancevalue) at the topandbottomof each region is obtained
by multiplying I (illumination level) by R (reflectance percentage) as follows:

LA2top5IA2top3RA5100320%520; LA2bottom5IA2bottom3RA580320%516
LB2top5IB2top3RB580340%532; LB2bottom5IA2bottom3RA560340%524
LC2top5IC2top3RB560380%548; LC2bottom5IA2bottom3RA540380%532

The relative reflectance of A to C is 1/4 (20% / 80%). The global reflectance
calculated by the visual system, which matches the known reflectance ratio, is
generated by multiplying the luminance edge ratios as follows:

global reflectance ratioA2C 5 ðA=BL2ratioÞ3 ðB=CL2ratioÞ
5 16=323 24=48 5 1=4

Edges are further categorized into reflectance and illumination edges to
make appropriate adjustments to lightness, saturation, or hue. For example,
the edge between a blue painted window sill and the white siding of a house is a
reflectance edge; the edge between the shaded and unshaded regions of the
siding is an illumination edge. The reflectance on both sides of an illumination
edge—what is in shadow and what is not—is the same, and these edges are not
included in calculating the global reflectance ratio as in the earlier example.

Although the visualizations we will design are not scenes that create the
kinds of variations that require continual adjustments to color and lightness, it

Light source
emits 100

units

Light source
emits 10,000

units

Units
reflected

Units
reflected

90

10

900

100

FIGURE 2.30 Lightness constancy depends on ratios

c02 19 August 2011; 15:46:51

52 THE COGNITIVE AND VISUAL SYSTEMS

is important to know that built into perception are adjustments that will be
made to try to maintain light and color constancy.

2.4 INFLUENCING VISUAL PERCEPTION

So far, we have described the flow of information as a bottom-up process
from the light reflected from a scene to the language of thought that is the
input to cognition. This is a view of perception as a data-driven process that
begins with the retinal image. Each stage of processing takes as input a lower-
level representation and creates or modifies a higher-level representation
as output. But perceptual processing is much more complex. What we want
to accomplish—our tasks, goals, or motivations—strongly influence what we
see. The bottom-up process is influenced by a top-down process that takes
higher-level representations and creates or modifies lower-level representations
(Pylyshyn, 2003; Velmans, 1999; Ware, 2008; Johnson, 2010).

Tasks and activities determine the objects we focus on or give our attention
to. Some of the acts we do as we focus our attention are physical such as
turning our head or moving our eyes as we scan a page. These acts are called
overt. Acts that are internal and cannot be noticed by others are called covert.

C
reflects 80%

B
reflects 40%

A
reflects 20%

Illumination Level
(in units of light)

Light emits 100
units

100

80

60

40

Luminance
(at edges)

20

16

32

24

48

32

FIGURE 2.31 Global reflectance can be calculated by ratios of differences at

the edges

c02 19 August 2011; 15:46:51

2.4 INFLUENCING VISUAL PERCEPTION 53

For example, we may simply shift our attention from the architectural structure
of a building to its color. Both kinds of acts are a form of visual selection. The
amount of information in the environment cannot all be processed; it must be
sampled. In the following sections on eye movement and attention, we will
discuss how the visual system makes visual selections that help us do our tasks
and activities.

After the image has been processed, it becomes an interrelated set of concepts
and objects as representations in the language of thought. We have described
the bottom-up processing as if there were only a pair of images, but the scene is
constantly changing. What happens to these concepts and objects as our
attention turns elsewhere? How long do they last and where are they stored?
These questions will be discussed in the “Memory” section later in this chapter.

2.4.1 Eye Movements

The sharp details of what we see come only from the foveal region of the retina.
Of the 180�-wide and 130�-high field of view that the eyes take in, the fovea
covers a visual angle of only about 2�. To capture more information, the eyes
must be directed to objects that are interesting and relevant. Eye movement has
two important functions: fixation and tracking.

Fixation is the result of positioning the eyes so that the object of interest is
centered in the fovea. It is the short period of time between eye movements
when the scene is taken in. For each fixation, significant changes are made to
the retinal image, but we are unconscious of the integration of those changes
into the resulting representation of the 3-D scene.

Tracking moves the eyes to keep an object centered in the fovea when the
object, head, or both are moving. Again, perceptual processes integrate these
changes so that changing scenes appear smooth and continuous.

Types of Eye Movements. Several types of eye movements play different
roles. Small eye tremors happen automatically all the time. Without these
movements, experiments have shown that in as little as a few seconds after
movement is frozen, the retinal image disappears. The visual system uses the
primitive features in changing images—edges or contours, for example—to
regenerate the visual experience. Other movements help keep the eyes fixed on
moving objects or focusing the eyes on closer or distant objects to perceive
distance. But the movements of greatest interest for designing visualizations are
those involved in visual selection, which are called saccadic and smooth pursuit
movements.

Saccadic movements are used to sample the scene for new objects of interest.
They are quick and abrupt and, once started, cannot be stopped until the eyes
are positioned at the destination. The plan and execution of a saccadic
movement takes about 150 to 200 milliseconds, and the fixations between
them last on average 300 milliseconds. We are not conscious of image motion
during the saccade because perception is partly suppressed, and constancy

c02 19 August 2011; 15:46:51

54 THE COGNITIVE AND VISUAL SYSTEMS

mechanisms adjust the low-level representations to eliminate the movements in
the image. Most visual perception takes place in the sequences of fixation. Both
the structure in the image and the task determine how the scene will be
explored. Fig. 2.32 shows the effects of a task on saccadic eye movements in
experiments conducted by Yarbus (1967). Sequences of fixations, called scan
paths, produce small parts of the scene, like pieces of a jigsaw puzzle, that are
integrated by visual processes into a coherent whole.

Smooth pursuit movements track a moving object—such as a ball thrown in
the air—to keep it centered in the fovea. Eye movement is smooth and
continuous. Constant visual feedback from the image keeps the object station-
ary on the image so that the visual system can extract the most information
possible during the object’s movement. Maximum speeds are almost 10 times
slower by comparison to saccadic movements. The part of the scene not in the
fovea is smeared by motion, and the visual acuity in the foveal region decreases
as the speed of the object’s movement increases. The ability to track objects
with clarity at increasingly faster speeds varies by individual but can be
improved with practice.

FIGURE 2.32 The effect of goals on saccadic patterns. (Image courtesy of Wikipedia:

http://en.wikipedia.org/wiki/File:Yarbus_The_Visitor.jpg)

c02 19 August 2011; 15:46:51

2.4 INFLUENCING VISUAL PERCEPTION 55

2.4.2 Attention

The typical scene is far too rich with information to absorb it all at once. The
saccadic eye movements are necessary for finding the information that is
interesting or relevant. If saccades are the means for carrying out a visual
search strategy, attention is the mechanism for directing the strategy. Where the
eyes are positioned depends on whether we are looking at the overall structure
of a scene, a group of objects, a specific object, or some of its parts and
properties. Visual attention is defined as the processes that marshal perceptual
resources to allow specific objects and properties of the retinal image to be
explored while ignoring others.

Attention has two properties: capacity and selectivity. Capacity refers to the
resources that are available and is affected by our state of mind, such as
motivation, wakefulness, and time of day. Selectivity is the ability to select
different subsets of information—for example, different properties or features
of an object—to be processed. Two kinds of attention are important for
design. Focused attention occurs when an object has been selected. Distributed
attention occurs when we expect to find objects somewhere in the visual field
but are not searching for something specific.

Focused Attention. Because the scene contains more information than can
be processed at one time, the visual field must be sampled to find the information
relevant to the task at hand. Attention requires mental effort, which comes at a
cost.At aminimum, a scan of the entire scene is the sumof a small amount of time
for each eye movement and the visual processing that takes place at fixation,
which is about 1/2 second on average for each new location in the image. Because
we are awash in images from moment to moment, we need efficient ways to
search them so that we only attend to (or select) what is relevant. The paradox of
intelligent selection, however, is that we can only know what is relevant if the
visual system has processed everything in the image.

The paradox is solved partly by innate mechanisms in the visual system and
partly by strategies developed by what has been learned through experience.
How much of the image is processed in parallel before we become aware of any
objects in the scene is still unknown. Certain things, such as a moving object,
are known to stand out almost immediately without effort. The system may
be hardwired to detect motion and other features that it can differentiate
within a scene. Experts develop efficient strategies for scanning familiar board
positions. For example, when a meaningful board configuration is shown, a
chess expert can more quickly extract perceptual information in a single
fixation than can a novice, and can also more easily comprehend groups of
pieces in the periphery (Reingold, et al., 2001). Figure 2.33 shows a possible
scan path for an advanced chess player’s eye movements and the groups labeled
A, B, and C of chess pieces that might be in the periphery.

Except for involuntary shifts of attention that are triggered by objects with
certain properties, what we consciously perceive is a result of where we have

c02 19 August 2011; 15:46:52

56 THE COGNITIVE AND VISUAL SYSTEMS

focused our attention. We tend to perceive only what is in our focus of
attention. There are several forms of what we miss by inattentiveness to what is
not in focus:

� Inattentional blindness. We tend to see only what we expect or are
specifically looking for.

� Attentional blink. When a second object of interest is presented within half
a second of an object we are attending to, the second object will be missed
because our perceptual resources are already committed. The lack of
resources prevents attention to both objects at the same time.

� Change blindness. Areas of an image that change are missed unless these
areas affect the objects of our attention.

Nonspatial selection. So far, we have discussed how we scan an image and
what we perceive in the image as a whole when we focus on an object of interest.
Another aspect of attention is the ability to select for the properties of objects:
Can we attend to just one or two, or are certain groups of properties perceived
all at once? The question is about how properties (or features), such as shape,
color, or size of an object are bound together in the object’s representation
and whether these properties can be selected separately without requiring the
perceptual processing of other properties that are not of interest. The answer
depends on whether the pair of properties are integral or separable.

When properties are integral, we tend to see them as a whole, not as separate
properties. For example, the width and height of an ellipse are integral with its

FIGURE 2.33 A possible scan path of the eye movements of an advanced chess player.

(Image courtesy of Wikipedia: http://en.wikipedia.org/wiki/File:Eye_movements_of_

a_chess_champion_nc.jpg)

c02 19 August 2011; 15:46:52

2.4 INFLUENCING VISUAL PERCEPTION 57

shape. In Fig. 2.34, the ellipses are more alike even though B has the same width
as A. Width and height are integral and cannot be separated to discriminate by
just width or height.

When properties are separable, judgments can be made about each property
separately. In a field of objects with different colors and shapes, we could select
by color, shape, or both. In Fig. 2.35, circle A and ellipse C can be seen as
similar if we are looking for the same lightness.

Distributed Attention. When we are expecting to see something in the visual
field but not necessarily something specific, our attention is distributed but not
focused (Palmer, 1999). The processing that takes place for distributed
attention is automatic, performed in parallel on the whole image, and is very
fast. By contrast, processing guided by focused attention is serial and is
performed as a series of fixations on specific regions or objects.

A

B

C

FIGURE 2.34 Width and height are integral and cannot be separated to make

comparisons

A

B

C

FIGURE 2.35 Lightness can be separated from size and used to group objects

c02 19 August 2011; 15:46:52

58 THE COGNITIVE AND VISUAL SYSTEMS

When our attention is distributed, a phenomenon known as visual pop-out
occurs in which objects with certain features or combinations of features can be
easily picked out or separated into groups within a field of similar objects.
(These features are also called preattentive features because they are processed
before we become aware of them.) Distributed attention allows certain visual
tasks to be performed quickly such as:

� Target detection. Finding an object within a field of similar objects can be
done without focus if the object can be distinguished from the others
by mutually exclusive features such as lightness, color, orientation, shape,
size, motion, and stereoscopic depth. In Fig. 2.36, the features that
differentiate the target are lightness, shape, and orientation. Features can
be added to a target to make them pop out as in the left side of Fig. 2.37,
but features cannot be removed as in the right side. When using orienta-
tion, not all shapes are equally effective, however. Some shapes with convex
or concave contours cannot be easily detected as shown in Fig. 2.38.

� Boundary detection. When all the objects in one group have a common
feature different from the common feature in the other group, they will
separate without requiring that attention be focused. In Fig. 2.39,
lightness separates the top group from the bottom.

FIGURE 2.36 Target detection using lightness, shape, and orientation to discriminate

FIGURE 2.37 Target with line added (left) and line removed (right)

c02 19 August 2011; 15:46:52

2.4 INFLUENCING VISUAL PERCEPTION 59

� Counting and estimation. Objects with a unique feature can be counted
more easily. Lightness distinguishes the objects in Fig. 2.40; it allows the
dark circles to be counted.

2.4.3 Memory

As shown in Fig. 2.41, many types of memory are spread across the brain and
in the major systems that process visual or auditory information, language,
and so on (Baddeley, 2010; Luck, 2007; Eichenbaum, 2008). Memory is based

FIGURE 2.38 The orientation of the target does not distinguish with certain shapes

FIGURE 2.39 Boundary detection using lightness to separate groups

FIGURE 2.40 Using lightness to distinguish a set of objects

c02 19 August 2011; 15:46:52

60 THE COGNITIVE AND VISUAL SYSTEMS

on changes to the synaptic connections within the neural networks of a
particular memory system. It is not a separate storage area because every
neuron processes and stores information. Although the definition of a
memory system is hard to pin down, the most important attributes that
allow memory systems to be compared include the following:

� Duration. Do the contents persist for a short or long period of time?

� Content. Does it contain visual, auditory, semantic, or other kinds of
information? Is the memory expressed explicitly as with facts and
knowledge or implicitly as with skills that are learned?

� Loss. Can the information be lost over time or be replaced with other
objects while doing a different task?

� Capacity. How much information of a given type can be stored? How does
capacity vary as objects are forgotten or are replaced?

� Maintenance. Does the information need to be refreshed to be
remembered?

Information processing theorists organize memory systems into layers by
stage of processing:

� Sensory information stores (SIS). These memories can hold a few
“chunks” of information for very limited periods of time that last from

Prefrontal cortex:
working memory

Striatum:
procedural memory

Cerebral cortex
(outer layer):

perceptual memory,
semantic memory,

priming

Amygdala:
emotional memory

Hippocampus:
new memories,

declarative memory
(facts, episodes)

FIGURE 2.41 A memory map of the brain

c02 19 August 2011; 15:46:52

2.4 INFLUENCING VISUAL PERCEPTION 61

a few milliseconds to a few seconds. There are information stores for
visual information (iconic memory or visual information stores) and
auditory information, for example. Iconic memory has very high capacity.
Information about location, color, size, and shape are represented in
iconic memory, but category information is not.

� Short-term memory (STM). These memories store the information being
processed for many seconds. STM may be part of a larger working
memory system that coordinates and executes all active processing, or its
contents may comprise consciousness. In both the language and visual
systems, we understand quickly the concepts of pictures and sentences, but
the concepts will not be remembered unless attention is focused on them.
Attention is required to leave a trace in long-term memory. Visual
memory can only hold what is relevant for the current task which is
about three or four objects. By hold, we mean that it contains something
like a temporary frame that indexes each object and all its associations
that have been activated in long-term memory as a result of processing the
retinal image. Its limited capacity is one of the reasons that external
visualizations are important aids to analytical reasoning.

� Long-term memory (LTM). This memory has a very large capacity for
storing long term the “what,” “when,” and “where” information of our
experiences (episodic memory); general and factual knowledge (semantic
memory) that include categories as diverse as faces, houses, tools, actions,
or language; and skills (procedural memory). Long-term memory is
formed by repeated activation of neurons that strengthen the connections
and make them more sensitive to the same patterns of activation the next
time they are encountered. For example, we may look through several
hundred pictures from recent holidays. Even if on the next day only a
handful can be remembered, we will still be able to perform tasks on
each picture, such as categorizing, more quickly the second time. The
initial exposure is a form of implicit learning, and the effect is known as
long-term priming.

2.5 SUMMARY

Cognition is the process of thought that derives its power from representation
and abstraction. External representations are cognitive tools that exist outside
our minds. They are designed to aid memory, make abstract concepts visible,
solve problems, support decision making, model, and clarify our thoughts.
Different representations of the represented world can result in dramatic
differences in how a cognitive task is done and how quickly it can be performed.

The computational theory of the mind views the brain as a system of mental
organs that process information. The information from the world that flows
through the senses into the mind as patterns of data become internal
representations. The computational theory of the mind has been successfully

c02 19 August 2011; 15:46:52

62 THE COGNITIVE AND VISUAL SYSTEMS

used to develop computational models and various algorithms that have helped
to understand the human visual system.

The main problem of the human visual system is how to make sense of the
image formed on the retina by the light that enters the eye. Within a scene, the
visual system must do the following:

� Identify where an object ends and the background begins.

� Determine what objects are made of.

� Reconstruct the third dimension.

� Recognize the object.

Information-based theories on how this is done divide visual perception
roughly into four stages. In the image-based stage, simple 2-D features such as
edge and line segments or small repeating patterns are extracted from the
images. In the surface-based stage, the simple 2-D features and other informa-
tion are used to identify the shapes and properties of the surfaces of the objects
in the external world. In the object-based stage, the simpler features and
surfaces are combined and grouped into the fundamental units of our visual
experience: 3-D representations of the objects and their spatial layout. In the
category-based stage, the objects are classified and linked to concepts we have
seen before or that are part of our general understanding of the world.

The perceptual processing of what we “see” is much more complex than just
recognizing what is in the image. Our tasks, goals, or motivations strongly
influence what we attend to and where we look for the information that is
interesting or relevant. Our attention is focused when we are looking for
something specific and distributed when we are just attending to the work.
When our attention is distributed, there is a phenomenon known as “visual
pop-out” in which objects with certain features or combinations of them can be
easily picked out or separated into groups within a field of objects. This allows
certain visual tasks to be performed quickly and is used to design more effective
visual representations.

The characteristics of memory also affect design choices. Short-term
memory stores information only for seconds. Visual memory can only hold
what is relevant for the current task, which is three or four objects. Attention is
required to leave a trace in long-term memory. Long-term memory has a very
large capacity for storing our experiences (episodic memory), general and
factual knowledge (semantic memory), and skills (procedural memory).

2.6 FURTHER READING

In Spatial Schemas in Depictions (Tverskey, 2003), Barbara Tversky discusses the
history of depictions such as pictures, drawings, maps, and diagrams; the use of
space to convey relationships; and the function of these graphical depictions. The
cognitive principles and theories about external representations and how they

c02 19 August 2011; 15:46:52

2.6 FURTHER READING 63

are used in various cognitive tasks have been described elsewhere (Reisberg,
1987; Stenning & Oberlander, 1995;Tversky, 1997; Zhang, 1997; Zhang 2001).

InHow the Mind Works (Pinker, 1997), Steven Pinker provides an accessible
explanation of how the brain works, including chapters on vision and visual
perception.

In Visual Thinking for Design (Ware, 2008), Colin Ware discusses in more
verbal and graphical detail the active role vision plays in using the external
world as an aid to cognition and how this affects design choices.

Much of the material on the visual system and perception came from Vision
Science: Photons to Phenomenology (Palmer, 1999). This work provides consider-
able detail on the processing performed in each of the stages and includes an
extensive bibliography. Palmer notes that the term “preattentive” has beenwidely
used to describe perceptual processing before an object has been selected as the
focus of attention. But he points out, citing work byMack and Rock (2000), that
in studies on “preattentive” processing, the observer is told to expect a target (an
unusual object) in a field of distractors (objects that are different from the target).
He argues that the expectation is a form of attention (he calls it distributed
attention) that is not directed at a specific object or localized region but, rather, to
the entire visual field.Additional details about the theories of color perception and
color models can be found in (Malacara, 2002) and (Ware, 2000).

c02 19 August 2011; 15:46:52

64 THE COGNITIVE AND VISUAL SYSTEMS

CHAPTER 3

GRAPHIC REPRESENTATIONS

In the previous chapter, we examined how the visual system parses scenes of the
physical world into objects perceived as having form and function. The mental
representations of objects in the scene derive their meaning from experience,
reflection, and reasoning. Graphics as external representations might also be
considered scenes, but scenes of abstract worlds rather than the physical world
we apprehend directly.

Under the broadest definition, graphics are visual representations of data
that rely on graphical elements—points, lines, areas, and volumes—organized
in a geometric space. Usually the graphical elements represent objects, while
relationships between them are represented by space. Maps are among the
oldest graphics. They are schematics that represent a visible world. They rely on
spatial distances—sometimes distorted—and the inclusion or exclusion of
specific elements to provide different perspectives on the represented informa-
tion. From the late eighteenth century, graphics began to represent abstract
concepts such as quantities, time, space, preference, and qualitative informa-
tion such as various relationships between objects or sets of objects based on
their properties. Interactive graphics and animation in the late twentieth
century, made possible with computer graphics and user interfaces, have added
the ability to group, classify, filter, superimpose, juxtapose, and permute the
displayed elements.

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

65

c03 19 August 2011; 16:39:8

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS

Semiotics is a field that studies how signs and symbols become associated with
meaning and the conventions or code by which signs are organized into systems
to communicate and to model information about the external world. The
two major contemporary traditions of semiotics originated with the Swiss
linguist Ferdinand de Saussure (1857�1913) and the American Charles Peirce
(1839�1914). For many semiotic theorists, language was viewed as the central
semiotic system, and terms from linguistics have been borrowed and extended
in its application to various disciplines outside linguistics. For example, films
and television programs are called “texts,” which are “read.”

The French cartographer Jacques Bertin (1918�2010) extended the reach of
semiotics into graphics systems. To help designers and statisticians understand
how to create diagrams, networks, and maps with relevant information that
could more easily be understood, Bertin developed a semiotic theory for
graphic communication (Bertin, 1983). He saw graphic representation as a
tool for discovery and as “artificial memory,” and he saw both tool and
external representation as devices that leveraged the power of visual perception.

3.1.1 The Essence of Semiotics

Humans communicate thoughts using systems of signs. Meaning is created in our
minds when we “read” signs in “text.” These carry meaning conveyed by learned
conventions or codes that become transparent to us. A sign stands for something
other than itself and consists of two inseparable parts: a signifier, which is the form
of the sign; and the signified, which is the concept represented by the form.

We cannot make sense of the form unless we can relate it to a code. A code is
a set of conventions: an arbitrary set of rules or standards in some domain that
have been established to mean certain things. In mathematics, the Cartesian
coordinate system is a code. Using this code, we can map latitude to the x-axis,
map longitude to the y-axis, and draw maps. The conventions of the Cartesian
coordinate system allow us to “read” or interpret a map or a scatterplot. In
Fig. 3.1, the form is the connected set of shapes with black outlines and black-and-
white shading. So familiar are we with conventions for drawing people that we
“read” these shapes (the signifier) as a person with upraised arms (the signified).
If this were an airport ramp where ground support is signaling to the pilot, the
signifier would be “the upraised arms” and the signified would be “this way.”

A sign’s vehicle (signifier) may have three possible fundamental modes of
relationship with what it represents (the signified object or concept):

� Symbol/symbolic. The form of the symbol looks nothing like the thing that
it represents, and the relationship is purely arbitrary and must be learned.
The word “tree,” for example, bears no resemblance to the tree in the
world that it represents, nor does the circle in a scatterplot representing a
datum of a variable in a statistical dataset.

c03 19 August 2011; 16:39:9

66 GRAPHIC REPRESENTATIONS

� Icon/iconic. The form resembles the thing it represents. The folder icon
(signifier) in the file system explorer applications of the major desktop user
interfaces looks like a folder in a file cabinet. The word “cuckoo”
(signifier) sounds like the bird call of the bird it represents.

� Index/indexical. The form is connected directly or causally in a way that
can be observed or inferred: smoke (signifier) means fire (signified), the
weather vane points to the direction of the wind, or the mouse arrow on
the screen points to a graphical representation of a virtual object.

Signs can be combined into “texts.” (To avoid confusion, we will quote the
word “text” whenever it is used as defined in semiotics, where it means a set of
signs rather than its usual meaning of a string of written words as is meant by a
phrase such as “written text.”) Anyone standing at the window of an airport
terminal watching a plane on the airport ramp being marshaled to the opening
of a jetway can read the “text” of hand signals between the ramp agent and the
pilot as shown in Fig. 3.2: “this way,” “turn to the right,” “slow down,” and
“stop.” This “text” has little structure because the signs can appear in almost
any order. (It would not make sense, for example, to signal a stopped plane to
slow down.) On the other hand, the “text” of language and other semiotic
systems has complex structure that separates, generally, into the following
levels of organization:

� Syntax. Concerned with how signs are recognized relative to each other
as, for example, nouns or adjectives in a noun phrase or groups of shapes
perceived as a cluster in a graphic.

� Semantics. Concerned with how the meanings of signs are understood.

� Pragmatics. Concerned with how signs convey the intended meaning
within the context in which they are used.

FIGURE 3.1 A sign for a person with upraised arms

c03 19 August 2011; 16:39:9

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 67

Humans have created a variety of semiotic systems to store, communicate, and
understand different types of information such as music, language, mathematics,
figurative or abstract art, and graphics. The signs in these systems may be
associated with one meaning (monosemic) as in mathematics, several meanings
(polysemic) as in language or figurative art, or any meaning (pansemic) as in
abstract art.We use these systems to communicate by sendingmessages.Messages
are encoded in some physical medium: words may be spoken, graphics may be
drawn as lines and shapes on paper, scenes may be captured as a digital image, or
music may be scored. The interpretation of messages is called decoding. The word
“communication” does not mean, as in common usage, that the content of the
message contains themeaning.The content of themessage contains the set of signs
or “text.” Interpreting the message is a cognitive process that results from the
receiver first decoding the message and then, from prior knowledge and context,
inferring from the code related to the sign system what the message means.

The ear and the eye are two ways we perceive the message. Because sound
varies over time, auditory perception has two sensory variables: sound and
time. Auditory perception is linear and temporal. Visual perception can be
nearly instantaneous because the entire image is perceptually processed at once.
Assuming the “text” is written or displayed on a flat surface such as a piece of
paper or a display, visual perception has three sensory variables for each mark:
the vertical and horizontal dimensions of the plane that locates the mark’s
position and the variation of some visual property of the mark itself, such as
shape or color. Visual perception is spatial and atemporal.

For Bertin, graphic representations and mathematical notations were a
rational subset of the broader set of images that included verbal, musical, and
mathematical notations as well as figurative and abstract images, photographic
images, and animated images (film). He saw graphics as a “language for the
eye” as opposed to language, music, and mathematics, which he felt were
fundamentally systems for the ear, and therefore had to be perceived through a
linear process one term at a time. To be rational, a graphics system had to be

FIGURE 3.2 The signs of hand signals: “thisway,” “turn to left,” “slowdown,” and“stop”

c03 19 August 2011; 16:39:9

68 GRAPHIC REPRESENTATIONS

monosemic: the elements or groups of elements in the system could mean only
one thing if a graphic was to communicate information that could be
interpreted rigorously and without debate by each reader, assuming the reader
knew the code in advance.

Bertin applied the semiotic approach to diagrams, maps, and networks. He
outlined three things that must be understood to design graphics that are efficient
and effective in communicating the underlying content of the information:

� The properties and structure of the information. The information contains
what is referred to (signified) by the signs of a graphic representation. An
analysis of the information is required before the best representation of it
can be considered.

� The properties of the graphics system. After the questions to be answered
by the graphic are known, the components of the data involved in
providing answers to these questions and the elements or groups of
elements they contain must be mapped to something visible that includes
marks—points, lines, and areas—and the visual properties of marks.
These are the signs of the graphics system.

� The rules for constructing an efficient graphic representation of the data. Data
components can be mapped to elements in the graphic in many ways. Some
of these are more efficient than others. The rules are guidelines for
determining how many components can be included in a single graphical
image and what mappings between the data components and the marks
reduce the effort of perceiving and understanding the graphics. The image—a
fundamental unit in a graphic that “the eye can isolate . . . during an instant
of perception”—and how to construct it are key concepts of Bertin’s theory.

Bertin laid out a theory and process for designing 2-D static graphics primarily
to be read from printed material. Although 3-D, animation, and interactive
graphics did not yet exist, it is well worth studying for the insights it gives about
how the design of graphics should be approached and the kinds of questions that
need to be considered. In particular, as shown in Fig. 3.3, he saw the transforma-
tion fromdata to comprehension as taking place in two phases and recognized the
central role visual perception had in the design of quality graphics.

To summarize his work (Bertin, 1983), we will use a small, hand-picked
subset of 16 vehicles and just a few properties as shown in Fig. 3.4 that have

Data and
Information
Processes

Graphics
Image

Comprehension

Computer Graphics Visual Perception

FIGURE 3.3 Data visualization as a two-phase process

c03 19 August 2011; 16:39:11

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 69

M
fr

 N
am

e
C

ar
 L

in
e

C
ar

 L
in

e
C

la
ss

E

ng
 D

is
pl

#

 C
yl

T

ra
ns

C

ity
 F

E

H
w

y
FE

#

 G
ea

rs

T
oy

ot
a

Y
ar

is

Su
bc

om
pa

ct

 1
.5

 4

A

ut
o(

A
4)

 2
9

 3

5

4

G
M

A

ve
o

5
Su

bc
om

pa
ct

 1

.6

 4

A
ut

o(
A

4)

 2

5

 3
4

4

Fo
rd

Fi

es
ta

 S
FE

 F
W

D

Su
bc

om
pa

ct

 1
.6

 4

A

ut
o(

A
M

6)

 2

9

 4
0

6

H
on

da

C
iv

ic

Su
bc

om
pa

ct

 1
.8

 4

A

ut
o(

A
5)

 2
5

 3

6

5

M
az

da

M
az

da
2

C
om

pa
ct

 1

.5

 4

A
ut

o(
A

4)

 2

7

 3
3

4

Fo
rd

Fo

cu
s

FW
D

C

om
pa

ct

 2
.0

 4

A

ut
o(

A
4)

 2
5

 3

4

4

H
on

da

In
si

gh
t

C
om

pa
ct

 1

.3

 4

A
ut

o(
A

V
)

 4

0

 4
3

1

V
W

Je

tta

C
om

pa
ct

 2

.5

 5

M
an

ua
l(

M
5)

 2
3

 3

3

5

T
oy

ot
a

C
or

ol
la

C

om
pa

ct

 2
.4

 4

M

an
ua

l(
M

5)

 2

2

 3
0

5

T
oy

ot
a

E
S

35
0

M
id

si
ze

 3

.5

 6

A
ut

o(
S6

)

 1
9

 2

7

6

C
hr

ys
le

r
A

ve
ng

er

M
id

si
ze

 2

.4

 4

A
ut

o(
A

4)

 2

1

 3
0

4

V
ol

vo

S8
0

A
W

D

M
id

si
ze

 3

.0

 6

A
ut

o(
S6

)

 1
8

 2

6

6

G
M

L

im
ou

si
ne

L

ar
ge

 4

.6

 8

A
ut

o(
A

4)

 1

2

 1
8

4

G
M

L

uc
er

ne

L
ar

ge

 3
.9

 6

A

ut
o(

A
4)

 1
7

 2

7

4

Fo
rd

F1

50
 P

ic
ku

p
4W

D

Pi
ck

-u
p

4W
D

 6

.2

 8

A
ut

o(
S6

)

 1
2

 1

6

6

N
is

sa
n

T
ita

n
4W

D

Pi
ck

-u
p

4W
D

 5

.6

 8

A
ut

o(
A

5)

 1

2

 1
7

5

F
IG

U
R
E

3
.4

A
su
b
se
t
o
f
th
e
v
eh
ic
le
s
fr
o
m

th
e
2
0
1
1
E
P
A

F
u
el

E
co
n
o
m
y
G
u
id
e
D
a
ta
se
t
(E
P
A
,
2
0
1
1
)

c03 19 August 2011; 16:39:11

70 GRAPHIC REPRESENTATIONS

been extracted from the 2011 vehicle fuel economy dataset of 1052 vehicles
provided by the EPA. Each row of cells contains values for the properties of a
vehicle; the heading of the column that contains a cell’s value indicates the
property of the measured value. Although we will use Bertin’s terminology, we
will use the standard layout for statistical datasets where rows represent
observations, and columns represent statistical variables. We will also restrict
the scope of the summary to what Bertin called diagrams, although he
discussed networks and maps as well.

3.1.2 The Properties and Structure of the Information

The information used for diagrams are datasets or tables of data. An
annotation of three columns of data from the example dataset using Bertin’s
terminology is shown in Fig. 3.5. A diagram depicts representations of
components, which vary across a fixed set of data called the invariant. The
invariant is not shown, but it is either assumed or described in the title of
the diagram. The basis for understanding the variation can be seen in the
representations of those components included in the graphic. For example, if a
trend is seen in a scatterplot, it is natural to ask “a trend over what set of data?”
For the full dataset from which the example was derived, if the diagram were a
scatterplot of miles per gallon versus engine displacement, the invariant might

Trans Car Line Class Eng Displ
Auto(A4) Subcompact 1.5
Auto(A4) Subcompact 1.6
Auto(AM6) Subcompact 1.6
Auto(A5) Subcompact 1.8
Auto(A4) Compact 1.5
Auto(A4) Compact 2.0
Auto(AV) Compact 1.3
Manual(M5) Compact 2.5
Manual(M5) Compact 2.4
Auto(S6) Midsize 3.5
Auto(A4) Midsize 2.4
Auto(S6) Midsize 3.0
Auto(A4) Large 4.6
Auto(A4) Large 3.9
Auto(S6) Pick-up 4WD 6.2
Auto(A5) Pick-up 4WD 5.6

N (qualitative) Q (quantitative)O (ordered)

Component
Length is 5 Length not applicable

Levels of organization:

FIGURE 3.5 Three variables of a dataset annotated with Bertin’s terminology

c03 19 August 2011; 16:39:12

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 71

be all vehicles assessed in 2011, all autos, all trucks, or only autos made by a
specific manufacturer.

Bertin outlined three things that must be done to analyze the information
before deciding how the information should be presented:

� Determine the invariant and the number of components to include in the
graphic.

� Determine the level of organization of each included component.

� Determine the length of each included component.

Number of Components. A graphical image or series of images cannot be
understood without knowing the invariant and the information components
involved in the representations. The analysis results in descriptions of the
information of interest. The following are two examples of these descriptions:

invariant: all 2011 vehicles assessed by the EPA

components: - average city fuel efficiency for each

- car line class by

- manufacturer

or

invariant: all 2011 autos assessed by the EPA

components: - average city fuel efficiency by

- car line class,

- number of gears,

- transmission types,

- engine displacements, or

- number of engine cylinders

The first of these descriptions has three components; the second has six.
Each data component will correspond to something that can be visually

perceived in a graphic: a mark on the drawing or display surface and one or
more visual properties of the mark. A mark’s location in a diagram has two
dimensions, one for its position on the horizontal axis and one for its position
on the vertical axis. These two dimensions are called the planar variables of the
graphic. The visual properties of the mark such as shape, color, or size are
called retinal variables. The set of positional and retinal variables are visual
variables. The visual variables will be discussed in detail later in the section
“The Properties of the Graphics System.”

There must be at least as many visual variables in the graphic as there are
data components to be visualized. Further, Bertin’s view was that the number
of components provided the best classification for graphical constructions. A

c03 19 August 2011; 16:39:12

72 GRAPHIC REPRESENTATIONS

well-designed diagram with three corresponding data components can be
perceived instantly. However, the number of components in a dataset can
be quite large. Beyond three components, decisions must be made to construct
an efficient graphic. This will be discussed later in the section “Constructing
Efficient Graphics.”

Level of Organization. In classical statistics, a data variable (one of the
columns in Fig. 3.5) is classified into one of four types based on the scale by
which the values it contains are measured:

� Nominal. The data values are categorical and not numeric. Comparing two
observations using the values for the variable, the observations will either
be similar or different depending on whether the categorical value matches
or not. Using the variable “Trans” to compare yields the result that the
“Yaris” is similar to the “Mazda2” but different from the “Insight.”

� Ordinal. The data values are categorical but ordered. Comparing two
observations using the values for that variable, one observation will either
be greater than or less than the other observation. If the categorical values
of the “Car line Class” variable are an indication of size, then the “Jetta”
is greater than the “Yaris” but less than the “Avenger.”

� Interval. The data values are numeric, but only the differences—distances
between—can be compared quantitatively using the basic arithmetic
operations (1, 2, *, /) and not the values themselves. The values are
ordered and may include negative numbers and zero, but zero is
arbitrarily selected and is not an absolute reference point. The example
dataset does not contain an interval data variable, but if there were a
variable in a dataset that recorded the measurements of temperature, it
would be classified as an interval variable. If the temperature variable
contained the values 40, 60, and 80, we could say that compared with
40�F, 80�F is two times warmer than 60�F (80�40)/(60�40), but not twice
as hot because 0�F is an arbitrarily chosen point on the scale.

� Ratio. The data values are numeric and include an absolute zero. This
allows the values to be compared quantitatively with each other using the
basic arithmetic operations. In Fig. 3.5, the engine displacement of the
“Volvo S80 AWD” (3.0) is twice that of the “Yaris” (1.5).

Bertin characterized components by level of organization. He called nominal
variables “qualitative components,” ordinal variables “ordered components,”
and interval and ratio variables “quantitative components.” These are abbrevi-
ated N, O, and Q, respectively, as shown earlier in Fig. 3.5. The differences
between each type of component influence how they can be used to simplify
graphics or make them more efficient perceptually.

Qualitative (N) components can only be used to differentiate: a value is
similar to or different from another. In Fig. 3.5, for example, a vehicle with a

c03 19 August 2011; 16:39:12

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 73

four-speed automatic transmission—“Auto(A4)”—is similar to all other vehi-
cles that have that type of transmission and different from all vehicles that do
not. Qualitative components have the following properties:

� Because they are not ordered, qualitative components can be reordered in
different ways to reveal patterns not otherwise apparent as shown in
Fig. 3.6. In Fig 3.6a, the ability to permute either the components on the
x-axis or the observations on the y-axis in different ways can result
in the juxtaposition of elements that reveal various relationships between
them. In Fig. 3.6b, the reordering of a qualitative component in relation to
an ordered component may show trends.

� The categorical values in qualitative components are equidistant from
each other and to display them otherwise distorts the data because the
differences in distance will be perceived as being meaningful.

Ordered (O) components can be used to differentiate and to compare whether
one value ismore or less than another. Its categories cannot be reorderedwithout
confusing the reader. Further, as with qualitative components, its categories are
equidistant and displaying them otherwise distorts the information.

Quantitative (Q) components are those with countable units. They can be
used to differentiate, compare relative values that are more or less than, and
quantitatively compare the ratios between values; for example, some value is
twice or half another value.

The quantitative, ordered, and qualitative levels of organization are inclusive
and overlapping. Quantitative components are also ordered and qualitative.

v1 v4 v2 v3v3 v4v1 v2

A

C

E

B

D

A

C

B

D

E

N

N

N

N

N

O

N

O

(a)

(b)

FIGURE 3.6 Effects of reordering the information

c03 19 August 2011; 16:39:12

74 GRAPHIC REPRESENTATIONS

Ordered components are also qualitative. Qualitative components are at the
lowest level but may be arbitrarily reordered. The levels may be expressed as
N , O , Q. As we will see in the upcoming “The Properties of the Graphics
System” section, for each data component, the level of the visual variable to
which it corresponds must be at least as high as the component’s level of
organization.

Length of components. Components may be divided. How they are
divided depends on the component’s level of organization. In Fig. 3.5, the length
of the ordered component “Car line Class” is 5 because it can be divided into the
categories “subcompact,” “compact,” “midsize,” “large,” and “pickup-truck
4WD.” Any qualitative or ordered component, or any quantitative component
not containing continuous data, can be similarly divided into elements or
categories, and the number of these is the component’s length. Any quantitative
component, such as “Eng Displ,” that contains continuous data cannot be
subdivided, so length is not applicable. Bertin distinguished between compo-
nents whose lengths were short (,4) and long (.15). Those with a short length
could use special constructions, whereas those with a long length required that a
choice of graphics be made from a set of standard constructions.

3.1.3 The Properties of the Graphics System

The graphics system is the sign system for encoding the data components
in the descriptions that result from an analysis of the information. The
physical medium for the “text” is a flat surface—a printed page or a computer
display—that reflects or emits the light from marks (signifier) that correspond
to the content of the data components (signified). The “text” is a graphic.
Figure 3.7 shows an example. Graphics are read in three stages: identify what
is external to the graphic, identify the mappings between the visual variables
and components, and perceive the relevant correspondences between the marks
and the subset of data that the graphic represents:

� External identification (Fig. 3.8). The first stage is to understand the
invariant and the components that are involved in the graphic. Prior
knowledge of the domain or conventions is required to make sense of the
terms such as “city fuel efficiency” or “car line,” as well as the graphical
elements, such as colors or shapes, which might be explained in legends.
The graphic is showing something about the fuel efficiencies (component 2)
of certain car lines (component 1) for a set of subcompact, compact, or
midsize autos (invariant).

� Internal identification (Fig. 3.9). The next stage is to identify how the
components are mapped to the visual variables. In this graphic, the
perception is that the horizontal axis corresponds to the “car line”
component, and the vertical axis corresponds to the “city fuel efficiency.”

c03 19 August 2011; 16:39:12

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 75

� Perceiving the marks (Fig. 3.10). In this stage, the reader perceives
the meaning of each mark through its location and visual properties.
Each mark corresponds to two planar dimensions—the vertical and the
horizontal—which give rise to the planar variablesX andY. Themark could
be one of three types of signs that Bertin called an implantation: a point,
line, or area. The point is the implantation used in this example. The mark
could also be styled at Z with visual properties that vary based on values in
the data component. These properties, called the retinal variables, are size,

2011 Autos (example)
subcompact, compact

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

15

Y
ar

is

A
ve

o
5

M
az

da
2

In
si

gh
t

25

35

45

Invariants

Components

FIGURE 3.8 Stage 1 of the reading process: external identification

2011 Autos (example)
subcompact, compact

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

15

Y
ar

is

A
ve

o
5

M
az

da
2

In
si

gh
t

25

35

45

FIGURE 3.7 A graphical image to be read

c03 19 August 2011; 16:39:12

76 GRAPHIC REPRESENTATIONS

value (brightness), color (hue and saturation), orientation, shape, and texture.
In all, Bertin identified eight visual variables: two planar and six retinal
variables. In this graphic, only the planar variables X and Y have corre-
sponding components; the point is unadorned, but amarkmust be visible for
there to be a correspondence of components with the planar variables.

The stages of reading are one aspect of what Bertin called the image theory.
But beyond the explanation for how a graphic is read, Bertin provided a model
for how different combinations of mappings of components to planar or retinal

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

FIGURE 3.9 Stage 2 of the reading process: internal identification

Y
Z

Mark

2011 Autos (example)
subcompact, compact

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

15

Y
ar

is

A
ve

o
5

M
az

da
2

In
si

gh
t

X

25

35

45

FIGURE 3.10 Stage 3 of the reading process: perceiving the marks

c03 19 August 2011; 16:39:13

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 77

variables would be perceived, and he used that model to describe the rules for
constructing efficient graphics (Green, 1998). An efficient graphic can be
interpreted in less time than another.

It is important to understand what Bertin meant by an image. He did not
mean the image that results from a graphic as a whole being perceived as a
scene. He meant what could be visually perceived in an instant after the visual
system has focused attention on some part of the graphic—some specific set of
correspondences—because of a question the reader had in mind. Each fixation
results in an image. If the question in mind can be answered by perceiving all
the relevant correspondences and ignoring the others within that image, the
cost is almost nothing. In Fig. 3.11a, at least three images are required to find
which sector labeled 2 is the largest in A, B, or C. Within each circle, the sector
labeled 2 must be found and compared against the circle containing it to
determine its relative proportion, and then it must be remembered as compar-
isons are made between the sectors labeled 2 in the other circles. In Fig. 3.11b,
the question can be answered with only one image: all bars labeled 2 are aligned
and can be perceived in one fixation. To know how to map components to
variables so that graphics can be read efficiently requires an understanding of
the characteristics of the plane on which the graphic is drawn and the visual
variables.

The Plane. The plane is two dimensional. Both the space of the plane
allocated to content—the signifying space—and the points, lines, or areas
drawn on it carry meaning. The space is continuous and can be divided as finely
as the resolution of the surface will allow, limited either by the number of dots
per inch that can be printed or the width and height of pixels in computer
displays. Certain assumptions are made about the signifying space: empty space
means there is no data within the graphics frame, differences in visual variables
are intentional and have meaning, and a single convention or code applies to all
the marks within it.

Length of Visual Variables. The length of a variable is the number of
perceptible divisions it supports. Bertin called these divisions steps. Figure 3.12

(a) (b)

1

2

3
1 1

2 2

3

3

A B C

1 2 3

A

B

C

FIGURE 3.11 The number of images required to read graphics (a) and (b)

c03 19 August 2011; 16:39:13

78 GRAPHIC REPRESENTATIONS

shows examples of steps that can be made with each variable. We can only see a
finite number of variations of each of the variables. The variable’s length must
be at least as large as the length of the component it represents, or some of the
steps of the variable will not be uniquely mapped to the values in the
component. The plane’s variables are the longest and should be considered
first for the longest components. Matching the data component’s length to the
visual variable’s length is the first critical factor in determining which visual
variable should represent a component.

Levels of Organization of Visual Variables. We have already discussed the
three levels of organization of data components: qualitative, ordered, and
quantitative. The level of perceptual organization of a visual variable specifies
its ability to convey the information of the component it represents. For
example, suppose the planar variables were mapped to “car line” and “city
FE” (city fuel efficiency), and the design goal was to map some retinal variable
of the mark to the “car line class” component as shown in the graphic schema
in Fig. 3.13. (In this figure, we use a notation Bertin created for describing the
aspects of the design of a graphic. In the schema, the vertical and horizontal
arrows represent the two dimensions of the plane. The arrow rising at an angle is
interpreted as the type of components mapped to the retinal variables of a mark.
The component type is indicated at the ends of the arrows.) Because “car line
class” is an ordered component, the reader must be able to compare the relative
magnitude of one mark against another. The retinal variables for which order
can be perceived are “planar,” “size,” “value,” and “texture.” Examining
Fig. 3.12 will show why. For planar variables, positions to the right or left of
each other on the horizontal axis or above or below each other on the vertical
axis allow the comparisons of the values the marks represent; for size variables,
larger shapes represent values that are greater than values of smaller shapes;

Planar

Size

Value

Texture

Orientation

Shape

Color
Similar to value but with hue
and saturation.

FIGURE 3.12 Examples of steps of a visual variable

c03 19 August 2011; 16:39:13

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 79

and so on. Comparisons cannot be made in the same way for “orientation,”
“shape,” or “color.”

Table 3.1 shows the visual variables and the levels of perceptual organization
that each supports. In Table 3.1, the “associative” and “selective” levels have
not yet been discussed. Bertin subdivided the qualitative component (N) into
two ways in which the values it contains could be perceived, depending on
whether the reader wanted to see all the component’s elements as a group
(associative) or see just those for specific categories (selective). Each of the four
levels is really a description for each variable of the kind of visual query that
can be perceived automatically: grouping by similarity, differentiating between
categories or classes, comparing relative magnitudes, and quantitatively com-
paring ratios of values.

� Associative Organization (�). This is the lowest level of organization.
Variables that are associative allow all the elements of the qualitative
component it represents to be instantly perceived as a group. Note that
association doesn’t mean the ability to group all elements of the compo-
nent mapped to it; instead, the term describes its effect on the ability to
group by other visual properties. Dissociative variables, such as “value,”

N
Car Line

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Q

O (car line class)

FIGURE 3.13 Schema for mapping components to visual variables

TABLE 3.1 Level of Organization of Visual Variables

Variable Associative (�) Selective (6¼) Ordered (O) Quantitative (Q)

Planar yes yes yes yes

Size yes yes yes

Value yes yes

Texture yes yes yes

Color yes yes

Orientation yes yes

Shape yes

c03 19 August 2011; 16:39:13

80 GRAPHIC REPRESENTATIONS

group elements so strongly that it is hard to group the elements by other
visual properties. In Fig. 3.14, the marks have been styled by two visual
properties: value (light and dark) and shape (circles and squares).
Grouping all the squares is much more difficult than grouping all the
light or dark shapes because of the strong effect of value.

� Selective Organization (6¼). This level allows the elements of only a
specific category of the qualitative component it represents to be instantly
perceived as a group. It is the opposite of association. For the same
reasons that “shape” is associative and “value” is dissociative, “value” is
selective but “shape” is not, as can be seen in Fig. 3.14.

� Ordered Organization (O). Variables that are ordered allow comparisons
of relative magnitude—this is less than or greater than that—to be made
about the data values they signify because the steps can be perceived as
increasing or decreasing. In Fig. 3.12, the four variables in the left column
(planar, size, value, texture) are ordered and those in the right are not
(orientation, shape, color). The effects of ordering can be seen in Fig. 3.15,

FIGURE 3.14 Shape is associative, but value is dissociative

FIGURE 3.15 A component with four categories mapped to the value variable

c03 19 August 2011; 16:39:13

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 81

where four steps of “value” have been used to shade the points to signify
four ordered categories of some component.

� Quantitative Organization (Q). This is the highest level. Variables that are
quantitative allow the ratios of the values of the component they represent
to be compared because of the existence of an absolute zero. These
comparisons can be perceived directly without the need for a legend. Only
the planar and size variables support quantitative components as shown in
Fig. 3.16. The representation of quantities also depends on the type of
mark being used. For example, points and lines can vary in size and
length, but areas cannot without changing its meaning.

The second critical factor in choosing a variable to represent a component is to
make sure that the level of organization of the variable is at least as high as the
level of organization of the component. One of the key sources of errors in
constructing graphics is the incorrect mapping of a component onto a retinal
variable that does not support it. Only the planar variables support all four levels.

3.1.4 Constructing Efficient Graphics

A set of data components, two planar variables, six retinal variables, and
various marks can be composed in many ways to present the information in a
dataset as shown in Fig. 3.17.

Bertin’s goal was to create efficient graphics. His definition of efficiency was
based on the mental cost of visual perception. He paid close attention to how
the eye scanned the graphics to extract the critical information for a set of
specific questions that would be asked of the data. The ideal of a good graphic
was to present its information so that what was relevant for the task could be
perceived in a single image. By definition, an image was what could be
perceived immediately at a single glance without mental effort.

An image for a diagram was limited to at most three correspondences
between variable and component: two components mapped to planar variables

FIGURE 3.16 Planar and size variables allow direct comparisons of ratios

c03 19 August 2011; 16:39:14

82 GRAPHIC REPRESENTATIONS

and one to some retinal variable. It is not possible to construct an image with
more than three components. For example in Fig. 3.18, with Components A
and B mapped to planar variables, “car line class” mapped to the value
variable, and “transmission” mapped to the shape variable, it takes effort—
scanning sign by sign—for the reader to pick out only dark squares to find

Diagram?Map?Network?

One? Series?

Scatterplot? Distribution?

FIGURE 3.17 Different ways to present information in data

Compact
Midsize

Automatic
Manual

Component A

C
om

po
ne

nt
 B

Car Line Class

Transmission

FIGURE 3.18 Scatterplot with four correspondences

c03 19 August 2011; 16:39:14

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 83

midsize autos with manual transmissions. The combinations of visual proper-
ties on the marks are not automatically perceived. For those graphics that must
support more than three components, a series of images is required. An efficient
graphic, then, is one with the minimum number of images.

Reading an Image. Before designing an image, the information must be
analyzed. In an earlier section, we described the importance of identifying and
classifying the components of the dataset, and determining their length. The
next step is to understand the questions that might be asked of the data. Bertin
described three kinds of questions:

� Questions at the elementary level involved a correspondence of a single
element as in Fig. 3.19a. For example, how many city miles per gallon
does the Yaris average? These questions use the correspondence to look
up information associated with the mark. The information found was
expected to be used outside the image.

� Questions at the intermediate level were those about groups of elements or
categories as in Fig. 3.19b. These questions ask about things in common
to understand local trends or relationships.

� Questions at the global level are about the entire component as in Fig.
3.19c. These questions try to identify one or a few global relationships
across all the data for a component that the reader can compare with
other information.

This analysis generates the list of questions, which allows the designer to
construct graphics that can answer the questions with a single image or as few
images as possible.

Designing an Image. The foundation for Bertin’s image was three uniform
and ordered variables: two planar and one retinal. Figure 3.20 depicts this

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

15

Y
ar

is

A
ve

o
5

M
az

da
2

In
si

gh
t

25

35

45

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

15

Y
ar

is

A
ve

o
5

M
az

da
2

In
si

gh
t

25

35

45

C
ity

 F
ue

l E
ff

ic
ie

nc
y

Car Line

15

Y
ar

is

A
ve

o
5

M
az

da
2

In
si

gh
t

25

35

45
(a) (b) (c)

FIGURE 3.19 Three levels of questions: elementary, intermediate, and global

c03 19 August 2011; 16:39:14

84 GRAPHIC REPRESENTATIONS

schema. With this schema, Bertin claimed an image could be constructed from
three or fewer components that could answer any of the three levels of
questions with a single fixation of the eyes.

Bertin separated his discussion of the mapping of components to planar
variables from the mapping to retinal variables, suggesting a fundamental
difference between these two kinds of variables. He used the organization and
nature of the correspondences between elements of components to divide
graphics into four classes: diagrams, maps, networks, and symbols. Diagrams
were those graphics that could depict the relationships between all the elements
or categories of one component with another. For diagrams, the preferred use
of space—he called this imposition—was by orthogonal axes or the Cartesian
coordinate system as shown in the schema in Fig. 3.20, but he also had schemas
for other coordinate systems that included polar coordinate systems. His
preference for an orthogonal system was based on the notion that the right
angle had a psychological advantage in helping to discriminate visually.

Bertin’s standard schemas for diagrams are shown in Fig. 3.21. Those with
more than three components could be designed, for example, as a series of
simpler graphics spread out horizontally or in a matrix or table. Alternatively,
retinal variables could be used for additional components. The schemas provide
a framework for thinking about the design of graphics in the context of the
questions to be answered about the data.

O

O

O
Size,
shape,
or texture

FIGURE 3.20 Schema for creating an image from three components

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O O� n � n

O

2 Components 3 Components 3� Components

FIGURE 3.21 Standard schemas for diagram graphics

c03 19 August 2011; 16:39:14

3.1 JACQUES BERTIN: SEMIOLOGY OF GRAPHICS 85

The levels of perceptual organization of the visual variables and the correspon-
dences of components, whether to the planar or retinal variables, play a funda-
mental role in consolidating the essential information intoa single image accurately
and efficiently. Bertin’s contributions include his insights into the structure of
statistical graphics and the critical role perceptual issues play in their design.

Where the previous sections focused on theory, the remaining sections will
focus on various software systems that have used the structure of graphics to
implement systems to generate graphics from data and a specification.

3.2 WILKINSON: GRAMMAR OF GRAPHICS

From the 1980s on, as computer graphics advanced, various research efforts
incorporated Bertin’s work into visualization and statistical graphics. Among
them was Leland Wilkinson, who recognized that quantitative graphics, like
language, had a deeper structure. He has spent more than twenty years creating
software capable of generating statistical graphics from a descriptive language.
He developed a grammar for statistical graphics (Wilkinson et al., 2001;
Wilkinson, 2005).

Grammar is usually thought of in the context of language as rules that
govern how words can be combined into phrases, and phrases into sentences,
and so on. But graphics, as we discussed earlier, also have structure and,
therefore, a grammar that constrains their composition. This may not be
evident in the plots we see that play a supporting role as evidence in arguments
that are being made verbally, nor in the charting tools commonly available in
spreadsheets. Charts, Wilkinson points out, are not graphics. They take data as
input and generate graphical elements in some specific form, which can then be
stylistically altered, but they are not composed from a vocabulary of graphical
elements into graphical phrases or sentences that we see. In Fig. 3.22, assuming
that the dataset variable X contained values in three equal proportions of
categories A, B, and C, a divided interval could be input to either a rectangular

SCALE: cat(dim(1), values("A", "B", "C"))
COORD: rect(dim(1))
ELEMENT: interval.stack(position(summary.proportion(x), color(x))

SCALE: ...
COORD: polar.theta(dim(1))
ELEMENT: ...

A

B

C

100

0

A

B

C

(a) (b)

FIGURE 3.22 A divided interval in rectangular and polar coordinates

c03 19 August 2011; 16:39:15

86 GRAPHIC REPRESENTATIONS

coordinate system as in (a), or a polar coordinate system as in (b). By a simple
change in the graphic specification rather than by selecting one of two different
types of charts, we get a rectangular divided bar or a pie chart. A graphical
grammar allows for much greater variation in what can be expressed visually.

3.2.1 The Graphic Pipeline

The generation of a graphic is analogous to the generation of a scene in
computer graphics systems. Both transform data into the pixels of a display
through use of a pipeline of processes. Wilkinson’s pipeline is shown in
Fig. 3.23. From a specification and a dataset, a graphic was assembled and
displayed.

Source

Variables

Algebra

Scales

Statistics

Geometry

Coordinates

Aesthetics

Renderer

Display

Manipulate data and combine into a set of
variables

Apply scales for each variable

Calculate statistics

Create geometric object for mark

Apply coordinate system transformation

Map dimensions of graph to position and
styles of marks

Data

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Variable set

Variable set

Variable set

Statistics graph

Geometric graph

Coordinate graph

Graphic

FIGURE 3.23 The Wilkinson graphical pipeline

c03 19 August 2011; 16:39:15

3.2 WILKINSON: GRAMMAR OF GRAPHICS 87

Data is assumed to come from any kind of source. The processing is done as
follows:

1. In stages (a�b), the data is normalized and combined in various ways
through algebraic operators. The result is a single set of variables.

2. In stage (c), scales are applied to the values of variables that would be
used in the plot. Scales are functions that map a set of domain values into
a range of values. For example, a categorical scale might convert string
values such as “infrequently” and “frequently” to numeric values such as
1 and 2. Quantitative scales, such as a log scale, would apply the log
function to each numeric value.

3. In stage (d), one of many statistical calculations for each variable might
be performed. The output of this stage is a graph. The graph produced by
(d) is a multidimensional space defined by the ranges of each of its
dimensions after scaling and statistical calculations had been applied to
the data variables.

4. Stage (e) generated a mark (point, line, area, path, or schema) based on
the tuples in the graph.

5. Stage (f) applied the coordinate system’s transformation function to the
dimensions identified as the positions of the mark.

6. Stage (g) completed the transformationbymappingdimensions of the graph
to specific visual properties of themark.What Bertin called visual variables,
Wilkinson called the aesthetic attributes, which included Bertin’s eight
visual variables with modifications and extensions. Some dimensions were
assigned and mapped to spatial attributes such as the display coordinates
and others to nonspatial attributes such as color. The graphic was provided
as input to a renderer, which generates the visible plot.

Note that the term “graph” has several meanings from different contexts.
However, Wilkinson used this term precisely and distinguished it from graphic.
A graph was a mathematical concept: a set of n-dimensional tuples that defined
an n-dimensional topological space. A graph was the underlying space that
could not be seen; a graphic was the 2-D display space to be rendered as marks
with visual properties on a display or printed page.

3.2.2 The Graphic Specification

The language that Wilkinson defined initially was called the Graphics Produc-
tion Language (GPL). Of the full set of statements, those that defined the plot
to be drawn are shown in Table 3.2. The specification provided a way to
associate which data variables of the dataset would correspond to aesthetic
variables of position and styles of the marks in the plot, and to customize the
various transformations and statistical processing that would take place in the
pipeline.

c03 19 August 2011; 16:39:15

88 GRAPHIC REPRESENTATIONS

To illustrate, we look at a simple example. Of the five variables in the dataset
shown in Fig. 3.24a, only three will comprise the graph to be generated: id,
displ, and gears. The following is a partial GPL specification for the
scatterplot using the standard XY(Z) schema for three components. The plot in
Fig. 3.24b is generated from the dataset in 3.24a:

(1) SCALE: cat(dim(1))
(2) SCALE: linear(dim(2))
(3) SCALE: linear(dim(3))
(4) COORD: rect(dim(1,2))
(5) GUIDE: axis(dim(1))
(6) GUIDE: axis(dim(2))
(7) ELEMENT: point(position(id*displ),color.brightness
(gears))

We begin by looking at the statements in the specification. (1�3) The
first dimension of the graph is assigned a categorical scale, and the second and
third dimensions are assigned linear scales. Remembering that scales are
functions that map between data and numeric values, the categorical scale

TABLE 3.2 Graphic Specification Statements in Wilkinson’s Graphics Production

Language

Statement Description

SCALE A scale is associated with each dimension of the graph to be plotted.

Scales are functions that operate on dimensions of a mathematical space.

COORD The coordinate system to be used is either rectangular (Cartesian) or

polar.

GUIDE Guides are axes, legends, or labels that provide a way to determine the

values represented by a mark’s position or visual properties.

ELEMENT A description of the mark to be drawn.

(a) (b)

Y
ar

is

In
si

gh
t

Je
tta

A
ve

ng
er

L
uc

er
ne

id

1.3

3.9

di
sp

l

id cityFE class displ gears
Yaris 29 subcompact 1.5 4
Insight 40 compact 1.3 1
Jetta 23 compact 2.5 5
Avenger 21 midsize 2.4 4
Lucerne 17 large 3.9 4

1

4
5

Gears

2
3

FIGURE 3.24 The final plot resulting from the interpretation of the specification

c03 19 August 2011; 16:39:15

3.2 WILKINSON: GRAMMAR OF GRAPHICS 89

maps terms such as “subcompact” to 1, “compact” to 2, and so on. The linear
scale is an identity function that maps a value to itself, so the values of displ and
gears remain unchanged in transformations. (4) The rectangular coordinate
system is used. The first dimension is assigned to the x-axis and the second to
the y-axis. (5, 6) Guides provide a way to see values along a scale, and axes are
guides that make positional scales visible. The first dimension of the graph is
associated with the x-axis and the second with the y-axis. (7) Elements indicate
the marks to be used in the plot. In this case, the mark is a point, and there is
one point for each of the five tuples in the graph. The arguments to the “point”
function provide the mappings between the data variables and the aesthetic
variables. (Implicitly, the variables are assigned to a dimension in the order in
which they appear: id to the first dimension, displ to the second, and gears to
the third.) The mappings are as follows:

id 2 dimension 1 2 x positional aesthetic attribute

displ 2 dimension 2 2 y positional aesthetic attribute

gears 2 dimension 3 2 color aesthetic attribute

Retracing our steps through the pipeline from a different perspective, we can
follow some aspects of the processing of the specification through the pipeline as
shown in Fig. 3.25. The variables of the dataset that are used for the graphic are
associated with dimensions of the graph as are the aesthetic attributes that are
involved in the plot. In the early stages, the id variable’s values are mapped to
natural numbers (countable integers), followed by the creation of the graph from
the three components from the dataset (variable set) that were identified in a
specification statement (7). In the middle stages, the quantitative values in each
dimension are transformed to the values in the space of its associated aesthetic
attribute. Because the x-axis and y-axis of display space are each 100 pixels in
length, each of the values for id and displ are scaled appropriately, taking into
account the type of scale associated with the dimension. The categorical scale for
dim-1 (data space) has evenly spaced the values along the x-axis (display space).
The linear scale has mapped the values of dim-2 onto the y-axis. The linear scale
for dim-3 has mapped its values into the brightness attribute of color. The values
of hue and saturation are set to the default value of 0. The output of the middle
stages is a graphic. In the final stage, the renderer draws five points (marks) using
the x and y values as display coordinates and the color values as HSV (hue,
saturation, value) values. The graph andgraphic are shown as tables, but each row
should be thought of as an ordered tuple ,value1, value2, . . . ,
valueN. in an n-dimensional space.

In the ELEMENT statement (7) of the specification, which gives rise to the
graph, we see two important aspects of Wilkinson’s grammar-based approach:
the ability to create, through algebraic operators, an underlying data space,
which embeds a graph that is separate from the display space of the graphic;
and the ability to specify the mappings between these two spaces.

c03 19 August 2011; 16:39:15

90 GRAPHIC REPRESENTATIONS

3.2.3 Components of the Grammar

This section introduces several important components of Wilkinson’s graphical
grammar-based system that are also present in other grammar-based systems.
We ignore components in the first two stages of the pipeline—data management
and manipulation—because they vary widely between systems. We focus on the
components in the remaining stages of the pipeline: scales and guides, statistical
functions, coordinate systems, marks, and aesthetic attributes.

id x y z=brightness
Yaris 13 8 0.0.51

Insight 33 0 0.0.255

Jetta 53 50 0.0.0

Avenger 73 46 0.0.51

Lucerne 93 100 0.0.51

id cityFE class displ gears
Yaris 29 subcompact 1.5 4
Insight 40 compact 1.3 1
Jetta 23 compact 2.5 5
Avenger 21 midsize 2.4 4
Lucerne 17 large 3.9 4

id dim 1 dim 2 dim 3
Yaris 1 1.5 4

Insight 2 1.3 1

Jetta 3 2.5 5

Avenger 4 2.4 4

Lucerne 5 3.9 4

100 pixels

100 pixels

Y
ar

is

In
si

gh
t

Je
tta

A
ve

ng
er

L
uc

er
ne

Graphic

Plot

Graph

Variable set

id

1.3

3.9

di
sp

l

Gears
1

4
5

2
3

FIGURE 3.25 Mapping from data variables to dimensions of the graph to retinal

variables used for the graphic

c03 19 August 2011; 16:39:15

3.2 WILKINSON: GRAMMAR OF GRAPHICS 91

Scales and Guides. In measurement theory, a scale is a particular mapping
of numbers or symbols to the attributes of a set of entities so that the
relationships between the numbers or symbols tell us something about
the relationships between the entities to which they correspond. Theoretically,
scales measure entities in a mathematical space. As a component in a
grammar-based graphics system, scales are used to control the mapping of
values from data space to display space as shown in Fig. 3.26. In this simple
example, the data values of “id” are being mapped to positional values in the
display. The mapping is controlled by a categorical scale. Because the scale is
categorical, its values are first mapped to the countable integers (a) and then to
the x variable, where the values will be used as one of the coordinates in
positioning the marks on the x-axis (b). (For simplicity, we assume that the
x-axis and y-axis have a length of 100 pixels.)

The x positional variable and scale are used to generate the axis (c). The x, y,
and color dimensions of the graphic represent aesthetic attributes. They can only
assume values related to the 2-D plane or color space, respectively. Positions in
displays are locations in display coordinates, and colors refer to an encoded
number that represents the transparency and the amount of hue, saturation, and
brightness to use in shading the mark. Guides provide a meaningful way for us
to determine themagnitude of the data they represent. Axes, legends, and certain
kinds of labels are guides, not scales. Scales are functions that map values from
a domain to values in a range. References are kept internally to the values in

Y
ar

is
In

si
gh

t
Je

tta
A

ve
ng

er
L

uc
er

ne

id

1.3

3.9

di
sp

l

1

4
5

Gears

2
3

id displ gears

Yaris 1.5 4

Insight 1.3 1

Jetta 2.5 5

Avenger 2.4 4

Lucerne 3.9 4

dim 1 dim 2 dim 3

1 1.5 4

2 1.3 1

3 2.5 5

4 2.4 4

5 3.9 4

x y color

13 8 0.0.51

33 0 0.0.255

53 50 0.0.0

73 46 0.0.51

93 100 0.0.51

(a) (b)

(c)

(d)

Data space Display spaceUnderlying space

FIGURE 3.26 The transformations controlled by scaling

c03 19 August 2011; 16:39:16

92 GRAPHIC REPRESENTATIONS

data space associated with each tuple (row) in the graphic so that meaningful
values can be used in the guides: the x-axis uses the names of autos, the y-axis
uses the lowest and highest engine displacement values, and the color legend
provides a mapping between the grayscale and the number of gears. For the
mark used in this example, each tuple in the graphic supplies the values of
the aesthetic attributes needed to render it in the plot (d). Not shown are the
defaults that govern other aesthetic attributes such as size and shape.

Beyond the categorical scale mentioned previously, Wilkinson identified
several other types of scales. These included linear and time scales, and scales
that performed mathematical transformations such as log and power. The
scaling transformations were performed on dimensions in the graph with
continuous data prior to statistical transformations because certain statistical
methods make assumptions about the distribution of data.

Statistics. A statistical component transforms the data into a statistical
graph. A graph is a set of tuples. A tuple might represent an individual mark, as
in the case of a scatterplot, or a summarization of a subset of the data, as in the
case of a mark that represents a histogram bin or a boxplot. Placing statistics
under control of the graphics has several advantages.

� Different marks can be used to depict the same graph. Each of the
following statements uses the same graph but produces a different
graphic:

point(position(summary.mean(x*y)))
line(position(summary.mean(x*y)))

In the first case, a point is drawn for the mean of the y values grouped by
each category of x, and, in the second case, a line is drawn.

� A graphic can be layered or paneled by executing multiple statistical
methods as shown in Fig. 3.27. For example, a smoothing line can be
superimposed on a scatterplot.

� The connection between variable sets and elements in the graphic can be
maintained to provide support for interaction with the plots.

Geometry. The geometric graph produced by the geometry component is a set
of tuples created by graph functions such asline(), point(), or polygon().
Theoretically, the graph is a geometric space because it represents geometric
objects that havemagnitudes, and, like any graph, it is amathematical concept that
cannot be seen. Wilkinson classified the geometric graphs not by dimensions of
the graph, such as 1-D, 2-D, and so on, but by types of data and geometry. He
divided graphs into three major categories: functions, partitions, and networks
as shown in Table 3.3.

The geometric objects could be positioned relative to other geometric objects
by using one of a set of modifiers to the graph functions such as stack, dodge, or
jitter to adjust the locations of the objects. For example, bars could be stacked

c03 19 August 2011; 16:39:16

3.2 WILKINSON: GRAMMAR OF GRAPHICS 93

vertically or scatterplot points could be constrained to use only open space or
to partially overlap.

Coordinate Systems. Coordinate systems organize the mathematical points
in a frame. A frame is the mathematical space bounded by intervals of each of
its dimensions. In Fig. 3.28, the graph has been divided into two sets of tuples

Graph

x y ColorAesthetic attribute
mappings for each

dimension of the graph dim 1 dim 2 dim 3

1 1.5 4

2 1.3 1

3 2.5 5

4 2.4 4

5 3.9 4

Positional frame Color frame

FIGURE 3.28 A graph of three dimensions mapped to aesthetic attributes

Statistics

Geometry

Coordinates

Statistics

Geometry

Variable set

Statistics graph

Geometric graph

Statistics graph

Geometric graph

FIGURE 3.27 A pipeline for layers and paneling

TABLE 3.3 Classification of Geometric Graphs

Class Graphing Functions

Function point, line, area, interval, path, schema

Partitions polygon, contour

Networks edge

c03 19 August 2011; 16:39:16

94 GRAPHIC REPRESENTATIONS

called frames, one frame for the coordinates ,x,y. and one for color. The
bounded regions of the frames in our example are as follows:

positional frame: x:[1, 5] 3 y:[1.3, 3.9]; color frame: [1, 5]

In other words, any coordinate used to position a mark in this space must
have as its x and y values a natural number between 1 and 5 and a real number
between 1.3 and 3.9. Similarly, the value that will be mapped into the color space
must be a natural number between 1 and 5. Although the coordinate system’s
transformation could be used for nonpositional attributes such as color, they are
most often used for transforming the coordinates of positions into the 2-D
coordinates of the plane of the display or page. The Cartesian coordinates
comprised of the positional variables ,x,y. locate a point on the plane of the
surface by measuring distance along the x-axis and y-axis; the polar coordinates
, r,θ. locate a point by its radial distance from the center and an angle.

Coordinate systems not only transform the mathematical points in the
graphics frame that are drawn as marks in the content area of the plot but also
the elements in the guides such as the location of tick marks or the labels of
categories. The transformation alters the shape of the geometric object being
displayed. For example, a bar is drawn as a rectangle in a rectangular
coordinate system but as the wedge of a pie in a polar coordinate system;
one axis is straight and the other curved. In addition to transforming the
geometric objects to be drawn on the plane, coordinate systems can also apply a
variety of transformations to the plane itself that include reflection, rotation,
translation, and projection.

Coordinate transformations are useful for several reasons. First, they allow
a graphic to be drawn in a way that is most easily perceived. Pie charts may be
more difficult than divided bars when comparing a slice across a series but
easier for comparing proportions of a whole. Second, adjustments may be
needed for the graphic to more closely approximate reality. Maps, for example,
require nonlinear projections. Finally, they enable different levels of detail in
the graphic to be examined through zooming and distortional transformations.

Aesthetic Attributes. To be seen, geometric objects require location
and visible properties that Wilkinson called the aesthetic attributes. These
attributes, excluding his categories for motion and sound, are shown in
Table 3.4. Aesthetic functions are mapped to dimensions of the graph and
convert the values in these dimensions to attribute values required by a renderer
to draw each mark on the display. For example, the position() function
converts each vertex in the geometric object to its location based on a pixel-
based coordinate system, and color is encoded in a format that indicates the
levels of hue, saturation, and brightness.

Although Wilkinson provided a comprehensive explanation of the grammar
of graphics and an architectural approach for a grammar-based system, as well
as descriptions of a GPL-based and XML-based specification language and a

c03 19 August 2011; 16:39:16

3.2 WILKINSON: GRAMMAR OF GRAPHICS 95

graphics-based data exploration tool, its implementation was not available
except as part of the SPSS product line. The grammar-based approach has been
adopted in two different environments that are open source and readily
accessible: ggplot2 by Hadley Wickham and Protovis by Michael Bostock
and Jeffrey Heer. We will take a brief look at ggplot2. We will introduce
Protovis in this chapter and describe how to use it in depth in Chapter 5.

3.3 WICKHAM: GGPLOT2

Wickham designed ggpplot2 primarily for statisticians (Wickham, 2009).
ggpplot2 was based on Wilkinson’s graphical grammar and implemented as a
loadable package for the System R, a widely used open-source software
environment for statistical computing and graphics. R is both a language
and an environment. R is a functional language similar to Scheme or Lisp. The
R environment has, at its core, an interpreter that understands the R language
and provides a command-line interface that allows R expressions to be entered
as text and executed without compilation. The “Further Reading” section
at the end of this chapter includes references with details about installing the
software and getting started.

ggplot2 was designed to support a graduated approach to constructing plots,
starting first by plotting the raw data and then adding layers of statistical
analysis and annotation. Layers were an extension of Wilkinson’s grammar, and
Wickham called his grammar the layered grammar. In the next subsection, we
will describe the changes to the pipeline that resulted from these extensions.
Because ggplot2 was implemented in R (language) to run in R (environment), the
specification language has an R syntax. Wickham extended the specification
language by adding the ability to describe subsets of the data to be plotted as a
series of plots, a kind of visualization technique known as small multiples. The
extensions to the specification were called a faceting specification. The subsection
on specification and components will include a discussion of these extensions.

TABLE 3.4 Examples of Aesthetic Attributes

Category Aesthetic Functions

Form position

size

rotation

resolution

shape: polygon, glyph, image

Surface color: hue, saturation, brightness

texture: pattern, granularity, orientation

blur

transparency

Text label

c03 19 August 2011; 16:39:16

96 GRAPHIC REPRESENTATIONS

3.3.1 The Graphic Pipeline

Figure 3.29 shows the pipeline for ggplot2. Unlike Wilkinson’s system, the
source for the graphic is assumed to be one or more particular data structures
in R called data frames, which, for our purposes, can be thought of as datasets.
Because the R environment contains many functions for data manipulation,

Layers Layers

Layers Layers

Layers Layers

Layers Layers

Layers

Layers

Source

Display

(a) Map variables to aesthetics

(b) Divide datasets into facets

(c) Apply scale transformations

(d) Compute statistics

(e) Train scales

(f) Map scales

(g) Render geoms

FIGURE 3.29 Layered graphic pipeline (Wickham, 2009)

c03 19 August 2011; 16:39:16

3.3 WICKHAM: GGPLOT2 97

ggplot2 has no algebra for data composition. Layers contain what is required
for a plot: a dataset, mappings between variables and aesthetic attributes, a
function that performs statistical transformations on the dataset, a geometric
object (mark), and a way to adjust the positions of marks. A single dataset may
be shared across layers, or each layer may have its own.

The figure shows a plot defined to contain three layers of statistical
information. The processing is done as follows:

1. In stage (a), variables in one or more datasets identified as source are
mapped to aesthetic attributes. Each layer may have its own dataset and
mappings. The mappings are conceptually similar to what was described
in the previous section.

2. In stage (b), if faceting has been specified, datasets are divided into groups
called facets. Facets will be described in detail later, but the effect of
faceting is to split datasets, often by categories in one of the variables, so
that the data related to each category can be viewed independently in
separate panels of a plot. The figure shows that the result of faceting has
divided the data into two groups. Instead of seeing a plot with a single
panel, there will now be a plot with two panels, one for each facet.

3. In stage (c), transformations are applied by the scale to the variables in
the datasets across the layers. The transformations are the first of three
steps that map data values to the values of aesthetic variables (x, y, color,
etc.). The specific transformations applied depend on the type of scale and
vary depending on whether the data is continuous or discrete and, if
discrete, ordered or unordered. As in the Wilkinson pipeline, they may
include mathematical transformations of the data values such as log,
square root, or power functions.

4. In stage (d), various statistical transformations are performed.

5. In stage (e), because the data within layers and facets are separate while
scales across them may be shared, the range of variables across data
related by layers and facets must be coalesced into a single range used by
the scale that controls them. This is called training.

6. In stage (f), the values from each data variable must be mapped into the
values of its corresponding aesthetic variable. This is equivalent to the
mapping between graph and graphic described in Wilkinson’s pipeline.

7. In stage (g), the dataset produced by stage (f) is used by the geometric
object and coordinate systems to render the marks on the display and
generate the axes and displays that provide guides to the scales.

3.3.2 The Graphic Specification and Components

The language of the ggplot2 specification is the functional language R and is,
therefore, a programming interface. There are two primary functions: qplot()
is designed to create plots quickly and provides a large number of defaults;

c03 19 August 2011; 16:39:16

98 GRAPHIC REPRESENTATIONS

ggplot2() is designed to incrementally build a specification that can be
executed to construct the plot. This section introduces the specification and
components together. It illustrates the specification and capabilities of compo-
nents with figures of annotated functions and the plots constructed by their
execution. The intent is to show what is possible using a grammar-based
approach. The “Further Reading” section will refer to references that explain R
and ggplot2 in detail.

Data Variables and Aesthetic Attributes. As in the Wilkinson model,
mapping dataset variables to aesthetic attributes is essential to the creation of a
plot, which is Wickham’s term for a graphic. Figure 3.30 shows the specification
for a bivariate scatterplot. The variable city has been mapped to the x
positional attribute and displ to the y positional attribute. A geometric object
specification, in this case geom_point(), identifies the mark that will be used
in the plot. The resulting plot has a single layer.

By simply adding the aesthetic mapping of gears to the size attribute, an
XY(Z) plot is constructed that includes two axes and a legend as guides to the
three dimensions of the underlying graph as shown in Fig. 3.31.

ggplot(mpg2011, aes(city, displ)) � geom_point()

Dataset is mpg2011 Mark is a point

aesthetic mappings:
x <-> city
y <-> displ

2

3

15 20 25 30

City

35 40

di
sp

l 4

5

6

FIGURE 3.30 A bivariate scatterplot

aesthetic mappings:
x <-> city
y <-> displ

size <-> gears

ggplot(mpg2011, aes(city, displ, size=gears)) + geom_point()

15

2

1

2

3

4

5

6

3

4

5

6

20 25
city

gears

di
sp

l

30 35 40

FIGURE 3.31 An XY(Z) scatterplot with gears mapped to size

c03 19 August 2011; 16:39:16

3.3 WICKHAM: GGPLOT2 99

Layer. Layers permit multiple graphs or additional information to be
superimposed in the same space. The plot in Fig. 3.32 has two layers. Layers
may be used for different reasons. A layer may display the raw data as shown
by the points in the data area of the plot, show a statistical summary such as the
regression line shown in the figure, or display annotations or other information
about the raw data. In this figure, each layer of the plot panel shares the same
axes and coordinate system.

Stat (Statistical Methods). ggplot2 has a number of statistical transforma-
tions that can be applied to an input dataset. These compute new data variables
in addition to the original data variables of the dataset. The derived variables
are mapped to aesthetic attributes for use by various marks. Figure 3.33 shows
the summarization of the values of displacement on the y-axis as a boxplot by
class of vehicle. Part of the processing initiated by geom_boxplot() includes
a “boxplot” statistical transformation that computes new variables, such
as lower, middle, upper, ymin, and ymax, which are not part of the
source dataset. These derived variables are used by the boxplot geometric

ggplot(mpg2011, aes(city, displ)) �
geom_point() � geom_smooth()

2 layers:
-cloud of points
-smoothed regression line

15

1

2

3di
sp

l 4

5

6

20 25 30

City

35 40

FIGURE 3.32 A plot with two layers

2

3

di
sp

l

Compact Large Midsize

Class

ggplot(mpg2011, aes(class, displ)) 1 geom_boxplot()

Pick-up 4WD Subcompact

4

5

6

FIGURE 3.33 Adding statistical transformations: summarization of categorical data

c03 19 August 2011; 16:39:17

100 GRAPHIC REPRESENTATIONS

object to render each of the five boxplots. Note that the change in specification
resulted in changes to only the statistical method and the geometric object in
the pipeline.

Geoms (Marks). In ggplot2, geometric objects—whatWickham calls geoms—
perform the rendering of the plot’s surface. Wickham classifies geoms as either
individual or collective. Individual geoms generate a single mark for each row in
the dataset (point in a scatterplot), whereas collective geoms group multiple rows
for eachmark (a polygon). In Fig. 3.34, changing just themark in the specification
results in very different visible results. Only the first is useful, but the other
illustrates the way in which plots can be substantially changed, or customized, by
varying the statistical method, geometric object, or both.

Coordinate Systems. Coordinate systems combine the x and y positional
aesthetic into a coordinate, which is then transformed to determine its location
on the display surface. It is the final of three transformations—the mathemati-
cal transformation during scaling and a statistical transformation being the first
two—that can take place along the pipeline. ggplot2 provides ways to flip or
rotate the axes as well as set limits on the axes to zoom in or out of the data.

Facets. Facets are a way to subdivide a dataset into groups that can be
displayed separately as a series of panels as shown in Fig. 3.35. In this example,
by subdividing the dataset into groups based on the different sizes of gears, the
three dimensions can be seen as a series of bivariate scatterplot panels. Each
panel shows the data for only one level of gears: 1, 4, 5, or 6 as shown in the title.

3.4 BOSTOCK AND HEER: PROTOVIS

Wilkinson’s and Wickham’s work is primarily for statisticians and requires
significant effort or resources to become familiar with both the environment

ggplot(mpg2011, aes(gears, displ)) �
geom_point()

1
2
3

2 3

displ

4 5 6

G
ea

rs 4
5
6

1
2
3

2 3

displ

4 5 6

G
ea

rs 4
5
6

ggplot(mpg2011, aes(displ, gears)) �
geom_line()

FIGURE 3.34 The results of changing the geom_xxx() in a specification

c03 19 August 2011; 16:39:17

3.4 BOSTOCK AND HEER: PROTOVIS 101

and the plotting software. In recent work by Michael Bostock and Jeffrey Heer,
aspects of the grammar-based approach have been implemented for general use
in Web browsers using JavaScript and Protovis libraries. The specification
language is JavaScript, and it contains some of the same components discussed
in this chapter: scales, marks, and layouts. Although it contains only a limited
number of the statistical methods and support for the kind of plotting often
used in statistical analysis, its use of the grammar-based approach may provide
a way to efficiently design and construct a wider range of visualizations than
just quantitative graphics. Chapter 5 discusses Protovis in detail.

3.5 SUMMARY

Humans communicate thoughts using systems of signs. Semiotics is a field that
studies how signs and symbols become associated with meaning and the conven-
tions or code by which signs are organized into systems to communicate and to
model information about the external world. Graphics are a visual representation
of data that rely on graphical elements organized in a geometric space. By seeing
graphics as structured, Jacques Bertin extended the reach of semiotics into
graphics systems and developed a semiotic theory for graphic communication.

Bertin outlined three things that must be understood to design graphics: the
properties and structure of the information, the properties of the graphics
system, and the rules for constructing an efficient graphic representation of the
data. To understand the properties and structure of the information, it is first
necessary to determine the invariant and the number of components to include
in the graphic, the level of organization of each component, and each
component’s length. Bertin’s view was that the number of components
provided the best classification for graphical constructions. The graphics
system was the sign-system for encoding the data components in the descrip-
tions that result from an analysis of the information.

ggplot(mpg2011, aes(city, hwy)) + geom_point() + facet_grid(. ~ gears)

facet specification:
subdivide on “gears”

15

20
25
30hw

y 35
40

20 25 30

1 4 5 6

35 40 15 20 25 30

City

35 40 15 20 25 30 35 40 15 20 25 30 35 40

FIGURE 3.35 The display of subsets of a dataset as facets

c03 19 August 2011; 16:39:18

102 GRAPHIC REPRESENTATIONS

Graphics are read in three stages: identify what is external to the graphic,
identify the mappings between the visual variables and components, and
perceive the relevant correspondences between the marks and the subset of
data that the graphic represents.

Bertin’s goal was to create efficient graphics. The ideal of a good graphic was
to present its information so that what was relevant for the task could be
perceived at a single glance without mental effort. An efficient graphic was one
with a minimum number of images.

Leland Wilkinson built on Bertin’s work. He recognized that graphics, like
language, has a grammar that constrains its composition, so he developed a
grammar for statistical graphics. Some of the important components of
Wilkinson’s grammar-based system include scales, guides, statistical functions,
coordinate systems, marks, and aesthetic attributes. The grammar-based
approach is giving rise to new tools and toolkits such as ggplot2 and Protovis,
which provide ways to generate both graphics and visualizations through
specification languages rather than scripted programs that are executed
sequentially.

3.6 FURTHER READING

It is helpful to understand the basic concepts of semiotic systems before reading
Jacques Bertin. An accessible introduction to semiotics is Semiotics: the Basics
(Chandler, 2007).

The Semiology of Graphics (Bertin, 1983) is a foundation for good reason.
Although it requires effort to read, it provides insights on many levels and is a
reference you will likely refer to repeatedly. The English translation has recently
been reissued.

System R, an open-source statistical computing language and environment,
was based on the S Language developed at AT&T Bell Laboratories by Rick
Becker, John Chambers, and Allan Wilks. The R home page (http://www.
r-project.org) contains information about the organization and instructions on
how to download a copy of R for any of the major computing platforms.
ggplot2 is an R library that is loaded into R. Details on how to get started with
ggplot2 can be found at Hadley Wickham’s site (http://had.co.az/ggplot2).

c03 19 August 2011; 16:39:18

3.6 FURTHER READING 103

CHAPTER 4

DESIGNING VISUAL INTERACTIONS

4.1 DESIGNING FOR COMPLEXITY

Data-intensive systems are changing the scale, scope, and nature of the data to
be analyzed. The tools we use to do our work are becoming increasingly
sophisticated and intertwined in a mesh of data, information, and computation.
Information and multidimensional data come from multiple sources and are
processed using a variety of computational methods and approaches. Analyz-
ing the data is usually a collaborative effort requiring expertise from different
disciplines. Complexity is continually increasing. At the same time that users of
these systems ask for simplicity, they also ask for more features and tools that
extend their capabilities and allow them to explore larger datasets quickly and
dynamically. Although it might seem that simplicity and complexity are
opposing forces, simplicity is not the opposite of complexity (Norman, 2010).
Complexity is a statement about the world; simplicity is a statement about the
mind. Complexity can be tempered if a system is properly structured and
organized so that it can be understood. Once understood, the effort involved in
learning its structure is forgotten. A well-designed complex system, after it
becomes familiar, is often described as simple or “intuitive.” Simplicity is
psychological. Perceived simplicity, which is the first impression of a system’s
interface based only on its look—the number of graphical and control elements
that make up its visual interface—is different from operational simplicity. Even

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

104

c04 19 August 2011; 15:49:1

a system with a complex visual interface can be operationally simple if its
structure is logical and well organized, we have taken the time to learn it, and it
makes interaction efficient.

As we interact with a system or its help systems, we construct in our minds a
mental model about how a system works. We use mental models all the time.
For example, if we own a gas or propane stove, even if we have not looked
inside, we likely have a simple mental model of gas flowing through pipes that
lead to the burner, the igniting of the gas by a spark, and the distribution of the
burning gas around the burner through many small orifices. When it doesn’t
light, we infer from our model that something is plugged the spark is not
being generated, or the pressure is low. Our mental model of how a system
functions helps us operate it without memorizing arbitrary procedures and
helps us make reasonable predictions about what to do when something
unexpected happens. If a system is well designed, our mental model will closely
correspond to the conceptual model the designers had in mind and will be
consistent with the way the system behaves or responds operationally. How the
two different models relate to the system is shown in Fig. 4.1.

Interface

System

User

Designer

Interaction

User’s Model

Designer’s Model

Visual and
interaction design

Conceptual model

FIGURE 4.1 Two perspectives of a system (based on Norman, 2002)

c04 19 August 2011; 15:49:1

4.1 DESIGNING FOR COMPLEXITY 105

As human beings, we have a strong psychological need to explain. The
mental model we construct of a badly designed system—we always create one—
may not be consistent with how the system works. When the system’s behavior
doesn’t match our model, we get confused. We have difficulty predicting the
outcome of certain actions. We cannot figure out what combinations of buttons
to push. How we engage or find certain functions may appear arbitrary. We
try to commit them to memory but find we have forgotten them the next time
we use the system. This leads to a sense of powerlessness, frustration, and a
perception that the system is complicated. We are usually willing to study and
master the complexity of a system when we know it reflects and reduces the
complexity of the work, but we resent and resist the effort when complexity is
the result of errors of design.

A user will form a good mental model if the system’s operations support the
user’s tasks, are logically and consistently organized, and provide feedback
about how it can be used in ways that the user can perceive. The designers’
conceptual model, therefore, must be rooted in a thorough understanding of
the work that the system will support. This includes the goals that must be
accomplished, the activities or tasks that will be performed by individuals or
groups to achieve these goals, and the work environment in which the system
will operate.

For visual analytics and data-intensive systems, this means understanding the
nature of data analysis and exploration. The nature of this work differs between
and within application domains. Between application domains, the data to be
analyzed and the tools and methods used in the analysis vary widely along many
dimensions.Within application domains, there are usually layers of analysis that
must be done as the raw data is successively transformed until it reaches a point
where decisions can be made. Each layer of analysis may be done by individuals
with different subject matter expertise. Each expert may have his or her own
datasets derived from the source data, questions about the data, and computa-
tional tools and methods for analysis. The context plays an important role in
understanding the work, which, in turn, affects the design of the system. The
application of microarray technology in the life sciences illustrates this point.

DNA microarray data is used to measure the activity and interactions of
biological genes. Within the scientific research community and industry, the
uses for this data include the discovery of genes, diagnosis or prognosis of a
disease, and the assessment of the toxicity of drug candidates or other chemical
agents. Each of these areas have distinct scientific tasks with their own sets of
questions about the data. Examples of these tasks include identifying genes
with similar or different co-expression patterns, looking at gene expression
patterns under various stress conditions, or mapping gene expression data to
metabolic pathways (i.e., a series of chemical reactions within a biological cell).
Addressing the scientific questions may involve one or more data analysis tasks
with quite different analytical techniques (Berrar et al., 2003).

Designing visual interactions to support the work of analysis and explora-
tion requires sensitivity to the context in which the tasks are being performed.

c04 19 August 2011; 15:49:1

106 DESIGNING VISUAL INTERACTIONS

The advent of tools such as Protovis should make it possible to design systems
more quickly with interactions comprised of visualizations and quantitative
graphics as well as user interface controls to create tools that support specific
domains. The process of design is a dialogue between designers and users.
Whether the dialogue is formal or informal, a good design process contains
essential elements that even small projects with just one or two individuals
should consider. Of these elements, one of the most important is the conceptual
model. The conceptual model is a high-level description of the concepts—
objects, actions, and attributes—that underlie the organization, appearance,
and behavior of the system being designed (Johnson, 2010). The product of
design also communicates with users. Its visual interface is a system of signs and
conventions—a semiotic system—that reflects a conceptual model, whether the
model has been carefully designed or not. If the signs and conventions have
been adopted from the workplace or are familiar, and they are visually
organized to fit the tasks, the system will be more easily understood, and the
interaction will flow.

The remainder of this chapter is divided into two sections. The first section
discusses the critical activities of design that loosely form a process: analysis of
the user and work; design of the conceptual model, the architecture of the
interface, and the visual interaction; prototyping as a means for reflecting about
the conceptual model and exploring alternative designs for the visual interface
and interaction; and usability evaluation. Although some of these activities
must initially be done before others, design is a process of continual refinement.
The byproducts from each stage of design, such as the various models and
prototypes, may be reexamined several times over as new insights are gained.
The second section discusses the physical aspects of the design of visual
interaction: the form and content of the user interface, visualizations, and
graphics; the alternatives for interaction; and the implications for design from
what has been learned about how our minds work.

4.2 THE PROCESS OF DESIGN

As stated earlier, good design begins with a thorough understanding of
the users, their work, and their environment. Within the human-computer
interaction (HCI) and interaction design(ID) communities, the activities that
comprise the design of interactions with technological products go by different
names depending on the emphasis and which activities are included. User-
centered design, interaction design, usage-centered design, contextual design,
activity-centered design, participatory design, and cognitive work analysis are
some of the names that are used. The emphasis varies: user or use; individuals
or groups; work that is service-oriented or work that is mostly in the mind; or
interaction with a wide range of technological products and devices or with
primarily a computer display and input devices. But regardless of emphasis,
these different approaches always begin with a focus on people and what they

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 107

are trying to do and accomplish. This is the foundation on which the rest of
design relies.

Most of these approaches define a process. So that projects do not incur
unnecessary overhead, some of these processes such as contextual design can be
scaled from small individual projects to large projects that span corporate
divisions. The simplest definition of a design process consists of three steps
(Johnson, 2010):

1. Analyze the tasks.

2. Design a conceptual model.

3. Design the user interface and interaction from the task analysis and
conceptual model.

This captures the basic design activities. Consider the commonly used
spreadsheet application, which was initially designed to replace work done
manually by accountants. In accounting, the spreadsheet was a “spread” of
facing pages in a bound ledger book with columns that, among other things,
were used to keep track of expenses by category. Invoices were itemized in the
left margin, and the categories were entered in the headings of the columns. In
the cell where the row and column intersected, the payment for an invoice was
entered. One of the tasks the accountant performed was the summing of
columns. In this description of the work, there is no mention of technology,
interfaces, or the sequence and flow of the interaction.

The first step of design—the analysis of tasks—is done in the context of the
application domain using language that would be familiar to the users—
accounting, in this example. Each task, and the steps involved in doing it, must
be identified. From the detailed description of tasks, a conceptual model can be
designed.

The second step—designing the conceptual model—describes the operations
that the system can perform and the concepts the user must know to perform
them. In this example, concepts such as “spreadsheet,” “column,” “row,” and
“cell” were understood from the ledgers accountants used for bookkeeping,
and operations such as “summing a column” was a task they performed.
Incorporating these into the spreadsheet application’s conceptual model as the
objects that can be manipulated and the operations that manipulate them made
it easier for those familiar with accounting to learn and understand the system.

In the final step, something concrete begins to emerge from design. The
objects and operations in the conceptual model are mapped to actions and to
visual signifiers—graphical elements, icons, or symbols—which are representa-
tions of familiar objects corresponding to digital representations in the system.
In the example, the white space between two vertical lines of the spreadsheet
application’s user interface was a “column,” and it appeared the way it would
in a ledger. The terminology used in the system such as “spreadsheet,”
“worksheet,” “row,” and “column” would all have been familiar concepts.
The mapping also has to specify the actions required to perform a task. In

c04 19 August 2011; 15:49:1

108 DESIGNING VISUAL INTERACTIONS

today’s spreadsheet applications, two actions are needed to “sum a column.”
By clicking the mouse on the first cell in the column to be added and dragging
the mouse over the cells to be summed, and then pointing the mouse to the

P

symbol in the toolbar, the user invoked the operation that summed a column.
The preceding description is a simplification of what can be a complex

process, but it provides a useful outline for design: observe the work to be
supported; from what you learn about users and their work, design abstract
models of work and systems that keep open the options for implementation;
then design concrete alternatives—prototypes—from the abstract models that
can be handled and tested by users. Much has been written about the various
approaches, and references will be included in the “Further Reading” section of
this chapter. The design process shown in Fig. 4.2 is a composite process that
includes activities common to some of the design approaches listed earlier. In
the following subsections, we provide an overview of the composite process but
discuss only those aspects that are relevant to the design of visual interactions
for data analysis and exploration. Although the figure shows the process as
though it were linear from top to bottom, it is actually highly iterative with
feedback and assessments at later stages often requiring changes at one or
more earlier stages. The activities grouped as “abstract” are activities done
to understand the problem space and what work the system should support.
Within these activities, no commitments are made as to how the system will be
implemented. The activities grouped as “concrete” are the stages that design
how the system will “look and feel” and evaluate how well a proposed solution
achieves established goals.

Conceptual model

Interface architecture

Visual interaction

Paper or working

Usability

Analyze

Design

Prototype

Evaluate

Users and work
environment

Work to be supported

Abstract

Concrete

FIGURE 4.2 A composite design process

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 109

4.2.1 Analyze

Assuming a preliminary study has identified a problem area that needs to be
addressed, how do we design visual tools and systems to improve the ability to
analyze and explore the data or see it in new ways? To begin to answer this
requires data about who will use the system, for what activities and tasks, and
in what context. For example, consider what is involved in the analysis of DNA
microarray data. As mentioned earlier, microarray technology is used in several
types of scientific studies. Scientists measure the amount of some gene product
such as protein or RNA that is expressed by genes in the DNA of a cell.
Knowing the level of gene expression in a cell, tissue, or organism provides
useful information. Two examples of use are identifying viral infections or
exploring the sensitivity or resistance to drugs used for chemotherapy in the
treatment of cancer. Figure 4.3 is an overview of the data-analysis process of a
microarray study. It is not necessary to understand the details of each step.
What is important is to understand that user interfaces, visualizations, and
graphics are part of a larger socio-technical environment based on advanced
technologies in which work is practiced. Marks on a visualization or data
graphic that represent genes with unusual expression patterns may become
the basis for a literature search or a search against a database for other related
genes. The transition to these related tasks of searching, if not the tasks
themselves, is part of the work that must be supported.

Define scientific aims and tasks

Design experiment

Design and make array

Hybridize and scan spots

Process image

Derive data matrix

Analyze and model

Information

Information

Chip

Raw image data

Numerical data

Matrix

Transformed matrix

Interpret and validate

Preprocess matrix

Results

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

define the problem; generate a list of questions; state the
hypotheses; research the literature; text mining

select factors, define conditions; determine replications; define
decision criteria and analysis tasks/methods; consider statistical
issues

obtain/design probe DNA sequences; arrange probes on array;
obtain/track info on probe sequences

get condition/sample; obtain/prepare target RNA; obtain/prepare
reference RNA; run competitive hybridization; produce digital
image data; track target/reference information

collect/store images; analyze spots; derive numerical
measurement estimates; normalize/standardize; track other
information

collect/store numerical datasets; integrate numerical data from
multiple arrays; integrate any other information; derive data
matrix

missing value handling; normalization; transformation; variable/
feature selection

visualization; correlation analysis; classification; regression/
approximation; cluster analysis; pathway/regulatory network;
modeling/analysis

cross validation; statistical test; visual inspection of results;
biological validation against existing knowledge and through
further experiments

Revise

Feedback

N
ext array

New hypotheses, insights, and
knowledge

FIGURE 4.3 Overview of a DNA microarray data-analysis process (Berrar et al., 2003)

c04 19 August 2011; 15:49:1

110 DESIGNING VISUAL INTERACTIONS

Design decisions must be based on facts and details elicited from discussions
with users about their work and from observing users at work, instead of, as
often happens, from speculation about users’ needs. A variety of techniques
exist for gathering data from work environments in a systematic way. These
techniques include unstructured or structured interviews, focus groups, ques-
tionnaires, direct observation, contextual inquiry, and ethnographic interviews.
Some of these techniques can provide useful information about users but
limited information about how the work is actually done. The work practice
has structure, but much of it is implicit, and designers must understand the
work at a fine level of detail to design systems to support it. Designers need
concrete data about the work as it is actually performed, not abstract
summaries of it.

Of the methods previously listed, we have found variations of contextual
inquiry (Holtzblatt & Beyer, 1998) to be a useful field method. The structured
interviews are done on-site to directly observe the work in context as it is
performed. Users, particularly experts, are so skilled at what they do that they
often become unconscious of the lower-level steps they take as they perform
various tasks. They may try to explain their work to the interviewer in terms
they think will be understood. By engaging them in their work and asking
about how terms, tools, or concepts are used, the details needed to develop the
conceptual model will be made explicit in the interviews.

In addition to the users, the workplace (office, laboratory, or manufacturing
site) also provides many clues about the work. Artifacts such as notes,
documents, research papers, or even yellow sticky notes are signals that indicate
the existence of information or knowledge that may be used for certain tasks.
By interviewing selected individuals at work and carefully observing, the notes
taken during the interviews can be interpreted and used to create models of the
work environment, the work, and the resources required to do it.

The Users and the Work Environment. Work is done in an environment
that imposes constraints on the design. It is important to know not only the
characteristics of the types of individuals that will use the visual system being
designed but also other factors that might affect its design.

Some key questions to ask of those who will use the system include the
following:

� What are your goals?

� What is the system expected to help you accomplish?

� What tasks are performed? How often are these done? Which are more
important and which are less important?

� What is your professional and educational background?

� Does your background include an understanding of data analysis and
statistics?

� How do you stay current in your field?

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 111

The following questions can be answered through a carefully planned series
of contextual inquiry interviews:

� What are the steps of each task?

� What data or information will be used during these tasks? Where does it
come from?

� What results need to be generated by the system?

� What tools or systems do you use to accomplish your work? How often
are these tools used?

� What is communicated with others involved in the work, and who are
those individuals?

� What is the relationship between tasks?

Questions about the cultural and physical aspects of the work environment
include the following:

� How is the work divided among teams?

� What standards, practices, and policies of the organization might con-
strain what you do?

� What are the guidelines and standards that IT requires of systems that are
deployed?

Partof the information gainedbyasking thesequestions of different users allows
the designers to create a profile for each class of individuals that will use the system.
These can be generalized into user roles. For themicroarray data analysis example,
three rolesmight emerge: a molecular biologist, a statistician, and a computational
specialist who knows data-mining methods. Each will want to examine the results
from different perspectives. The results from the contextual inquiries are used to
construct models of the work, which are discussed later in this chapter.

The Work to Be Supported. Much of data analysis and exploration is
cognitive work. Cognition is what goes on in our minds as we carry out various
activities throughout the day. One way to characterize cognition is as a set of
processes. In an earlier chapter, we discussed three of these as they relate to
vision: attention, perception, and memory. Others include recognition, learn-
ing, reading, speaking, listening, problem solving, planning, reasoning, and
decision making. Donald Norman’s action theory (Norman, 2002) is a
theoretical cognitive framework that was developed to help designers under-
stand the mental processes of users as they interacted with computational tools.
Knowing about this theory helps to understand some of the language used in
describing task analysis and conceptual models.

Norman described the interaction as the seven stages of action shown in
Fig. 4.4. Our actions begin with a vague goal about doing something such as
“going to the store.” We translate the goal into a specific mental description—an

c04 19 August 2011; 15:49:1

112 DESIGNING VISUAL INTERACTIONS

intention—of what is required to achieve the goal, but not yet specific enough to
perform. The intention has to be broken into an action sequence of physical
actions such as motion, movements, or thoughts—fine-grained steps—to carry
out the intention of getting to the store. The first three stages formed the stages of
execution. The remaining stages, the stages of evaluation, compare what we
perceive to be happening against our expectations—the intention and goal.

Norman described two things that could make a tool difficult to use. He
called these the gulf of execution and the gulf of evaluation. The gulf of
execution was the difference between what the tool user wanted and the actions
a tool provided to carry out the intention. If the action sequence was long—in
other words, it could not be directly executed—the gulf was large and would
require considerable cognitive effort to translate the intention into the steps
required to carry out the intention. The gulf of evaluation was a measure of
how easy it was to perceive and interpret the visible feedback provided by the
system in response to the actions the user took. If the representation for
the state of the tool—what was visible in the interface—closely matched the
user’s mental model, the gulf of evaluation was small, and the tool could be
easily learned and understood.

Understanding work requires an ongoing dialogue with those who do it. To
design the system’s operations to support the work, the tasks the user performs
needs to be understood as a series of small steps. The contextual inquiry
method is designed to elicit this information, but less formal methods may be
used as well. Regardless of method, the notes taken during the interviews need
to be interpreted and converted into models of the work.

Various models have been devised to capture different aspects of the
work. In the contextual design methodology, the models include sequence
models, which represent the detailed steps required to achieve an intent;
flow models, which represent the coordination and communication of work
between individuals; and artifact models, which represent physical things—
documents, reports, important research papers—produced or used in the work.
In the usage-centered design methodology (Constantine & Lockwood, 1999),

Establish a goal

Form an intention

Specify actions

Execute actions

Evaluate

Interpret the state

Perceive state of world

World

Execution
Stages

Evaluation
Stages

What we do
to the world

What we want to happen

Comparing
what happened
with what we

wanted

FIGURE 4.4 Action theory (Norman, 2002)

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 113

essential use cases capture the detailed interaction between user and tool as a
structured narrative of action and response. These are written in language the
user would use and are generalized to capture only the intent of each action but
not references to specific technology. This gives designers the freedom to
consider implementing the actions of the task in other ways.

The starting point for the development of essential use cases is the user role.
For each role, the following questions are asked of actual users:

� What is the goal?

� What must be done to achieve this goal?

� What capabilities are needed to do the task?

The fundamental question in task analysis asked of each action is “why?” Why
is this being done? What is the intent? What is it accomplishing?

Note that it is often difficult to schedule interviews with domain experts
because of the demands on their time. It is helpful to have someone on the
design team who has an equivalent academic or professional background. This
person will be able to ask focused questions relevant to the domain and explain
the expert’s answers later. There are also other ways to learn about the work. If
the expert has some familiarity with the design methodology, he or she may
write task descriptions as a starting point for further discussion. Although their
task descriptions may include references to specific tools or visualizations, these
experts provide insight into goals and intent. An example is shown in Table 4.1.

Another way to learn is by asking an expert to identify a set of key technical
or research papers that are relevant to the work the tool will support. These can
provide the background necessary to generate focused questions to ask during
interviews. For scientific areas, research papers are structured to describe the
problem, provide historical background, and explain the steps taken to solve
the problem. Many also include a methods section that describes the work in
more detail.

Analysis is iterative. The construction of models exposes gaps in under-
standing that lead to other questions. What was thought to be understood often
requires confirmation or clarification. From the interviews and discussions,
every key observation, insight, question, design idea, and breakdown—places
in the workflow where problems arise—are also recorded. The results of
analysis may contain the notes (or a model of these notes) and at least two
key models: profiles about the types of individuals that will use the system (user
role models) and the tasks they currently perform to do the work (task models).

4.2.2 Design

Design begins by developing an abstract conceptual model of the system
after the analysis is well underway. From the conceptual model, an interface
architecture is designed that groups related actions the user may perform into
interaction spaces and shows how the user will navigate between these spaces.

c04 19 August 2011; 15:49:1

114 DESIGNING VISUAL INTERACTIONS

The visual interface and interactions are designed from the various analysis and
design models.

Conceptual Model. Recalling the gulfs of execution and evaluation from
action theory, the design goals should make operations available that are close
to what the user intends to do and should make the state of the system visible in
a visual language that can be easily understood. The graphical user interfaces of
most applications communicate a world of digital objects on which actions can
be performed; the interfaces embody concepts and relationships between the
objects. The conceptual model is a model of the system that the designers
hope the users will form as their mental model as they interact with the system.
If the model reflects the users’ world of work, it will be familiar. Designing
the conceptual model involves asking the following questions of the task
models produced in analysis (Johnson & Henderson, 2002; Johnson, 2008):

� What concepts should be presented to the users?

� What data will be manipulated, created, or viewed through the visible
representations drawn on the display? What actions will be used to do this?

� What options, attributes, or parameters does the tool need to provide?

Applying this to the previous task description, Table 4.2 highlights in bold
all the concepts that may need to be presented somewhere in the user interface

TABLE 4.1 A Task Description Written by an Expert

Task-1: Group cells based on gene/miR expression.

1. Cells are grouped based on the correlation between the expression patterns of selected

genes, microRNAs, or a combination of the two, and then visualized as a

dendrogram.

2. (optional). Filter genes/miRs (rows of T) so that X% of the values have expression

levels greater than Y; for example, 10% have expression levels greater than 7.

3. (optional). Select the n top genes with the highest variability in expression level, for

example, the highest interquartile range or highest variance.

4. Calculate the 603 60 cell�cell correlation matrix M based on expression levels of

genes/miRs from step 2. Provide options for Pearson, Spearman, and Kendall

correlation statistics. There is no missing data for genes/miRs, so that is not an issue.

5. Using agglomerative clustering with D5 12M as the distance matrix, construct a

dendrogram of the cell lines. Provide options for complete and average linkage.

6. Display the dendrogram with options for coloring the cell lines based on tissue type

as shown in Fig. 2 of [MCT07 1483]. (Note that the italicized remark does not refer to

a figure in this book, but to a figure in a paper containing a visualization the expert is

familiar with. Before considering other approaches, it is necessary to understand the

intent behind the use of the dendrogram in that figure. The paper referred to is an

artifact that provides additional context for understanding the work.)

7. Provide an interactive device for selecting cell line groups.

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 115

when it is designed in a later phase. From the contextual inquiries done during
analysis, the designers know that the datasets being manipulated in the task are
one of two kinds that are generated from carefully controlled microarray
experiments. One dataset contains the expression levels of genes, and the other
contains the expression levels of microRNA. The task would be performed in
step (h) of the data analysis process shown earlier in Fig. 4.3.

The list of concepts extracted from the description is shown in Table 4.3.
Much of the terminology is from biology and statistics and is used to describe
the analysis of microarray data.

The next step is to carry out an object/action analysis and ask which of these
concepts to expose in the interface as objects, actions that the user can perform
on the objects, attributes of objects (that can be set somewhere in the user
interface), and various relationships between objects. Different kinds of
relationships can exist between objects: in a supertype/subtype relationship,
one object is a specialized type of another (vehicle/auto); in a whole/part
relationship, one object is a part of another (car/wheel); and in a containment
relationship, one object is inside another (document/folder).

An explanation of a full object/action analysis requires a background in data
mining, statistics, biology, and the problem domain of chemical genomics,

TABLE 4.2 Concepts Identified in a Task Description

Task-1: Group cells based on gene/miR expression.

1. Cells are grouped based on the correlation between the expression patterns of selected

genes, microRNAs, or a combination of the two, and then visualized as a dendrogram.

2. (optional). Filter genes/miRs (rows of T) so that X% of the values have expression

levels greater than Y; for example, 10% have expression levels greater than 7.

3. (optional). Select the n top genes with the highest variability in expression level, for

example, the highest interquartile range or highest variance.

4. Calculate the 603 60 cell�cell correlation matrix M based on expression levels of

genes/miRs from step 2. Provide options for Pearson, Spearman, and Kendall

correlation statistics. There is no missing data for genes/miRs, so that is not an issue.

5. Using agglomerative clustering with D5 12M as the distance matrix, construct a

dendrogram of the cell lines. Provide options for complete and average linkage.

6. Display the dendrogram with options for coloring the cell lines based on tissue type.

7. Provide an interactive device for selecting cell line groups.

TABLE 4.3 List of Concepts from a Task Description

cells (biological), correlation, expression pattern, gene, microRNA, dendrogram, filter,

expression level, select, variability, interquartile range, variance, correlation matrix,

Pearson correlation statistic, Spearman correlation statistic, Kendall correlation

statistic, missing data, agglomerative clustering, complete linkage, average linkage, cell

line, tissue type, cell line group

c04 19 August 2011; 15:49:1

116 DESIGNING VISUAL INTERACTIONS

which is beyond the scope of this book, but an initial analysis might generate
the results shown in Table 4.4 for just one of many tasks. The design challenge
is to keep the conceptual model as simple as possible. Actions should be
generalized to apply to as many objects as possible. For example, in step 3 of
the task, “Select the n top genes . . . ,” the selection is really another way to
filter, so a separate action is not needed as long as the filtering action provides a
way to select the “top n genes” using some metric for variability.

The conceptual model has several functions:

� Identify and structure the concepts of the domain and the work before
considering how these will be presented. A conceptual model is needed to
design the interface architecture, the next step of the process.

� Serve as a reminder to software developers that the interface is a way to
communicate with users. It provides a vocabulary for the user interface. By
creating the conceptual model from the task models, which are derived
from discussions with users, the user interface will embody the concepts of
the workplace rather than concepts software developers generate when
they implement the system.

� Measure the complexity of the interface. The more objects, actions, and
attributes that are added, the more the user will have to learn and the
more combinations of objects and actions there are to consider. Each new
action added could be applied to any of the objects that already exist in
the model; similarly a new object could be operated on by any action that
already exists. The complexity grows exponentially.

Not all design methodologies include conceptual modeling. Contextual
design uses visioning and storyboarding to conceptualize alternatives for new
ways to do the work by looking across all abstract tasks and issues extracted
from the interviews to see what they have in common or where they differ. The
storyboards provide the detail needed to either implement paper prototypes
that are used to test the ideas with users (for small projects) or begin the design
of the interface architecture (larger projects).

TABLE 4.4 Results of an Object/Action Analysis

objects gene dataset, microRNA dataset, gene, microRNA, dendrogram,

correlation matrix, cell line, tissue type, dendrogram, variability

actions filter, correlate, cluster, group

attributes interquartile range, variance, Pearson correlation, Spearman

correlation, Kendall correlation, agglomerative, complete linkage,

average linkage

relationships correlation method: Pearson, Spearman, or Kendall

clustering method: agglomerative clustering

linkage: complete linkage, average linkage

microarray dataset: gene dataset, microRNA dataset

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 117

Interface Architecture. The objects, actions, and attributes that the system
will make visible as tools and materials for doing the work have been identified
in the conceptual model, but we are still not ready to begin sketching something
that will be visible. None of these tools or materials have yet been organized.
Just as physical work is done more efficiently when the tools and materials
relevant to several tasks have been organized and laid out in different places,
cognitive work is also done more efficiently if the visual representations of
objects and actions are organized into interaction spaces where related tasks
are performed. Interaction spaces in user interfaces are called windows, panels,
dialog boxes, pages, views, wizards, and so on. If a related task cannot be done
in the same interaction space, it distracts the user from the work and forces the
user to think about an action sequence that will help navigate to a different
space where the related task can be done. The organization and structure of
actions and objects into interaction spaces along with the specification of links
that show how to navigate between them is called the user environment
(Holtzblatt & Beyer, 1998) or the interface architecture (Constantine &
Lockwood, 1999). Like the architectural floor plans for a home, the interface
architecture specifies the objects and actions that belong in the same space
because they are frequently used together.

This is best illustrated with a commonly used application. Consider Gmailt
(also known as Google Mail). An application’s interface reflects its internal
structure. Three of Gmail’s interaction spaces have been extracted as shown in
Fig. 4.5. In each interaction space, the functions and objects needed for a set of
related tasks are defined, as are the links to other spaces. For the system to be
coherent, it not only must have a consistent user interface but also an orderly
flow of interaction. Using an interface architecture to design the visual
interactions results in a system where the interactions flow naturally with the
work.

The analysis and design to this point have generated various abstract
models, including two abstract design models: the conceptual model and the
interface architecture. In the next stage of design, the abstract becomes
concrete.

Visual and Interaction Design. To make the abstract concrete, the visual
interfaces and interaction must be designed and prototyped. User interfaces
and visualizations are composed from graphical elements (such as points or
lines) with visual properties, or higher level elements such as predesigned
or customized components that include controls (radio buttons, menus,
hyperlinks) and containers (panels, windows, dialog boxes, pages). Graphics
are composed of marks, scales, and guides organized by coordinate systems or
layout schemes as described in Chapter 3. Although the interaction style could
have been one of several different types, we assume interactions will directly
manipulate visual representations of digital objects. Finally, cognition and
perception are a factor to consider in whatever is designed. We will cover all of
these topics in more detail in the last section “Visual Interaction Design.”

c04 19 August 2011; 15:49:1

118 DESIGNING VISUAL INTERACTIONS

The various work models, the conceptual model, and the interface architec-
ture should be seen as a specification for the physical user interface
design. Using these models as a guide, different ideas could be sketched as
alternatives or implemented as low-fidelity prototypes (see the next section).
The models keep the physical design decisions grounded in the data gathered
from users and the workplace.

Note again that there is considerable back-and-forth activity between the
abstract and concrete stages of design. Design is not only problem solving.
Design is also “creating beyond what the problem calls for” to find a good fit to

Review interpersonal communication
Manage personal communication,
contacts, and tasks

Functions:
-read email
-delete
-archive
-report spam
-label
-search emails
…

Links:
> Contacts
> Tasks
...

Objects:
email list
task list
...

Manage contacts
Manage list of individuals and
groups of individuals

Functions:
-new contact
-new group
-add to contacts
-search emails
…

Links:
> Tasks
> Mail
…

Objects:
contact
group
...

Manage tasks
Keep list of tasks to complete

Functions:
-add
-delete
-switch list
…

Links:

Objects:
task
...

FIGURE 4.5 Example of an interface architecture for Gmail (see the User Environ-

ment Design model in Holtzblatt & Beyer, 1998)

c04 19 August 2011; 15:49:1

4.2 THE PROCESS OF DESIGN 119

the users’ needs (Kelley, 1996). There is no hard-and-fast border between these
two stages of design. Questions emerge in trying to design the details of how
visually to support the work and in prototyping that will result in a reexami-
nation of the conceptual model and the structure of the interface. Also, while
we have presented the stages as if there is only one set of design models, the
exploration of alternative designs might give rise to several sets of models, each
of which may advance into the concrete stages of design and early-stage
prototyping to determine whether they have merit.

4.2.3 Prototype

Prototypes are like the architect’s drawings for a building. They are a language
for communicating with the user about design alternatives and the details of
interfaces and interaction. They provide a way to envision and experience how
the new system will affect work, to explore technical alternatives, and to discuss
flaws in the design and specific ideas for how it might be improved. Just as the
architect’s design moves from sketches of initial concepts to detailed drawings
of floor plans and site plans to blueprints, the abstract design moves from low-
fidelity to high-fidelity prototypes (or beta software).

Other ways to discuss design ideas with users include demonstrations of the
visual interface, discussions about the written descriptions of requirements, and
descriptions of scenarios. But ideas about visualizations and interaction are
difficult to convey without something graphical to interact with. The first
design alternatives of user interfaces are sometimes implemented as paper
prototypes. Paper prototypes are one kind of low-fidelity prototype and, while
there may be other choices, they have several qualities that should be present in
whatever low-fidelity prototype is used:

� They are quick and inexpensive to build.

� Because they are hand-crafted and rough, discussions in early design will
focus naturally on the structure of the system rather than on irrelevant
interface issues such as the style of a particular user interface control.

� They are easy to change during the prototype interview in response to a
suggestion or feedback.

� They can be used as a prop to discuss the details about what is needed, or
what will or won’t function in the work environment. Some issues do not
surface until users need to reflect on the details of how something works.

Low-fidelity prototypes are sketches that include controls such as buttons,
menu items, hyperlinks, or text fields. The user will simulate the actions of a
real system by mentally pointing to controls or typing into fields. One or more
interaction spaces may be mapped to a single “page,” depending on the kind of
user interface container selected. The sketch may be hand-drawn on a piece
of paper with colored sticky notes simulating controls, or they may be digitally

c04 19 August 2011; 15:49:2

120 DESIGNING VISUAL INTERACTIONS

drawn as slides in Microsoft PowerPoints or as artwork created by Adobe
Illustrators. The digital sketches may be saved as a file of slides, as pages in a
PDF file, or as HTML pages.

High-fidelity prototypes are working software with interfaces and interac-
tion. They cost more to build and are less flexible than low-fidelity prototypes.
They are used to investigate technical issues that might affect design. For
example, some interaction styles require the system to provide very responsive
feedback. To measure this, certain operations may need to be implemented to
determine whether the time criterion can be met. Designers might implement all
or some of the interface and interaction to be experienced but with limited
functional capabilities. In evolutionary prototyping, the high-fidelity prototype
eventually becomes a product. A high-fidelity prototype acts as a working
prototype where core sets of functionality are developed in stages. The users
continue to evaluate this prototype as it evolves. The outcome of this later stage
of design is a proof-of-concept prototype that can be used to demonstrate the
merit of the initial design concept. In throwaway prototyping, the high-fidelity
prototype becomes the specification for a product and is eventually discarded.

4.2.4 Evaluate

The goals of a usability evaluation for design differ from the goals for testing
usability of preproduct applications. Design evaluation is intended to provoke
discussion about better ways to structure the system, discover unnecessary
tasks, or reprioritize the importance of tasks. It is iterative and must be a
fundamental part of the design process from the beginning. Prototyping may be
thought of as a series of interviews similar to contextual inquiry but with a
focus on observing design ideas in use.

Usability testing, on the other hand, is done in the late stages of develop-
ment. It measures the users’ performance on a set of predefined tasks. It is
intended to uncover small problems or areas that are found to be difficult to
understand. The changes made are to polish the interface and refine the product
by improving the interaction. If the prototyping has been done well, there
should be no major surprises. Usability testing is important but beyond
the scope of this book.

4.3 VISUAL INTERACTION DESIGN

Physical design, whether it is of something tangible such as a fountain pen or
intangible such as a visual system, requires many choices and trade-offs. How
these are made depends on what matters. We react to the design of a product on
three levels (Norman,2004):

� At the visceral level, which involves the emotional system and does not
involve thought or consciousness, we respond to appearance and the

c04 19 August 2011; 15:49:2

4.3 VISUAL INTERACTION DESIGN 121

physical feel of the product. This is often discounted as just aesthetics, but
the emotional state of mind is a factor to consider in design. Positive
feelings improve creativity and broaden our thinking as well as helping us
be more tolerant of minor problems in the tool; negative feelings from
stressful environments make us concentrate and narrow our thinking. For
complex or stressful environments, the design focuses on function and the
removal of anything in the interface or interaction that is irrelevant.

� At the behavioral level, we respond to what the tool does, how well it
performs, and whether it can be understood and learned. Designing for
this level is primarily about function, followed by how to make it
understandable.

� At the reflective level, we respond thoughtfully and consciously and reflect
more deeply on past experiences, what we have learned, and the culture we
live in. We consider the strengths and weaknesses, how it might be used in
the work, and many other factors.

Visual tools are semiotic systems—communication-oriented tools designed
for visual interaction. The graphical primitives and higher-level elements created
from these primitives are deliberately designed signifiers that represent quanti-
tative or abstract data, information, relationships, digital objects that can be
manipulated, or actions that behave like tools. To understand their meaning,
users must understand the connection between the signifier and what it
represents. Well-designed signifiers are instantly perceived and can be easily
“read.” The signifiers used to represent the content and functionality of the
system must be coherent—have consistent visual characteristics and style—and
be understandable by the user community they are designed for. The signifiers in
Fig. 4.6 are understood because they have been learned by using graphical user
interfaces. A visual language is comprised of the visual properties (color, size,
shape, etc.) of a set of signifiers that are related to each other by a set of rules.

Because “user interfaces,” “visualizations,” and “graphics” are terms loosely
used in many contexts, we provide definitions for them here. We use the term
“visual interface” (Mullet & Sano, 1995) instead of “(graphical) user interface”.
Visual interfaces organize content and tools so that users can efficiently do the
activities or tasks that the system is being designed to support. They have
controls that provide ways to perform actions and containers that provide
space—regions of the display—for either content or groups of controls. To
support the activities of users, the design captured in the various models
produced by the analysis of the work must be translated into a physical
structure of windows, pages, dialog boxes, and so on, along with ways to

Enter Text HyperlinkButton

FIGURE 4.6 The controls of a user interface are signifiers for actions

c04 19 August 2011; 15:49:2

122 DESIGNING VISUAL INTERACTIONS

navigate between them. (Note that Web applications refer to a physical
interaction space—a container of content or controls—as a “page,” and
desktop applications refer to these spaces with terms such as “windows” or
“dialog boxes.” We will refer to all kinds of containers simply as pages.)
Various interface schemes for doing this are discussed in the upcoming “Visual
Interfaces” section. Visualizations communicate information using graphical
representations. Examples of visualizations include charts, diagrams, tables,
guides, directories, and maps. Graphics (Wilkinson, 2005) are the visual
representations of graphs derived from statistical data. Visualizations and
graphics may both have visual interfaces that allow the user to interact with the
abstract or quantitative data they represent. (Note that “graphic design” is used
to describe the art of communication used to create visual messages—
advertising—that educate, inform, promote, and persuade people to buy
products. The principles of graphic design are used in visual interfaces and in
graphical design.)

The physical design of visual systems that combine visual interfaces with
visualizations and graphics must consider several dimensions to know how the
users will interpret the messages communicated by the system. The first three
subsections discuss the guidelines, principles, and design patterns of visual
interfaces, visualizations, and graphics. Each subsection includes comments
about perception and cognition that constrain the design. The final section
discusses real-time constraints imposed by cognitive and perceptual processes.

4.3.1 Visual Interfaces

Visual interfaces organize content and tools so that users can efficiently do the
activities or tasks that the system is being designed to support. When we open
an application, the first thing we perceive is its visual interface. One of the first
steps that must be taken is to translate the interface architecture into a physical
structure of pages.

Organizing the Application. Many different physical structures can be
designed, but those commonly found in general applications are variations of
one of the three schemes shown in Fig. 4.7. Multiple and tiled windows are
found in desktop applications, while single-paged windows are found in
browser-based applications.

In choosing a scheme, it is important to be aware of the limitations imposed
by human attention. The brain has several mechanisms for attention and can
make only a handful of items available to cognitive processes (such as problem
solving). These items are indexed by our perceptual systems and whatever long-
term memories have been activated by the focus of attention. After our
attention shifts, this set is replaced by another, and the first set is forgotten.
Tasks may require that something in one panel be referred to while content in
another panel is modified or that a set of objects in one panel be compared with
the objects in another. Interrupting the focus by requiring the user’s attention

c04 19 August 2011; 15:49:2

4.3 VISUAL INTERACTION DESIGN 123

to move elsewhere disrupts the flow of thought. The data and the kinds of tasks
to be performed determine which physical structure to use.

Navigation. In complex applications, not all the functionality can be
accessed from a single page. The interaction spaces of the application may be
allocated to a collection of pages with various tools and views of the underlying
information or data on each page as shown in Fig. 4.8. But the user must know
how to get to where they need to be to perform the sequence of actions that
pertain to the goal—and how to get back. This is the problem of navigation
that requires organization and navigational aids to allow users to move
between interaction spaces.

Navigation has a cognitive cost. Each transition to a new page is a switch in
context requiring the scanning of that page to understand its structure, content,
and exits. The ideal is to not require navigation—to have all the content and
tools directly accessible—but the trade-off is complexity. And, in many cases,
direct accessibility is not possible because there is simply too much information
(or too many different actions) to design them to be all in one physical space.
Other constraints result from perception and cognition.

The visual system is cued by the goals of the task. We notice things that
match the goal and often don’t “see”—become aware of—what is irrelevant.
Further, the brain stores information in long-term memory by activating large
numbers of neurons that effectively distributes what is being perceived as
patterns across memory. Recognition is easier and faster than recall. When we
see something familiar, it activates overlapping patterns with what has already
been stored, which allows for quicker access to long-term memory. Recall

Multiple WindowsTiled Windows

Single Window Paging

FIGURE 4.7 Different schema for physical structures of a user interface

c04 19 August 2011; 15:49:2

124 DESIGNING VISUAL INTERACTIONS

results in a slower search through memory. We memorize and prefer familiar
paths that let us accomplish a task, even if there are other ways it could be done
more efficiently.

Designers use signage, maps, and clues to help users know what path
takes them to the place where the next required action can be performed and
to keep them from getting lost. Uniformly organized, consistently placed,
clear, unambiguous navigational signifiers act like highway signage (e.g., mile
markers on highways give an approximate location); and when decisions must
be made, overhead signs announce major intersections, and large, clearly
labeled exit signs provide the name of the town or number of the highway
you will be entering. The design of the interface architecture will already have
functionally structured the application so that related tasks are in the same
interaction space. In the mapping of the spaces to the physical structure,
the goals at each decision point must be kept in mind. Fig. 4.9 shows some
of the navigational signage for Gmail. The navigational structure is uniform
and remains constant throughout navigation. The global map provides clear
entry points to major activity areas of the application, and the local map
provides entry points to interaction spaces within an activity area. The
content—but not the placement—of the local map changes when moving
from “mail” to “contacts.”

Because of the cost of switching contexts, designers try to minimize the steps
in the path. The interaction architecture is critical in ensuring that common and
frequently performed tasks do not require movement through several interac-
tion spaces. In the local maps of the mail and contact interaction spaces of

FIGURE 4.8 A complex application structure that requires organization and naviga-

tional aids

c04 19 August 2011; 15:49:2

4.3 VISUAL INTERACTION DESIGN 125

Gmail, for example, a button is provided for the most frequently performed
tasks: “Compose Mail” (shown in Fig. 4.9) and “New Contact” (in the contact
interaction space that is not shown), respectively.

Organizing the Page. As was discussed in Chapter 2, more information is in
a scene—or a page in the context of an application—than can be perceived at
one time. The visual system uses various search strategies to sample and scan to
find what is relevant to the current goal. We perceive the fine detail of a page
only through the fovea, a very small region near the center of the retinal visual
field. The peripheral vision has such low resolution that its function is to
primarily provide cues that guide eye movements toward what is interesting:
motion, fuzzy shapes, brighter colors, or large features. The eye is optimized to
see structure, and designers exploit this to convey meaning, establish a sequence
for the eye to follow, and create focal points of interest. Page layout uses
techniques from graphic design to create a visual hierarchy of the content that
gives weight to what is most important and a visual flow that leads the user
through the page.

A visual hierarchy structures the content. The user should be able to infer the
visual hierarchy of a page from its layout. Titles should be apparent. The most
important content should be prominent, and less important content should
appear as secondary regions. Techniques that can be used to create a visual
hierarchy include the following, some of which are illustrated in Fig. 4.10:

� Upper-left or upper-right corner. The eye will begin to scan a page in the
same place that it does for reading the text of the primary language. In
Western cultures, the scan will begin in the upper-left corner.

Clues about which interaction space user is in: color and weight of font

Global map

Local map

Most frequent task

FIGURE 4.9 Navigational signage for Gmail

c04 19 August 2011; 15:49:2

126 DESIGNING VISUAL INTERACTIONS

� White space. White space is an important element in constructing a
hierarchy, and its uses include separating regions or establishing hierar-
chical order, as shown in the example.

� Size and weight (boldness) of fonts. The font of more important informa-
tion is given a larger size or greater weight. In the example, “Mail” and
“Inbox” are emboldened to identify which application and which subset
of email threads are being viewed. “Send SMS,” and “Chat” are titles of
major sections.

� Contrasting colors for figure (the foreground) and ground (the back-
ground). In the example, the white ground and the gray figure (or blue if
being viewed in a Web browser) separates the navigational and search
areas from the content. A darker shade of gray is the ground for the email
content activity area. Lighter shades of gray separate the actions that can
be performed from the email headlines that comprise the content.

� Positioning. In the example, the large “Gmail” lettering placed in the
upper-left corner will be seen first in Western cultures. It informs the user
of the application in use, and it also ensures that the branding of the
application won’t be missed.

� Alignment. Alignment is used to show a set of related items. “Mail,”
“Contacts,” and “Tasks” are different activity areas, and “Inbox,” “Sent
Mail,” and so on are different subsets of email threads.

� Indentation. Indenting text implies that it is subordinate to what is above.
In Fig. 4.10, all the hyperlinks from “Mail” to “Deleted Items” are
indented to show their relationship to the major activity area for email as
opposed to texting (“Send SMS”) or chatting (“Chat”).

White space

Indentation

White space

White space

White space

White space Figure
Ground

FIGURE 4.10 Techniques for creating a visual hierarchy

c04 19 August 2011; 15:49:2

4.3 VISUAL INTERACTION DESIGN 127

Visual flow is designed to manipulate the path the eye takes as it scans the
page. A well-designed visual hierarchy incorporates focal points—graphical
features that emphasize important elements—that lead into secondary regions
of less important content. The design of focal points relies on the way the visual
system processes certain graphical images. Recall from Chapter 2 that when
attention is not focused on something specific, visual features with certain
properties appear to “pop out” given the right conditions. Graphic designers
use visual properties—lightness, color, orientation, texture, shape, size, and
motion—combined with other techniques to attract the eye. (Well-designed
advertising in high-quality publications provides good examples of the techni-
ques.) The techniques include the use of white space, contrasts of color and
lightness of shapes or weight and size of fonts, and converging lines or hard
edges. Your gaze follows the focal points from strongest to weakest. The focal
points can be overridden by the goal of the current task, the meaning in content
we see, or the natural tendency to scan a page as if we were reading text.
Fig. 4.11 shows possible visual flows for composing an email (a), and entering a
search query for an email (b). The large, appropriately labeled buttons provide
a focal point for actions that can be performed.

Visually grouping and aligning content elements indicate that they are
related to each other. As shown in Fig. 4.12, four methods based on the
Gestalt principles (discussed in Chapter 2) of perceptual organization are used
to convey which content elements are related: similarity, proximity, continuity,
and closure. In all of the methods except the one using similarity, the use of
white space provides clarity by separating the clusters of related items. These

(a)

(b)

FIGURE 4.11 Possible visual flows for composing or searching mail

c04 19 August 2011; 15:49:2

128 DESIGNING VISUAL INTERACTIONS

methods are used in Gmail, for example, to group the set of buttons that
provide ways to manipulate the email threads, a set of related hyperlinks
that signify folders, and the search button with its query input field.

Organizing the Actions. The design of the interface so far has focused on
how to create the physical structure for interaction spaces and how to present
the content so that it is informative and can be quickly perceived. But to
make the system fully interactive, it must be capable of taking input from the
user. Although the interaction style could have been one or more of several
different types (instructing, conversing, manipulating, and exploring), we will
focus on what are called direct manipulation interfaces that are prevalent in
advanced graphical user interfaces.

The first method by which we can invoke actions in the system is through
visible things in the interface which we will call visible objects. Visible objects
are controls and visual representations of digital objects that are capable of
providing feedback when they are pointed at or prodded (clicked) by the
mouse. The controls and visible objects are signifiers of actions that the system
is capable of performing. But when the user first looks at an interface without
moving the mouse, such as Gmail’s interface in Fig. 4.13, how are the action
signifiers discovered? And what do they do? Some of the possible action
signifiers in the Gmail interface have been enclosed in black rectangles, and all
but one represents an action.

Some signifiers are recognized immediately by convention and experience.
Users have learned that buttons (rounded rectangles), hyperlinks (underlined

Similarity Proximity

Continuity Closure

FIGURE 4.12 The four Gestalt principles used for grouping and alignment

c04 19 August 2011; 15:49:2

4.3 VISUAL INTERACTION DESIGN 129

text), and menus (buttons that contain upside-down triangles) are actions.
These are easily identified in the Gmail interface. Style guides written for
application developers for each computing platform prescribe the visual
appearance and behavior of a standard set of controls. The controls in these
guides should be the first source considered as signifiers of actions because the
way they look and how they behave will be familiar to users.

Controls or visible objects are also designed to change appearance when the
mouse rolls over the region in which they are drawn or if the state of the digital
object changes when the action is invoked. In the Gmail interface, the borders
of buttons are darkened, the background of the folder labels changes color, and
for all controls but the checkboxes in the email, the mouse pointer symbol
changes from an arrow to a hand. Selecting an email thread by clicking on the
checkbox results in a change in color of the background for that email thread.
The star action is an exception to these guidelines. It provides no visible
feedback unless the user clicks the star. There is no way to tell it apart from the
chevron (“.. ”) in the email thread headline which is not an action.

The visible action signifiers—buttons, hyperlinks, and menu items—provide
a way to learn the actions available in the system. Users will often explore
these to see what is available. There are also invisible actions that cannot be
discovered: combinations of keystrokes, drag-and-drop operations, and
double-clicking or right-clicking on visible objects. Users often expect these
actions and have learned them from outside the interface.

A variety of organizational strategies are used to group actions. These
include menu bars, tools bars, and ribbons. The controls in toolbars, such as
the one from Gmail shown in Fig. 4.14a, are always visible and directly
accessible. In complex systems, when the number of actions is large enough that

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~

FIGURE 4.13 The possible action signifiers in a Gmail interface

c04 19 August 2011; 15:49:2

130 DESIGNING VISUAL INTERACTIONS

menu bars become cumbersome and toolbars lack sufficient physical space to
display all the controls, other organizational strategies are required. A ribbon,
as shown in Fig. 4.14b, is an approach that combines aspects of the toolbar
with menu bars. Groups of related actions commonly used together are
available as a toolbar, but the toolbar can be switched to another for a
different set of controls.

4.3.2 Visualizations

“All communications between the readers of an image and the makers of an image

must now take place on a two-dimensional surface. Escaping this flatland is the

essential task of envisioning information—for all the interesting worlds (physical,

biological, imaginary, human) that we seek to understand are inevitably and

happily multivariate. Not flatlands.” (Tufte, 1990)

If the first challenge of designing interactive visualizations of complex
information is how to project multidimensional abstract data into a two-
dimensional space without losing its richness, the second is how to visually
compress or find our way through the quantity—millions of points—of data.
The third challenge is to effectively link it to the growing amount of related
information.

The information being visualized is abstract. It is often categorical or
structured data that contain attributes or properties about abstract objects
that have been modeled such as biological genes, chemical compounds,
documents, or financial transactions. From these data objects, secondary
data can be derived that is used in data mining to cluster, classify, or find
associations or other relationships. For example, descriptors can be derived
from chemical compounds that summarize the number of ring systems, chains
of various types of atoms, or other chemical or topological features in each

(a)

(b)

FIGURE 4.14 A simple toolbar from Gmail and a ribbon from Microsoft Words

c04 19 August 2011; 15:49:3

4.3 VISUAL INTERACTION DESIGN 131

compound. The descriptors are used in clustering algorithms to group similar
compounds. The emphasis in visual analytics is often on exploration: the
discovery of patterns, relationships, clusters, outliers, trends, or gaps. The goal
of visualization design is not to eliminate complexity but to present and interact
with uncluttered images of the data where complexity can be seen alongside the
detail and where comparisons can be made.

One place to learn about visualization design is from the past. Information
design for presentations on paper or in print has been evolving since perspective
drawing was invented as a way to draw physical objects. It has given rise to the
following methods (Tufte, 1990) that are a starting point for thinking about
how to present dense, complex, multidimensional information:

� Micro/macro. Micro/macro drawings use a design strategy where fine
detail is added not only so it can be seen but also so it can be used to form
the overall structure as shown in the 1739 Bretez-Turgot Plan de Paris.
The detailed map of Paris, shown in Fig. 4.15, was drawn as 20 sheets.
When a sheet is viewed from a distance, the detail blurs and becomes part
of the texture of larger surfaces as shown in Fig. 4.16. But up close, as

FIGURE 4.15 The 20 sheets of the Bretez-Turgot Plan de Paris

c04 19 August 2011; 15:49:3

132 DESIGNING VISUAL INTERACTIONS

shown in Fig. 4.17, the details of each building and its immediate
neighborhood can be seen: architecture, doors and windows, nearby
buildings, and street names. The complexity is not eliminated but is
controlled by organizing the information into multiple layers of context.
In addition to detail becoming texture, labeling has been added to the
streets, rivers, and even the roof of a hotel building to provide landmarks.
Just as the design of the interface architecture brings together related tasks
to avoid the cognitive costs of interrupting the flow of a task, allowing
detail to be seen in its larger context avoids the cost of switching to a
different image. By not stripping the complexity from the presentation,
the viewer, rather than the designer, decides what information is impor-
tant to see.

� Layering and separation. This method controls complexity by visually
separating the data into strata. We have already seen one example of layer
and separation through the labeling of streets, building, and rivers in the
Plan de Paris. Another example is to use color, such as red and black, to
separate annotations from data. Shape, value (light or dark), size, and
color can be used to separate and layer information. Layering can be
difficult to achieve because of unintended interaction between the

FIGURE 4.16 Sheet 15 from the Bretez-Turgot Plan de Paris

c04 19 August 2011; 15:49:3

4.3 VISUAL INTERACTION DESIGN 133

graphical elements. The relationships must be in the right proportions and
consistent with the data being represented.

� Small multiples. Small multiples are repetitions of the same design
structure over slices of the data. Fig. 4.18 shows an example of a small
multiple for unemployment rates in specific industries over 10 years. After
the first element is understood, the remaining elements can be quickly
read. The small multiples show all the data and make it easy to compare
changes across elements without switching contexts. How much detail to
include depends on the level at which the data is being viewed.

Interactive visualizations developed since the advent of high-performance
computer graphics have extended the methods in the preceding list in different
or new ways. These enable users to do the following:

� See information at multiple levels of detail. A variety of interface schemes
has been developed to provide capabilities similar to the micro/macro

FIGURE 4.17 A section of a sheet from the Bretez-Turgot Plan de Paris

c04 19 August 2011; 15:49:3

134 DESIGNING VISUAL INTERACTIONS

readings of the data. These are discussed later in this section. Interaction
techniques can also be used to provide additional information. For
example, datatips can provide a quick summary about a visible object
as the mouse pointer rolls over the object.

� See various relationships between the items. Relationships can be repre-
sented using the Gestalt principles of similarity, closure, proximity, and
continuity, or by connected lines. Immediate highlighting of visible objects
can be used to identify individual objects among many that have been
selected by some criteria.

� Filter irrelevant information. Dynamic queries allow visible objects being
displayed to be hidden or visibly changed in response to the movement of
controls—sliders or checkboxes—that change the parameters of a filter
action. The immediate feedback provided within a few milliseconds allows
users to rapidly sift through information. Data brushing allows visible
objects selected in one view to simultaneously be highlighted in other
views that are linked to that view.

� Create subsets of the information. Visible objects can be selected, extracted,
and exported into other applications or saved as files.

� Sort or rearrange the information. Specific attributes may be used to sort
rows or columns in a table or rearrange the layout of visible objects. Sorting
alphabetically, numerically, by date or time, or categorically are common.
The use of statistical and data-mining algorithms, such as clustering by
different distance metrics, may also be used to rearrange the data in a table.

The abstract stages of the design process for visualizations are similar to
those described previously for user interfaces: understand the users, the nature
of the exploration tasks they will perform, and the data. Designing the physical

Agriculture

Construction

Finance

Information

FIGURE 4.18 Example of small multiples of unemployment rate by industry over

10 years

c04 19 August 2011; 15:49:4

4.3 VISUAL INTERACTION DESIGN 135

structure of an interactive visualization is often guided by a well-known
mantra: “Overview first, zoom and filter, then details on demand.” (Shneider-
man & Plaisant, 2010) Several interface schemes incorporate the mantra and
allow users to work with and move between focused and contextual views of a
dataset. Some of these separate the views spatially into panels as in the tiled
windows scheme described for user interfaces. Others separate them temporally
through animated transitions. These schemes include the following (Cockburn
et al., 2008):

� Overview1 detail (spatial separation). This scheme simultaneously shows
an overview and a detailed view of the underlying information space. The
user interacts separately with each view, but the views are coordinated so
that what changes in one is reflected in the other. The overview provides
context for what is seen in the detail view. Google Mapst is an example of
this structure as shown in Fig. 4.19.

� Zooming (temporal separation). This scheme uses a single window that
allows the user to zoom in on the dataset. Zooming controls increase or
decrease the levels of scale, and the resulting changes are done in place so
the views cannot be seen simultaneously. Google Maps with the overview
insert hidden is also an example of this approach.

� Focus1 context. This scheme integrates the focus and contextual views
into a single seamless view. All of the content is visible, but the area within
or near the focus is distorted to provide more detail as shown in Fig. 4.20.

FIGURE 4.19 GoogleMaps provides overview1 detail and zooming interface schemes

c04 19 August 2011; 15:49:4

136 DESIGNING VISUAL INTERACTIONS

4.3.3 Graphics

In Chapter 3, the discussion of graphical design focused on how the choice of
graphic schemas and the mappings of graph dimensions to variables affected
the ability to create an image of the graphic that could be efficiently “read.”
Programming or scripting languages and libraries such as ggplot2 may be
useful without knowing much more about the design of a graphic. Defaults
provide most of what is needed to generate reasonably good graphics that can
be used for exploration. However, grammar-based toolkits such as Protovis
expect the designer to compose the elements of a visualization. Much more
must be understood about design if the graphics are to communicate the data
clearly, efficiently, and honestly. Quantitative graphics are visualizations that
have been evolving since the 1700s. This section touches on only a few of the
important principles and ideas that have been discussed elsewhere about

FIGURE 4.20 Focus1 context interface schemes distort to show detail in context.

(Fisheye Menu courtesy of HCIL at University of Maryland: www.cs.umd.edu/hcil/

fisheyemenu)

c04 19 August 2011; 15:49:4

4.3 VISUAL INTERACTION DESIGN 137

graphical design. The “Further Reading” section refers to other books and
articles on the subject. We assume that the graphics will be designed for
interactive exploration rather than for publication and that the design may
evolve in the prototypying stage.

Displaying Data. Tufte’s fundamental principle is “above all else, show the
data.” A graphic is a drawing about numbers. Even if complex, it is worth
studying carefully if it allows us to see something in the data that would be
harder or impossible to see without it. It should portray the data clearly and
accurately, invite comparisons, and contain information that is relevant to the
task. The form should be compatible with the underlying data. For example, a
reference curve should not be used for integral or categorical data. As in micro/
macro visualizations, the data should be accessible at several levels from
overviews to fine detail.

The graphic in Fig. 4.21 is a scatterplot annotated with terminology that will
be used in the following discussion. Tufte defines data-ink as “the nonerasable
core of a graphic, the nonredundant ink arranged in response to variation
in the numbers represented.” The data-ink ratio is the proportion of data-ink to
the total ink used in the graphic.

data-ink ratio 5 amount of data-ink / amount of total-ink

One of Tufte’s principles is to maximize the data-ink ratio. (Note that more
recent research on graphic reading argues that this is not always the case—see
Kosslyn 2006; p. 13). Because data-ink is essential, to increase the ratio, we
must erase what is not essential: nondata-ink or redundant data-ink. An example

5

0

10

15 35 55 75 9525 45 65 85

Fr
eq

ue
nc

y

Rating

Axis

Reference curve

Data-ink

Nondata-ink

Nondata-ink

FIGURE 4.21 A scatterplot annotated with nomenclature

c04 19 August 2011; 15:49:4

138 DESIGNING VISUAL INTERACTIONS

of redundant data-ink is a histogram bar that has its height labeled just above
the bar. The number it represents is redundantly represented in at least two
ways: by the height of the bar and by the label. A designer of graphics, like an
editor of text, should remove what is unnecessary. The question should be
asked of whatever is drawn: does this provide new information?

For clarity, the content area should be kept free of clutter. Too much
information can make it difficult to see and understand the data. Labels should
not interfere with the marks. Keys and legends should be kept outside the axes,
and the marks should not overlap the axes.

Displaying Nondata: Scales and Grids. Grids, axes, reference curves and
lines, and other accoutrements are intended to aid understanding. They are not
the subject of the graphic and should be given less importance visually by being
drawn in muted colors with thin lines as shown in Fig. 4.22b or, even better,
erased whenever possible.

There are a number of guidelines on the use of scales, including the following:

� The minimum and maximum limits set on the scales should be chosen so
that the marks fill the content area as much as possible. If multiple panels
are being used to compare data, as in small multiples, both horizontal and
vertical axes should be consistent. The design structure of each panel
should not change. (Cleveland 1994)

� Use understandable rounded numbers for tick marks (Unwin, 2008). Nice
numbers are familiar numbers learned in arithmetic that make mental
calculations easier to do. A nice scale is an interval scale of numbers where
the differences of the first two numbers in the scale are members of the set
{ . . . , .1, .2, .5, 1, 2, 5, . . . } (Wilkinson 2005). The following are all nice
scales that can be used to label tick marks when appropriate:

{ . . . 1, 2, 3, 4, 5 . . . }
{ . . . 2, 4, 6, 8, 10 . . . }

5

0

10

15 35 55 75 9525 45 65 85

Fr
eq

ue
nc

y

5

0

10

15 35 55 75 9525 45 65 85

Fr
eq

ue
nc

y

Rating

(a) (b)

Rating

FIGURE 4.22 Creating a visual hierarchy to emphasize the data

c04 19 August 2011; 15:49:4

4.3 VISUAL INTERACTION DESIGN 139

{ . . . 0, 50, 100, . . . }
{ . . . 0.001, 0.003, 0.005, 0.007 . . . }

� There are times when it is helpful to have different scales on top and
bottom, or left and right.

� Showing data on a logarithmic scale is useful when the range of values is
large, but the axis label should call attention to the use of a nonlinear
scale.

� Not including zero does not necessarily distort the information (Cleve-
land, 1994), although this is a subject of debate.

� Avoid the scale breaks that are sometimes used in charts when there are
large gaps in the data values. The mind interprets uninterrupted space as
continuous, and it is difficult to perceive it otherwise. If a break is needed,
a different panel should be used.

Perceiving Graphics. To show the data, we must understand how we
perceive it. In a graphic, the numbers and nonnumeric values have been
translated into geometric objects with visual properties that have been posi-
tioned in two-dimensional space by some coordinate system or projection.
Exploration involves making comparisons: How much? How much change?
How much proportionally? How similar or different? The answers are inferred
from comparisons made of the geometric relationships of the objects and of
their visual properties: How long is this line, angle, or area? How much longer
is this line, angle, or size than that one? How much lighter is this color or
grayness from another? Is this point closer to this group of points or to that
group? What matters is not only the actual measurements on the physical
surface but also what is perceived. The following includes just a few of the
findings about perception relevant to design:

� We notice large perceptible differences. We discussed earlier how focal
points can be created to direct a user’s attention by using brighter colors
or larger features to visually emphasize certain elements. This emphasis
may be used to separate the data elements from the nondata elements—
such as grids, reference lines, and reference curves—and to draw attention
to what is important. Visual properties, however, are relative. It’s the
contrasts that matter.

� We can discriminate between two values of a visual property only when the
difference is proportionally large enough. For example, we can perceive a
difference between a line that is 25 cm and 26 cm long no better than we can
perceive a difference between a line that is 2.5 cm and 2.6 cm long.

� We group elements into units. The Gestalt principles described in a
previous section also apply to the graphical elements. Spatial proximity,
in particular, is a powerful way to emphasize relationships between data
entities. But if grouping is not intended, the perceptual tendency to

c04 19 August 2011; 15:49:4

140 DESIGNING VISUAL INTERACTIONS

structure the elements can make it difficult to see other patterns in the data
or make it easy to see patterns that don’t exist. The Gestalt principles have
been effectively used in visualizations that combine a scatterplot graphic
with dynamic query controls. The controls are used to filter the data.
Grouping by proximity allows outliers to be seen in the data, and
grouping by similarity (usually color) is used to find related items.

� When we map real numbers of a linear scale to values of a visual property
(the physically measured values such as the length of a line or some value
in a color scale), what we perceive (the sensation) is on a nonlinear scale.
The perceived scale is the actual scale raised to some power. We estimate
fairly accurately the length of a line (the power is between 0.9 and 1.1). We
underestimate the area of a shape such as a square, rectangle, or circle
(power is 0.6 to 0.9), and underestimate still more the volume of a solid
(power is 0.5 to 0.8). (Ward et al., 2010)

� We can perceive individual marks immediately under certain conditions.
This phenomenon was discussed in Chapter 2 in the section on distributed
attention. For example, in a scatterplot, a few red points among a large
number of gray points will be immediately noticed. The points appear to
“pop out” with no cognitive effort. The degree of contrast of a specific
feature in pop-out points and the other points give rise to the result. Color,
brightness, orientation, size, motion, and stereoscopic depth can all be used
to produce a pop-out effect. This perceptualmechanismhas been effectively
used in heatmaps. Heatmaps are 2-D color tables with a bipolar color scale.
For each cell of the table, a lower value will be mapped to a shade of one
color and a higher value to the shade of the other color. Blocks of cells of
similar color and intensity immediately stand out.

Graphical Integrity. For a graphic to have integrity, its visual representation
must be consistent with the data. The design choices establish visual expecta-
tions for what is represented by the physical space and the marks in it. The
design of each graphic should be uniform, invariant, and clearly labeled. The
scales used for the content area should have regular intervals without breaks.
The mappings of data variables to visual variables should remain constant for
all marks in the graphic. Although perception can affect how the graphic is
interpreted, what is physically measured on the surface of the graphic should at
least be in direct proportion to the values in the data. More is more—a longer
line means a greater magnitude of the value of some variable—and less is less.
The variation of a reference curve in the graphic should correspond with a
variation in the magnitude of the variables it represents. All the data that has
been selected by the user should be shown so that comparisons can be made in
context.

Aesthetics. The elements and principles that make a graphic pleasing are
elusive. Within any of the fields of functional design—graphic design, industrial

c04 19 August 2011; 15:49:4

4.3 VISUAL INTERACTION DESIGN 141

design, architecture, visual interface design—certain words are used to describe
the goal. For elegance and simplicity: scale, contrast, and proportion are used;
for organization and visual structure: distinctiveness, integrity, comprehensive-
ness, and appropriateness are used. For each of these attributes, there are
principles, techniques, and many examples to study. But graphics for data
exploration is at its finest when it has the visual representation best suited for
interacting with some specific data. The elegance of Gmail is in the way it
supports the fundamental tasks it was designed to support.

Graphics or Tables? Graphics are not always appropriate. Interactive data
tables or spreadsheets are the best way to show exact numerical values when the
datasets are not too large. Data tables or spreadsheets provide ways to filter,
sort, and perform various calculations on the numbers. Tables may also be
preferred when a dataset consists of highly labeled numbers.

4.3.4 Real-Time Constraints

Interactive systems must be responsive. Responsiveness, unlike performance, is
measured on a human time scale. The time it takes to physically react, to notice
a lag in the system’s response, to keep our attention from drifting to something
else, or to wait for a response to an email impose design constraints. A system is
responsive if it provides what we need within the expected time constraint.
Table 4.5 shows a generalized threshold of time constraints that are important
for interaction design (Johnson, 2010). Early stage perception takes about 10
milliseconds. Above 100 milliseconds, we begin to lose the sense of cause and
effect between an action we take and the reaction of the system. The longest
time we expect there to be a lull in a conversation is 1 second. If the system has

TABLE 4.5 Human Time Constraints for Interaction (Based on Johnson, 2010,

p. 161)

Threshold Type of Interaction

0.01 second feedback for stylus-based input with electronic ink on display

0.1 second feedback for hand-eye coordination (pointer movement, resizing,

scrolling, drawing with mouse, etc.)

feedback for click on button or link

show “busy” indicators

longest interval between animation frames

1 second show progress indicators

finish various operations (e.g., open window, auto-save, etc.)

time to wait before next visible response

10 seconds complete one action of a multisequence action (e.g., an edit in a text

editor)

complete user input to an operation

c04 19 August 2011; 15:49:4

142 DESIGNING VISUAL INTERACTIONS

not responded, we wonder why and start to become impatient. At 10 seconds,
we will have completed an action in a multisequence action. To design
interaction that flows, these constraints must be met as appropriate for each
action the user will take.

4.4 SUMMARY

The complexity of data-intensive systems is continually increasing. But even a
system with a complex visual interface can be operationally simple if its
structure is logical and well organized, and it makes interaction efficient. To
help designers better understand the mental processes of users as they inter-
acted with computational tools, Donald Norman devised a theoretical cogni-
tive framework of seven stages he called action theory. From a high-level goal,
users form an intention, which they break into sequences of actions that they
perform. As they perform each action, users evaluate and interpret the results.
A system is difficult to use if it requires too many action steps or the interface is
difficult to interpret.

Good design begins with a thorough understanding of the users, their work,
and their environment and is done in four stages:

� Analysis. Design decisions must be based on facts and details elicited from
discussions with the users and observations of the work. These are used to
create models of the work environment, the work, and the resources
required to do the work.

� Design. Design begins by developing an abstract conceptual model. From
this, an interface architecture is designed that groups related actions into
interaction spaces and shows how the user will navigate between these
spaces. The visual interface and interactions are designed from the various
analysis and design models.

� Prototyping. Prototypes provide a way to envision and experience how the
new system will affect work, to explore technical alternatives, and to
discuss flaws in the design and specific ideas for how it might be improved.
Prototypes should be quick and inexpensive to build and relatively easy to
change.

� Evaluation. Evaluation is intended to provoke discussion about better
ways to structure the system, or to uncover tasks that aren’t necessary or
may be more or less important than initially thought.

Visual interfaces organize content and tools so that users can efficiently do
the activities or tasks that the system is being designed to support. The
following steps are required to design a visual interface:

� Organize the application. Complex applications require organization and
navigational aids that allow users to move between interaction spaces.

c04 19 August 2011; 15:49:5

4.4 SUMMARY 143

Designers use signage, maps, and clues to help users know what path takes
them to the place where the next required action can be performed and to
keep them from getting lost.

� Organize the page. Page layout uses techniques to create a visual hierarchy
of the content that gives weight to what is most important and a visual
flow that leads the user through the page. A visual hierarchy structures the
content that incorporates focal points that lead into secondary regions of
less important content. Visual flow is designed to manipulate the path the
eye takes as it scans the page.

� Organize the actions. Actions may be visible or invisible. Visible actions
must provide visual feedback when they are manipulated by the user.
Invisible actions are invoked through combinations of keystrokes, drag-and-
drop operations, and double-clicking or right-clicking on visible objects.

Designing the physical structure of interactive visualizations is often guided
by a well-known mantra: “Overview first, zoom and filter, then details on
demand.” Several interface schemes incorporate the mantra: overview1 detail
(spatial separation), zooming (temporal separation), and focus1 context.
Interactive techniques such as filtering, creating subsets of the information,
or sorting and rearranging the information provide support for creating
different views of the information.

The fundamental principle of displaying graphics is “show the data.”
Graphics should portray the data clearly and accurately, allow the data to be
compared, and contain information that is relevant to the task.

Interactive systems must be responsive. The time it takes to physically react
imposes design constraints that vary by task. The real-time constraints that
affect perception and cognition range from 10 milliseconds to upward of 10
seconds. A system is responsive if it provides what we need within the expected
time constraint.

4.5 FURTHER READING

The following are three well-known Web sites for interaction design and
usability:

� The Nielsen Norman Group (www.nngroup.com/)

� Tog’s First Principles of Interaction Design (www.asktog.com/)

� Jakob Nielsen on usability (www.useit.com/)

Design Methodologies. The contextual design methodology is fully
described along with plenty of practical advice in Contextual Design: Defining
Customer-Centered Systems (Holtzblatt & Beyer, 1998). Variations of this
methodology tailored for smaller projects with more focused goals have been

c04 19 August 2011; 15:49:5

144 DESIGNING VISUAL INTERACTIONS

further described in Rapid Contextual Design: A How-To Guide to Key
Techniques for User-Centered Design (Holtzblatt et al., 2005). A methodology
with an emphasis on usage-centered rather than user-centered design can be
found in Software for Use: A Practical Guide to the Models and Methods of
Usage-Centered Design (Constantine & Lockwood, 1999).

We have found, particularly for domains that are not well understood, that
by working through a small set of core tasks and functions to be supported and
combining it with low-fidelity prototyping, the designer can more quickly learn
the domain. A deeper understanding of the domain makes it is easier to make
decisions about how to expand the scope of the effort. Kuniavsky (2003)
discusses user research methodologies used to inform the design of the user
experience. Nielsen (1993) describes the importance of incorporating a usability
engineering lifecycle throughout the design of software products. And, Yaffa
(2007) describes the effort involved in the design and usability assessment of
something as apparently straightforward as designing fonts for highway signs.

Visual Interfaces and Interactive Design. Designing Visual Interfaces
(Mullet & Sano, 1995) explains how graphic design principles and techniques
are used to design visual interfaces. Designing Interfaces (Tidwell, 2005)
discusses some of the same principles but provides more detail of interest to
software developers. The book contains concrete strategies and design patterns
for many aspects of visual interface design. Cockburn et al. (2008) survey the
major interaction techniques for user interfaces such as overview1 detail,
zooming, and focus1 context, while Fekete and Plaisant (2002) discuss the
challenges of interaction design when applied to large datasets of more than a
million data points.

Visualization. There are two good places to start to learn more about
visualization. The first is Readings in Information Visualization (Card et al.,
1999), which is a collection of papers that cover a variety of topics on
visualization. The second is Envisioning Information (Tufte, 1990), which
describes general principles used in the design, editing, and analysis of data
representations.

Graphics. An introduction to some of the issues in graphics design is Good
Graphics? (Unwin, 2008). Texts on quantitative graphics include works by
Bertin (1983), Cleveland (1993), Kosslyn (2006), Theus & Urbanek (2008),
Tufte (1983), Wainer (1997, 2005), and Wilkinson (2005). Unwin et al. (2006)
discuss issues related to large datasets.

c04 19 August 2011; 15:49:5

4.5 FURTHER READING 145

CHAPTER 5

HANDS-ON: CREATING INTERACTIVE
VISUALIZATIONS WITH PROTOVIS

5.1 USING PROTOVIS

This chapter reviews the JavaScript programming language Protovis. It walks
through the basic elements of the language and illustrates how to put the pieces
together to generate useful interactive data visualizations to be displayed in a
Web browser.

5.1.1 Overview

Data visualizations are generated in a number of ways. One option is to use a
drawing package such as Adobe Illustrator or Microsofts Visio to manually
draw the different elements of the graphic, such as the bars to represent
frequency or axes to document the graphic’s scale. This option provides a
flexible approach to create a single static graphic. The data underpinning the
graphic must be manually mapped onto the drawing objects (such as bar or pie
chart slices). This approach can be time-consuming and must be repeated for
every visualization created. Simple data-analysis tools, including Microsoft
Excel and Google spreadsheets, provide a series of ways to create plots directly
from tabular data; however, the amount of control over the individual
visualizations is limited. More sophisticated statistical analysis and charting

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

146

c05 19 August 2011; 9:37:33

tools such as JMPs are available, but again, they create a fixed series of
visualizations. A third option is to use a computer programming language such
as Javat that includes libraries to create graphical objects such as Java 2D.
This offers a flexible approach to generating customized and interactive
visualizations and, when implemented with reuse in mind, provides a solution
to use over again with different datasets. The major drawback is the time
necessary to learn a programming language as well as to design, implement,
and test such a solution.

Because none of these approaches provide a practical option for designers of
data visualizations to easily create customized and interactive plots or graphics,
a team at Stanford developed the Protovis toolkit (Heer & Bostock, 2010). This
JavaScript library provides control over the low-level marks of a graphic. Many
types of visualizations can then be created by combining these marks. Although
the toolkit is a JavaScript library that requires some understanding of
programming concepts, the burden is considerably lower than with other
programming languages. And because it is designed specifically for creating
data visualizations, Protovis is more focused on the implementation of
interactive graphics. This lower entry level means that the toolkit can be used
by data-visualization designers in creating and deploying visualizations on the
Web. It is possible to generate a variety of interactive graphics in Protovis, and
Fig. 5.1 provides an illustration of some of the visualizations that can be
implemented quickly and easily.

5.1.2 Getting Started

Protovis is a JavaScript library for creating visualizations to be displayed
within a Web browser. To create the visualizations in this chapter, you will need
to write JavaScript/Protovis code. Some of the code will be specific to Protovis,
and some will be general JavaScript code; however, all the code needs to be
included in an HTML file so that it can be displayed in a Web browser.
Therefore, you will need the following:

� A text editor, such as NotePad or WordPad, to create and edit the code.

� A Web browser to view the visualizations, which must be capable of
running HTML5 Canvas elements. Web browser options include Safari (4
and higher), Chrome, FireFox (3 and higher), Opera (9 and higher) and
Internet Explorer (9 and higher).

� The Protovis library, which can be downloaded from the Protovis Web site
(http://mbostock.github.com/protovis/)or thisbook’sWebsite (http://www.
makingsenseofdata.com/).Thebook’sWeb site also contains instructions for
downloading the library aswell as the examples in this chapter.Theversionof
the library that will be used in this chapter is 3.3.1 and is named protovis.js.

The following is a simple example of how to create a Web-based data
visualization using Protovis:

c05 19 August 2011; 9:37:33

5.1 USING PROTOVIS 147

F
IG

U
R
E

5
.1

E
x
a
m
p
le
s
o
f
d
if
fe
re
n
t
p
lo
ts

g
en
er
a
te
d
in

P
ro
to
v
is

c05 19 August 2011; 9:37:33

148 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

1. Download (and unzip) the Protovis library.

2. Create a folder in the same directory as the protovis.js file.

3. Type the following code into a text editor, and save the file as a text file
called simple-bar-chart.html in the folder you just created:

,html.
,head.
,script type="text/javascript" src="../protovis.js".

,/script.
,/head.
,body.
,script type="text/javascript+protovis">
new pv.Panel()

.width(150)

.height(100)
.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,0.8])
.bottom(0)
.width(20)
.height(function(d) d * 25)
.left(function() this.index * 30)

.root.render();
,/script.

,/body.
,/html.

4. Open the file simple-bar-chart.html in any of the supported Web browsers
(such as FireFox version 3 or above).

A simple bar chart should now be displayed in the Web browser, as shown in
Fig. 5.2.

The HTML page we just created contains JavaScript and Protovis code to
display this simple bar chart and HTML code to describe theWeb page. The code
contains a numberof different sections that are identifiedusing tags (phraseswithin
angled brackets), such as ,head. and ,/head. , which denotes the start
(,head.) and end (,/head.) of the header portion of the document.

There are a number of important sections within the HTML page. Between
the tags ,html. and ,/html. is the entireHTMLdocument describing the
contents of the Web page to be visualized. The tags ,head. and ,/head.
define where to find the Protovis library. In this example, the library is located in
the parent directory using the ../ notation. If the library is located in a different
directory or location on the Internet, the entire path or URL to the library should
be provided here. Also, if a different version of the Protovis library is used that
has a different name, the new library name should be reflected here as well.

Between the tags ,body. and ,/body. , the line ,script type=
"text/javascript1protovis". is used to denote that JavaScript is

c05 19 August 2011; 9:37:34

5.1 USING PROTOVIS 149

extended with specific Protovis syntax. The individual visualizations to be
created will be described in this part of the HTML file, which is terminated by
the corresponding ,/script. tag.

The examples shown throughout this chapter generally will not be presented
with the HTML wrapper that we just defined. The examples will only
show the JavaScript/Protovis code contained after ,script type=
"text/javascript1protovis". and before ,/script. portion
of the file.

5.1.3 Chapter Overview

This chapter provides a description of how to use Protovis to create customized
and interactive visualizations that run in a Web browser. The chapter outlines
some of the basic features of Protovis as well as elements of JavaScript
necessary to generate graphics, such as panels, marks, functions, and variables.
The basic display elements of the Protovis language are called marks. These
marks represent elements such as bars in a bar chart or dots in a scatterplot.
The marks are described along with examples of how to generate simple plots.
Marks can be coupled with techniques that customize the plots using colors and
label formatting as well as annotations such as axes and grid lines. A simple
plot, using a combination of these elements, will be reviewed. Commonly used
graphics to support the analysis of data tables will be discussed, including
frequency histograms, box-and-whisker plots, and scatterplots. The chapter
also summarizes how to generate more complex visualizations that are
constructed by combining elements, including the generation of stacked plots
and the use of small multiple views. Layouts to create networks and hierarchies
will also be summarized. Finally, the chapter briefly examines methods to

FIGURE 5.2 Viewing a simple bar chart in a Web browser written using Protovis

c05 19 August 2011; 9:37:34

150 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

interact directly with the plots, such as ways of obtaining more information on
portions of the graphic.

Each section of the chapter includes step-by-step examples of how to use the
elements discussed. A series of exercises are also included at the end of each
section to help you learn the Protovis language, with example implementations
for the exercises provided in the book’s appendices.

All the code used in this chapter and Appendix A is available from www
.makingsenseofdata.com. The chapter is not a comprehensive reference for
writing Protovis code; however, it provides an overview of the key concepts of
developing visualizations in Protovis and is best used in conjunction with the
Protovis API (Application Programming Interface) documentation, found at
(http://mbostock.github.com/protovis/jsdoc/).

5.1.4 Exercises

5.1.4.1. Follow the instructions in Section 5.1.2, and create the visualization as
shown in Fig. 5.2.

5.1.4.2. Change the array values from [1.4,2.3,2.7,1.6,0.8] to
[1.4,2.3,2.7,1.6,0.8,1.4], change the width from 150 to 180, and
save the file. Refresh the Web browser.

5.1.4.3. Change the function for the height field to function(d) d * 20, save
the file, and refresh the Web browser.

5.1.4.4. Replace the word bottom with top, save the file, and refresh the Web
browser.

5.1.4.5. Create a new label visualizationby removing theblockof code startingwith
.add(pv.Bar) and ending with .left(function() this.index * 30),
change the panel width to 100 and the panel height to 50, and add the four lines:

.add(pv.Label)
.top(20)
.left(10)
.text("Exercise example")

Save the file, and refresh the Web browser.

5.1.4.6. Change the left property value to 140, save the file, and refresh the
Web browser.

5.1.4.7. Change the width of the panel to 250, save the file, and refresh the
Web browser.

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL
FRAMEWORK

5.2.1 Overview

Protovis is designed to create flexible and interactive visualizations. These
graphics are composed of different graphical elements that describe the data,

c05 19 August 2011; 9:37:34

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL FRAMEWORK 151

such as bars within a bar chart, small circles (dots) within a scatterplot, and so
on. These elements provide a visualization of the underlying data, and, in
Protovis, they are called marks. Graphics are created by combining these
marks. These marks, as well as the canvas on which they are drawn (referred to
as a panel), form the foundation of Protovis.

Figure 5.3 illustrates how a complex plot (color-coded scatterplot matrix)
can be constructed using a series of low-level elements drawn on a matrix of
panels. Initially a series of panels is organized on the screen as a 3-by-3 grid,
shown in the left view. Those panels that will be used to display the scatterplots
are colored gray with a dark gray border (those panels not on the diagonal).
Axes and grid lines are drawn on selected panels as shown on the right view.
Each scatterplot is created using a series of dots, with x-locations and
y-locations of each of the dots calculated from the underlying data. The color
of the dot is based on the specific types of observation, again using the
underlying data. Axes labels are placed in the center on the diagonal panels,
and a legend is added to explain the color-coding. In this example, the dots on
the scatterplots are examples of Protovis marks, whereas the outer canvas and
the nine inner square canvases are examples of panels.

5.2.2 Panels

A panel is needed to display any data visualization using Protovis, and it is
defined using the expression pv.Panel. A panel is a rectangular canvas on
which the graphics are drawn. The primary canvas for any visualization is
referred to as the root panel, and data visualizations are created by adding

FIGURE 5.3 Construction of a plot using different graphical elements

c05 19 August 2011; 9:37:34

152 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

marks to this panel or embedding other panels within the root panel. These
panels are generated using the expression new pv.Panel(), and the height
and width of the panel are usually specified when it is created.

In this example, a new panel is created with the width of the panel set at 150
pixels and the height defined as 100 pixels.

new pv.Panel()
.width(150)
.height(100)

A number of properties are associated with the panel object, such as width
and height. These properties are set by assigning a value within the parentheses.
In this example, the width property is set to 150 pixels, and the height property
is set to 100 pixels. The property values can be retrieved by not including a
value between the parentheses. For example, .width()returns the value of the
panel’s width. Another commonly used property is the panel’s margins along
all four edges of the rectangle (called margin).

Different graphical elements, such as marks or other panels, can be added to
any panel using the method .add(). In the following code segment, a label
mark (pv.Label) is added to the panel. The text of the label is defined as
“LABEL TEXT”, and the properties used to position the label on the panel
(left and bottom) are both set to 50 pixels, that is, 50 pixels from the bottom of
the panel and 50 pixels from the left-hand side of the panel.

.add(pv.Label)
.text("LABEL TEXT")
.left(50)
.bottom(50)

The following piece of code shows how to create and display a Protovis
mark (in this case, a label) on a canvas (panel) within a browser. After all the
panels and marks have been described, the final statement is to display the root
panel containing the visualization. In this example, this root panel is displayed
on the screen with the phrase .root.render(). The code segment is
terminated with a semicolon (;).

new pv.Panel()
.width(150)
.height(100)

.add(pv.Label)
.text("LABEL TEXT")
.left(50)
.bottom(50)

.root.render();

c05 19 August 2011; 9:37:34

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL FRAMEWORK 153

Figure 5.4 shows the resulting Web browser launched using the code just
described.

5.2.3 Marks

Marks are added to panels to create the graphical elements. A series of slices
within a pie chart or a series of intersecting points in a line plot are examples of
marks. In Protovis, there is a defined concept (referred to as a class in
programming terminology) that describes these marks called pv.Mark.
Although this class is not used directly, it provides many of the common fields
and methods used by the individual marks that are displayed. For example, the
field or property bottom is used to specify the vertical position of a mark from
the lower margin of the panel on which it is drawn. All the individual marks
(bars, dots, lines, etc.) will use the bottom field to specify the vertical position
of the mark from the panel’s lower edge. Because pv.Mark is not used directly,
it is referred to as an abstract class, and all the concrete classes (those used
directly to create a graphical element) extend the pv.Mark class; that is, they
inherit the properties and methods from pv.Mark.

Each mark is usually associated with some underlying data. This data is
represented as a list of values or an array and is stored in a field called data. In
the following example, a bar chart is created by adding a bar mark (pv.Bar) to
a panel using the expressions .add(pv.Bar). An array of data is assigned
to the bar’s data field with the expression .data([1.2,4.3,2.3,5.2]).

FIGURE 5.4 Adding a label mark to a panel

c05 19 August 2011; 9:37:34

154 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

new pv.Panel()
.width(150)
.height(150)

.add(pv.Bar)
.data([1.2,4.3,2.3,5.2])

The array is comprised of four real numbers, each separated by a comma,
with the whole list enclosed within square brackets. Adding a bar mark to the
panel and assigning this array to the data field will result in the creation of four
bars, with each bar representing one of the data values in the list. Each value of
the array will be linked to some visual attribute of the bar to display the bar in a
meaningful manner. For example, the height of each bar could be proportional
to each of the data values.

In this example, the position of the bottom of each of the bars is set to 0,
which is at the bottom margin of the panel. The width of each individual bar is
set to 20 pixels. The height of each bar is calculated based on a function where
each value of the array is mapped onto a vertical position on the panel by
multiplying the data values by 25. The horizontal position of each bar from the
left margin is also set using a function based on the order of the data values in
the array. The use of functions will be described in more detail in the next
section.

new pv.Panel()
.width(150)
.height(150)

.add(pv.Bar)
.data([1.2,4.3,2.3,5.2])
.bottom(0)
.width(20)
.height(function(d) d * 25)
.left(function() this.index * 30)

.root.render();

This code results in the bar chart shown in Fig. 5.5.
Other important properties of marks include right and top, which are

optionally used to specify the position on the drawing canvas from the
corresponding margin. If the value of any of these positioning properties is
not set, Protovis assigns a sensible default value.

Other regularly used properties common to all marks include visible and
title. When the visible property is set to true, the mark will be displayed on
the canvas, whereas if it is set to false, the mark is not shown. This property has
many uses, such as to simplify a bar chart with labels describing each bar’s
value. With many data values to display, the plot may become crowded, and
the labels may be difficult to see. The visible property can be used to only
display those values above a specific threshold. The title property can be used to

c05 19 August 2011; 9:37:34

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL FRAMEWORK 155

assign a value for a tooltip, to be displayed when the mouse cursor hovers over
a specific element of a graphic.

All classes that are extensions of the pv.Mark class use these basic
properties as well as properties necessary for rendering and interacting with
the specific marks. For example, pv.Bar is a concrete class for displaying bars
as shown in the preceding example, and it extends pv.Mark. The class reuses
the eight properties associated with pv.Mark and also makes use of specific
properties necessary for rendering and interacting with bars such as a property
to specify the width of a bar (width).

Many concrete mark classes are used in Protovis, including bar, dot, line,
area, and wedge classes, as shown in Fig. 5.6. Section 5.3 will review these

FIGURE 5.5 Adding marks (pv.Bar) to a panel

FIGURE 5.6 Illustration of a number of marks used in Protovis

c05 19 August 2011; 9:37:34

156 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

marks in detail. Although it is usually desirable to set properties of these marks,
such as their color, the default property settings provide a reasonable starting
point. In fact, the marks displayed in Fig. 5.6 are all rendered using these
default color settings.

5.2.4 Using Functions

The visual elements of a graphic, such as the position or color of dots in a
scatterplot or the length and color of bars in a bar chart, are used to help the
reader understand the underlying data. In Protovis, the underlying data
associated with individual marks is mapped onto the corresponding visual
representation directly using a function. For an assigned data array, Protovis
uses a shorthand representation to create a series of visual elements, each one
corresponding to a value in the list. It is not necessary to go through each
element in an array explicitly to create a mark from each value. Instead,
Protovis will go through each data element in turn and create a mark
automatically, based on the information provided. Functions are used to
describe the relationship between the underlying data and how it is displayed.
For example, to generate a bar chart whose height changes as a function of the
data, the following function can be assigned to the height property of the bar.

.height(function(d) d * 25)

Instead of assigning a static property value (such as a fixed number) to a
mark’s field, a function is used. The function will be called automatically over
each data element, and the result will be used as the value for rendering each
bar. function(d) is an anonymous function, that is, it does not have a name.
It has one argument � d and will return the result of the multiplication (d * 25)
for all values in the list. If this function is applied to the data array
[1.2,4.3,2.3,5.2], the first element will be 30 (1.23 25), the second
element will be 107.5 (4.33 25), the third element will be 57.5 (2.33 25), and
the last element will be 130 (5.23 25).

Each element in the array of data has a corresponding index that represents
its position from the start of the list. The first value is at index position 0, the
next value is at position 1, and so on. For example, the array used in the
preceding paragraph had four values—[1.2,4.3,2.3,5.2]—and value 1.2
is at position 0, 4.3 is at position 1, 2.3 is at position 2, and 5.2 is at position 3.
The value of this index is stored under the property index in the parent class
(this.index). The parent class in this example is the root panel. The use of
this property is helpful in functions where the value’s position in the list is
needed rather than its actual value. In the following example, the left position
is calculated by multiplying the index of the array by 30. If this function is
applied to the array with four elements, the first value will be 0 (03 30), the
second value will be 30 (13 30), the third value will be 60 (23 30), and the last
value will be 90 (33 30).

c05 19 August 2011; 9:37:34

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL FRAMEWORK 157

.left(function() this.index * 30)

This function is useful in creating individual marks at evenly spaced
positions.

Functions can be complex, employing different mathematical operations. In
the following example, a bar chart is created from an array of five values:
[1.2,4.3,2.3,0.9,5.2]. A function is defined to assign a value to the
visible property. In this example, the function d . 1 is used, whereby if the
data is greater than 1, the function returns a true value, and if not greater than
1, a false value is returned.

new pv.Panel()
.width(200)
.height(150)

.add(pv.Bar)
.data([1.2,4.3,2.3,0.9,5.2])
.bottom(0)
.width(20)
.height(function(d) d * 25)
.visible(function(d) d . 1)
.left(function() this.index * 30)

.root.render();

This result is the bar chart as shown in Fig. 5.7, with bars visible for all data
values except the bar at index 3 whose value is 0.9, which is less than 1.

There are a number of commonly used operators, which include == (values
are equal), != (values are not equal), . (values are greater than), .= (values
are greater than or equal to), , (values are less than), and ,= (values are less
than or equal to). These operators can also be combined with Boolean logic
such as && (AND) and || (OR) as well as within “if . . . then . . . else”
statements (the format is ‘conditional operator’?‘result if true’:‘result if false’).
For example, the following code colors the individual bars using the fill-
Style field. If the value for each bar is either less than 2 or greater than 5
(‘conditional operator’), then the color “black” is returned (‘result if true’). If
the operator is false, then the color “gray” is returned (‘result if false’).

new pv.Panel()
.width(200)
.height(150)

.add(pv.Bar)
.data([1.2,4.3,2.3,0.9,5.2])
.bottom(0)
.width(20)
.height(function(d) d * 25)

c05 19 August 2011; 9:37:35

158 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.fillStyle(function(d) (d , 2) || (d . 5) ? "black" :
"gray")

.left(function() this.index * 30)
.root.render();

Figure 5.8 shows the resulting plot whereby the first bar is colored black
because its value is less than 2, the second bar is colored gray because it is
neither less than 2 nor greater than 5, and so on.

Functions are expressed in Protovis in a more concise manner than using
JavaScript directly. For example, in the previous example, the function

.height(function(d) d * 25)

would be rewritten in JavaScript as

.height(function(d) {
return d * 25;
})

In JavaScript, the function explicitly defines the value to be returned,
whereas the same value is returned in the Protovis expression, but it is not
explicitly stated.

FIGURE 5.7 Using a function to control visualization of the bars

c05 19 August 2011; 9:37:35

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL FRAMEWORK 159

5.2.5 Variables

Variables allow for the reuse of objects (such as panels, line marks, etc.) that
have been defined in the code. They provide developers the opportunity to write
more concise Protovis specifications. In addition, changes to the graphics at a
later time can be made more easily.

In the following example, a variable is created for the root panel using the
code var barChartPanel = new pv.Panel(). barChartPanel is a
name to be used throughout to reference the variable just created. The name
of the variable can be any single-word name or phrase, but it is helpful to
make the variable’s name somewhat descriptive so that the code can be
reused later and easily interpreted. This variable is then reused, where
barChartPanel.add(pv.Bar) adds a bar mark to the panel. Finally,
the variable is called with the render method to display the bar chart.

var barChartPanel = new pv.Panel()
.width(200)
.height(150);

barChartPanel.add(pv.Bar)
.data([1.2,4.3,2.3,0.9,5.2])
.bottom(0)

FIGURE 5.8 Illustration of the use of a complex function to display a bar chart

c05 19 August 2011; 9:37:35

160 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.width(20)

.height(function(d) d * 25)

.left(function() this.index * 30);

barChartPanel.render();

The resulting view (as shown in Fig. 5.9) is exactly the same as the previous
examples where we did not use any variables; however, the code is easier to use.
Semicolons are added to each section of the code to indicate that no further
modification is to be made to the mark or panel.

Variables can be used to reference any object in the code. In the following
example, variables that represent the panel width and height are created and
assigned values (panelWidth = 200, panelHeight = 150) along with the
width of the bar. Assigning these values upfront is helpful because it makes
the code easier to modify later; that is, you do not have to search through every
line to identify the specific instances where these properties are set. Variables
can be used to represent other objects, such as an array of data or even
functions. In this example, the variable barChartData is an array of values,
and the variable barColor is a function.

var panelWidth = 200, panelHeight = 150, barWidth = 20;
var barChartData = [1.2,4.3,2.3,0.9,5.2];

FIGURE 5.9 Bar chart created from code using variables

c05 19 August 2011; 9:37:35

5.2 CREATING CODE USING THE PROTOVIS GRAPHICAL FRAMEWORK 161

var barColor = function(d) (d , 2) || (d . 5) ? "black" :
"gray";

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

chartPanel.add(pv.Bar)
.data(barChartData)
.bottom(0)
.width(barWidth)
.height(function(d) d * 25)
.fillStyle(function(d) barColor(d))
.left(function() this.index * 30)

.root.render();

Again, the resulting view is the same as the previous version of the code, but
the code is easier to read and change at a later time.

5.2.6 Exercises

5.2.6.1 Create the chart as shown in Fig. 5.10.

FIGURE 5.10 Display of a bar chart using a function to color the bars

c05 19 August 2011; 9:37:35

162 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.2.6.2 Create a chart for the data [3,6,5,2,8,4,3] where the bars are
presented as shown in Fig. 5.11.

5.2.6.3 For the chart generated in Exercise 5.2.6.2, color the bars “orange”
for data values greater than 5; otherwise, color the bars “lightblue”.

5.2.6.4 For the chart created in Exercise 5.2.6.2, color even-valued bars
“lightgray” and odd valued bars “darkgray”. Note that the mod
function (d%2) will return 0 if the value is even and 1 if the value is odd.

5.3 BASIC PROTOVIS MARKS

5.3.1 Bar

Bars are used in many visualizations, including bar charts. The length or color
of the bars is often used to encode information from the underlying data. For
example, the length of the bars can be used to visualize the data values, or the

FIGURE 5.11 Chart with bars positioned along the y-axis

c05 19 August 2011; 9:37:35

5.3 BASIC PROTOVIS MARKS 163

colors can be used to highlight specific categories. Because the pv.Bar class is
an extension of pv.Mark, it inherits the properties from pv.Mark such as the
bottom and left properties we used earlier. top and right properties can
also be used; however, they are not always necessary because the bars can be
fully defined using the four spatial parameters: bottom, width, height, and
left. Figure 5.12 illustrates the use of these parameters in positioning a bar on
a canvas.

In the following example, a simple bar chart is constructed. Initially a new
panel is created that is 150 pixels wide and 100 pixels in height.

new pv.Panel()
.width(150)
.height(100)

The class representing one or more bars (pv.Bar) is added to the panel
using the code:

.add(pv.Bar)

Next, a list of data values or an array is added that will be used in displaying
the bars:

.data([1.4,2.3,2.7,1.6,1.2])

The bar chart is positioned at the bottom of the panel, a distance of 0 pixels
from the lower edge’s margin:

.bottom(0)

The width of each bar is set to be 25 pixels:

.width(25)

FIGURE 5.12 bottom, width, height, and left properties for a bar on a canvas

c05 19 August 2011; 9:37:35

164 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

The height of the bars will be proportional to each data value in the array. A
simple function is used to calculate the height of the bar. This is calculated by
multiplying each value by 30.

.height(function(d) d * 30)

The horizontal position of each individual bar is set using the left
property. Again, this is calculated with a function based on the data array;
however, the individual value is not used, just the index position. Because the
width of the bars was previously set to 25, all five bars will fill up the 145 pixels
of the panel width.

.left(function() this.index * 30)

The width of the bar is set to 25, yet each histogram starts at 30 pixel
intervals, so there will be a horizontal space (or gutter) between each of the bars
of 5 pixels.

The mark was added to the root panel, and the render method is called to
display the bar chart in the Web browser.

The following code creates this simple bar chart, as shown in Fig. 5.13.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Bar)

FIGURE 5.13 Simple bar chart

c05 19 August 2011; 9:37:35

5.3 BASIC PROTOVIS MARKS 165

.data([1.4,2.3,2.7,1.6,1.2])

.bottom(0)

.width(25)

.height(function(d) d * 30)

.left(function() this.index * 30)
.root.render();

A number of properties, such as width and height, are specific to the
pv.Bar class and were also used in generating the bar chart. Other specific
properties of the bar mark that control other aspects of its appearance include
fillStyle, lineWidth, and strokeStyle. The fillStyle property
allows you to change the color of the inner portion of the bar. The properties
lineWidth and strokeStyle control the outer border of the bar;
lineWidth controls the width of the border in pixels, and strokeStyle
determines the color for the border. In the following example, a simple bar
chart is created with fillStyle set to “white” and the border set to “gray”
with a width of 3 pixels.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(3)
.width(25)
.height(function(d) d * 30)
.left(function() this.index * 30 1 3)
.fillStyle("white")
.lineWidth(3)
.strokeStyle("gray")

.root.render();

Figure 5.14 shows the results of this change.

5.3.2 Label

Text is often added to graphics and plots for annotating specific data values,
providing titles for plots, labeling axes, and describing graphical elements
within legends. In Protovis, this textual annotation is called a label mark.

The top, bottom, left, and right positions can be used to place labels
onto a canvas; however, only two are needed. In Fig. 5.15, the left and
bottom positioning properties are shown to place a textual annotation or label
onto a canvas.

c05 19 August 2011; 9:37:35

166 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

In the following code, a panel is created of width 150 pixels and height 100
pixels, to which a label is added with text “chart title” positioned at 50
pixels from the left margin and 50 pixels from the bottom margin.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Label)
.text("chart title")
.left(50)
.bottom(50)

.root.render();

FIGURE 5.14 Changing the bar chart’s color and borders of the bars

FIGURE 5.15 Positioning labels on a canvas

c05 19 August 2011; 9:37:35

5.3 BASIC PROTOVIS MARKS 167

Figure 5.16 illustrates the label added to the canvas. This approach of
adding a static label to a graphic is commonly used to provide titles or legend
descriptions.

In the following example, the bar chart from the previous section is slightly
modified to make use of variables to describe the bar chart panel. Additionally,
a title “Chart title” is added to the panel that is 15 pixels from the top and 50
pixels from the left edge of the panel. The resulting plot is shown in Fig. 5.17.

FIGURE 5.16 Adding a text annotation (label) to a canvas

FIGURE 5.17 Bar chart with static title

c05 19 August 2011; 9:37:35

168 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var barChartPanel = new pv.Panel()
.width(150)
.height(100);

barChartPanel.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.width(25)
.height(function(d) d * 30)
.left(function() this.index * 30);

barChartPanel.add(pv.Label)
.text("Chart title")
.top(15)
.left(50);

barChartPanel.render();

Using inheritance, labels can also be used to annotate the individual marks of
a visualization such as the bars in a bar chart. This topic will be revisited later in
this chapter. In the following example code, a label is added to each of the bars
in the chart. The code for adding this label is .add(pv.label). By adding a
label to each of the bars, the label inherits the properties from the bars, such as
the bottom and left property, which are used to position the label on each of
the bars, as well as data.

var barChartPanel = new pv.Panel()
.width(150)
.height(100);

barChartPanel.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.width(25)
.height(function(d) d * 30)
.left(function() this.index * 30)

.add(pv.Label).textStyle("white");

barChartPanel.add(pv.Label)
.text("Chart title")
.top(15)
.left(50);

barChartPanel.render();

c05 19 August 2011; 9:37:36

5.3 BASIC PROTOVIS MARKS 169

In Fig. 5.18, the labels are positioned on each of the bars showing the data
value for the bars. They are positioned at the bottom-left corner of the bar
based on the inherited properties: bottom and left. The label values are
from the data property.

Labels can be added to all marks, including axes or grid lines (referred to as a
rule in Protovis), and other marks, such as dots in a scatterplot, lines in a line
plot, and wedges in pie charts.

The way labels are rendered can be customized in Protovis using font (the
font format), textAlign (horizontal alignment: “left”, “center”,
“right”), textAngle (to rotate the text using radians), textBaseline
(vertical alignment: “top”, “middle”, “bottom”), textDecoration
(CSS-compliant decoration such as underline), textMargin (to generate a
margin around the text), textShadow (to apply a CSS-compliant text
shadow), and textStyle (to set the label’s color) properties.

In the following code, the font of the label has been changed, as shown in
Fig. 5.19.

var barChartPanel = new pv.Panel()
.width(150)
.height(100);

barChartPanel.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.width(25)
.height(function(d) d * 30)

FIGURE 5.18 Bar chart annotated with a label for the data value

c05 19 August 2011; 9:37:36

170 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.left(function() this.index * 30)
.add(pv.Label)
.textStyle("white")
.font("bold 8px sans-serif");

barChartPanel.add(pv.Label)
.text("Chart title")
.top(15)
.left(50);

barChartPanel.render();

The placement of labels is often used in conjunction with anchors (described
later in this chapter) to position the labels close to their corresponding marks.

5.3.3 Dot

A dot represents a point in 2-D space usually corresponding to a data value.
Dots are commonly used in a number of plots, including scatterplots. The
position of a dot mark is controlled by these four properties: top, left,
bottom, and right. Only two are needed to position a dot on the screen, such
as left and bottom, as shown in Fig. 5.20. These properties are used to set
the position of the center of the dot.

In the following example, a series of dots are used to display an array of data
values. The dots are vertically positioned based on the data values using the
function: d*30. The index value of the data array is used to position the dots

FIGURE 5.19 Label attached to bars in white with changed fonts

c05 19 August 2011; 9:37:36

5.3 BASIC PROTOVIS MARKS 171

horizontally. The first dot would be positioned at 0 pixels from the left, but
because the properties’ position is at the center of the dot, this dot would be
cutoff. So, 5 pixels are added to the function to take this into account.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Dot)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(function(d) d * 30)
.left(function() this.index * 30 + 5)

.root.render();

The resulting plot of dots is shown in Fig. 5.21.
Specific properties of the dot class control its appearance, including

fillStyle, lineWidth, and strokeStyle. fillStyle controls the color
of the inner region of the dot. lineWidth and strokeStyle are used to
control how the dot’s border is displayed, with lineWidth controlling the
thickness and strokeStyle the color. The size of a dot can be set with either
the radius property (radius of the dot in pixels) or the size (square pixels)
property. How the dot is actually drawn can also be customized using the
shape property. A number of options are shown in Fig. 5.22: “cross”,
“triangle”, “diamond”, “square”, “circle”, “tick”, and “bar”.
The angle property can be used to further customize the dots by rotating them
as desired.

In the following code, a series of data values are plotted as triangles set using
the .shape(“triangle”) entry. The size of the dot is set to cover an area of
16 square pixels (43 4 pixel square). In addition, the border color is set to
“black” and 1-pixel thick with the color of the inner region set to light gray.

FIGURE 5.20 Positioning a dot on a canvas using the left and bottom properties

c05 19 August 2011; 9:37:36

172 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

new pv.Panel()
.width(150)
.height(100)

.add(pv.Dot)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(function(d) d * 30)
.left(function() this.index * 30 + 15)
.shape("triangle")
.size(16)
.strokeStyle("black")
.lineWidth(1)
.fillStyle("lightgray")

.root.render();

Figure 5.23 shows the resulting plot.

FIGURE 5.21 Simple plot with dots representing the data values of an array

FIGURE 5.22 Different options for displaying dots

c05 19 August 2011; 9:37:36

5.3 BASIC PROTOVIS MARKS 173

5.3.4 Line

In Protovis, a line mark represents a series of connected lines with each
intersection point (along with the first and last point) representing the
corresponding data values. This mark is used in a variety of plots, including
line plots. The distance of the points from the horizontal or vertical panel
margins is used to represent the data value. In contrast to the bar mark, lines
are positioned based on the vertical distance from the bottom and the
horizontal distance from the left margin; that is, there is no height property.

In the following code, a simple line plot is created. A line mark (representing
a series of joined points) is added to the panel for an array of data values. The
points along the line represent each data array entry, and the vertical distance is
calculated using a function applied to the data values. The horizontal distance
is calculated based on the array’s index position, with the value at index 0
positioned at a distance of 0 (03 30), index 1 at distance 30 (13 30), and so on.
The resulting line plot is shown in Fig. 5.24.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Line)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(function(d) d * 30)
.left(function() this.index * 30)

.root.render();

FIGURE 5.23 Using triangles to represent data values

c05 19 August 2011; 9:37:36

174 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

Figure 5.25 illustrates how the points along the line are positioned based on
the distance from the left and the bottom of the panel.

Other specific properties of the line mark that control its appearance include
fillStyle (for coloring the inner region of the lines), lineWidth (to set the
thickness of the lines), and strokeStyle (for coloring the borders of the
line). These properties are set in the same manner as the corresponding bar
properties.

Segmented is a Boolean property that is set to true if the different line
segments should be treated with different types of rendering, such as different
line widths or different colors. In the following code, the segmented property is
set to true. The line width and the colors for the different segments are
calculated using a function. The color is defined using the RGB (red-green-
blue) format that sets percentages for the red, green, and blue colors, which are
combined to create the final color. This is described in more detail in the

FIGURE 5.24 Simple line plot

FIGURE 5.25 Positioning of the lines

c05 19 August 2011; 9:37:36

5.3 BASIC PROTOVIS MARKS 175

following section. A final color value is created by concatenating the text “rgb
(”with a value returned from a function to indicate the intensity of the red
color, with values representing the green and blue colors (“0%”). For example,
the first color would be represented as “rgb(42%0%0%)”.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Line)
.segmented(true)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(function(d) d * 30)
.left(function() this.index * 30 1 10)
.strokeStyle(function(d) "rgb(" 1 (d*30) 1 "%,0%,0%")
.lineWidth(function(d) d*5)

This generates the display as shown in Fig. 5.26.
In addition, the manner in which the lines are joined can be set using the

lineJoin property that accepts “bevel”, “round”, and “miter” values
(only “miter” can be used when segmented is set to true).

Finally, the property interpolate can be used to define how to connect
the points (representing the data values). There are a number of options:
“linear”, “step-before”, “step-after”, “polar”, “polar-
reverse”, “basis”, and “cardinal”. As shown in the examples so far
in this section where a straight line is drawn between the values, “linear” is
the default setting. The other interpolate options are shown in Fig. 5.27.

FIGURE 5.26 Different line colors where the segmented property is set to true

c05 19 August 2011; 9:37:36

176 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

“step-before” and “step-after” connects pairs of values with horizon-
tal and vertical lines. With “step-before”, the vertical line is at the first
value whereas with “step-after”, the vertical line is at the second value.
“polar” and “reverse-polar” join the points with an arc either clockwise
(“polar”) or counterclockwise (“reverse-polar”). “basis” is used to
draw a b-spline fit with “cardinal” used to draw cardinal splines. The
tension property is used with cardinal splines, has a value between 0 and 1
(the default is 0.7), and can be used to control the cardinal rendering. The closer
to 1 the tension value is, the more linear the lines will be rendered between the
values.

In the following code, a line plot is displayed where the lines are joined using
the interpolate property set to “cardinal” with a tension of 0.5.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Line)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(function(d) d * 30)
.left(function() this.index * 30 1 10)
.interpolate("cardinal")
.tension(0.5)
.add(pv.Dot)

.root.render();

This creates the plot as shown in Fig. 5.28.

5.3.5 Area

The line mark represents a series of connected lines or polylines. The area mark
represents the space between two polylines. These types of marks are often used
as area plots, to visualize trends for one or more properties.

Figure 5.29 illustrates the placement of the points on two polylines that
make up the area mark. A number of properties can be used to control these

FIGURE 5.27 Interpolate options for connecting lines

c05 19 August 2011; 9:37:36

5.3 BASIC PROTOVIS MARKS 177

points: top, left, bottom, right, width, and height. For area marks,
the width property controls the distance between the two polylines if the area
mark is vertically aligned, whereas the height property is used to control the
distance between the two polylines where the mark is horizontally aligned (as
shown in Fig. 5.29). Because an area plot is either aligned horizontally or
vertically, only a single property needs to be defined (width or height).

The following code displays a simple area plot. The lower polyline is drawn
as a straight line at the bottom of the panel because the bottom property is set
to 0. The height is used to display the top polyline based on the array of data
defined. This height is based on a function d*30 for each of the elements of the
array. The horizontal position of each of the vertices of the top polyline is a
function of the array index (this.index*30). The resulting area plot is
displayed in Fig. 5.30.

FIGURE 5.29 Positioning properties for a horizontally aligned area mark

FIGURE 5.28 Line mark using the interpolate property set to “cardinal” with a

tension of 0.5

c05 19 August 2011; 9:37:36

178 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

new pv.Panel()
.width(150)
.height(100)

.add(pv.Area)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.height(function(d) d * 30)
.left(function() this.index * 30)

.root.render();

By using different combinations of these positioning properties (top, left,
bottom, right, width, and height), different types of area plots can be
drawn such as those where the top and the bottom polylines vary. fillStyle,
lineWidth, and strokeStyle can be used to alter the appearance of the
area plot. Similar to the line mark, the area mark’s property segmented can
be set to true to enable different styles, such as colors, to be used for different
sections of the area plot. In the following code, a vertically aligned area plot is
created based on the data array specified. Two polylines are defined using the
properties left and width. The left property, defined as a function of
the data array (d*10) is used to position the left polyline, whereas the width
is used to position the right polyline. The width is defined using a different
function (d*d*10), which represents the distance from the left polyline.
Because the segmented property is set to true, the different areas of the area
mark can be styled differently. In this code, the fillStyle property is used to

FIGURE 5.30 Simple area plot

c05 19 August 2011; 9:37:37

5.3 BASIC PROTOVIS MARKS 179

color the area sections using different shades based on a function of the data
array, as shown in Fig. 5.31.

new pv.Panel()
.width(150)
.height(100)

.add(pv.Area)
.segmented(true)
.data([1.4,2.3,2.7,1.6,1.2])
.left(function(d) d*10)
.width(function(d) d*d*10)
.top(function() this.index * 30)
.fillStyle(function(d) "rgb(" 1 (d*30)1 "%," 1 (30) 1

"%," 1 (30)1 "%")

.root.render();

The transition between the intersection points can also be controlled in
a similar manner to the line mark using the interpolate property,
which has the similar options as the line mark: “linear”, “step-
before”, “step-after”, “basis”, and “cardinal”. Of these,
“linear” is the default property value. In the following code, the
interpolate property was set to “step-after”, and the resulting
plot is shown in Fig. 5.32.

FIGURE 5.31 Segmented area mark

c05 19 August 2011; 9:37:37

180 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

new pv.Panel()
.width(150)
.height(100)

.add(pv.Area)
.data([1.4,2.3,2.7,1.6,1.2])
.left(function(d) d*10)
.width(function(d) d*d*10)
.top(function() this.index * 30)
.interpolate("step-after")

.root.render();

5.3.6 Wedge

A wedge is used to create graphics such as pie charts or donut plots. This mark
uses several positioning properties to create a wedge mark on a panel: top
(number of pixels from the top margin of the panel), left (number of pixels
from the left margin of the panel), bottom (number of pixels from the bottom
margin of the panel), and right (number of pixels from the right margin of the
panel). These properties control the location of the center of the wedge mark.

Several properties specific to the wedge mark are used to construct the
individual slices: angle, startAngle, endAngle, innerRadius, and
outerRadius. The angle property is used to calculate the angle (in radians)

FIGURE 5.32 Area with interpolate set to “step-after”

c05 19 August 2011; 9:37:37

5.3 BASIC PROTOVIS MARKS 181

of the individual slices and is usually specified using a function based on the
underlying data. The startAngle and endAngle properties can be used to
specify a starting or ending angle. The outerRadius property is used to
specify the radius of the outside of the pie chart, with the innerRadius
used to specify an optional inner radius for generating donut plots (the
default value for the innerRadius is 0). Figure 5.33 illustrates the use of
left, bottom, innerRadius, and outerRadius properties to position a
wedge mark.

The wedge mark is often used to create a pie chart where the entire circle
represents 100% of the data, with individual slices of the chart representing a
portion of the data. For example, to generate a pie chart corresponding to four
data points [3,2,4,1], the entire pie chart (100%) represents the sum of all values
(10), with each slice representing the corresponding proportion. The first slice
(3) represents 3/10 or 30%, the second slice represents 2/10 or 20%, and so on.
One approach within Protovis to calculate these proportions is to use the
function pv.normalize, which returns a copy of the data array with each
element represented as a proportion of the array. In this example, the
pv.normalize([3,2,4,1]) returns the array [0.3,0.2,0.4,0.1].

The following code is used to create a simple pie chart based on an array of
data. Because the pie chart requires a proportion of the data to be calculated,
pv.normalize is used to translate the data array into proportions. Initially
the chart is centered on the panel using the bottom and left properties, and
the radius of the pie chart is set to 50. The angle of the individual slices of the
wedge mark is computed using a function based on the normalized data array
values: 2*d*Math.PI (Math.PI is a JavaScript constant for π). The
circumference of the circle in radians is defined as 23π (or 360�); therefore,
the angle for each slice is represented by the proportion of the data multiplied
by 23π. Figure 5.34 shows the resulting pie chart. Because no styling has been
defined for this pie chart, the default colors and line thickness is used to create
the chart.

FIGURE 5.33 Wedge-positioning properties

c05 19 August 2011; 9:37:37

182 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

new pv.Panel()
.width(150)
.height(100)

.add(pv.Wedge)
.data(pv.normalize([1.4,2.3,2.7,1.6,1.2]))
.bottom(50)
.left(75)
.outerRadius(50)
.angle(function(d) d * 2 * Math.PI)

.root.render();

The wedge mark can be customized using several properties: fillStyle
(controls the color of the slice), strokeStyle (controls the color of the
boundaries for each of the slices), and lineWidth (controls the width of the
slice boundaries).

In the following code, a simple donut plot is created from the normalized
data array. The outside of the pie chart is calculated using a function based on
the value of the index. If it is the first element of the array, the radius is set to 45
pixels; otherwise, it is set to 40 pixels. The innerRadius is set to 20 pixels to
create a donut plot. The angle of the slices is set as in the previous example;
however, the default colors are defined as alternating gray and black (defined
with the pv.colors collection of colors as shown). The boundary of the slices
is set to have a thickness of 4 pixels and to be rendered in white, as shown
in Fig. 5.35.

FIGURE 5.34 Simple pie chart

c05 19 August 2011; 9:37:37

5.3 BASIC PROTOVIS MARKS 183

new pv.Panel()
.width(150)
.height(100)

.add(pv.Wedge)
.data(pv.normalize([1.4,2.3,2.7,1.6,1.2,2.4]))
.bottom(50)
.left(75)
.outerRadius(function() !this.index ? 45 : 40)
.innerRadius(20)
.angle(function(d) d * 2 * Math.PI)
.fillStyle(pv.colors("black","gray","black","gray",

"black","gray"))
.strokeStyle("white")
.lineWidth(4)

.root.render();

5.3.7 Images

Images (such as images contained in PNG or JPEG files) can be added to a
panel aligned with the bottom and left margins. Images are positioned with the
top, left, bottom, and right properties. height and width properties
are used to define the size of the image on the panel. Figure 5.36 illustrates the
use of these properties to draw an image on a panel.

FIGURE 5.35 Customized donut plot

c05 19 August 2011; 9:37:37

184 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

The following code displays an image from a file. In this case, the image file
is located in the directory where the HTML file is also located. A URL could be
used to locate an image file from any URL location accessible on the Internet.
The image is added to the panel, and the image file location is set using the url
expression. The image is positioned 25 pixels from the left side of the panel and
25 pixels from the bottom of the panel. The height and width of the image
are set to 50 and 151, respectively, and the results are shown in Fig. 5.37.

new pv.Panel()
.width(200)
.height(100)

.add(pv.Image)
.url("wiley-logo.bmp")

FIGURE 5.36 Properties to position an image on-screen

FIGURE 5.37 Display an image on the panel

c05 19 August 2011; 9:37:37

5.3 BASIC PROTOVIS MARKS 185

.left(25)

.bottom(25)

.height(50)

.width(151)

.root.render();

The background to the image can also be changed using fillStyle
(background color), strokeStyle (the color of the border), and lineWidth
(the thickness of the border).

5.3.8 Exercises

5.3.8.1 Create a bar chart aligned with the x-axis from the array
[3,5,6,8,9,8,11] with a “lightblue” bar, a border drawn in
“blue”, and data value labels.

5.3.8.2 Create a bar chart aligned with the y-axis with the same attributes as
Exercise 5.3.8.1.

5.3.8.3 Create a graphic from the array [3,5,6,8,9,8,11] using
“maroon” crosses at a 45� angle, with a radius of 8 pixels to represent the
data values. Add a label to each of the data values.

5.3.8.4 Create a line plot from the array [4.3,5.4,7.3,6.9,
10.3,11.5] using the cardinal interpolate option, and color the line “dark-
green” with a 2-pixel width.

5.3.8.5 Create five different line plots based on Exercise 5.3.8.4, with
different tension values: 0, 0.25, 0.5, 0.75, 1.

5.3.8.6 Create six different line plots based on Exercise 5.3.8.4, where the
interpolate property is set to “linear”, “step-before”, “step-
after”, “polar”, “polar-reverse”, and “basis”, respectively.

5.3.8.7 Create a vertically aligned area plot from the array
[43.6,54.8,47.2,34,7,58.6,34.1]where the left polyline is along the
y-axis, and the variation in the data is shown in the right polyline. The inner
region of the plot should be colored “steelblue” with “darkblue”
border.

5.3.8.8 Create seven different plots by modifying the plot created in Exercise
5.3.8.7 such that each plot uses a different interpolate option (“linear”,
“step-before”, “step-after”, “polar”, “polar-reverse”,
“basis”, and “cardinal”).

5.3.8.9 Create a donut plot corresponding to the array [4,5,7,8,2] with
the colors “white”, “lightgray”, “gray”, “darkgray”, and “black”,
and also add a label to each of the wedges showing the data value.

5.3.8.10 Create an image using the wiley-logo.bmp file that is 302 pixels wide
and 100 pixels high, with a black border of 10 pixels.

c05 19 August 2011; 9:37:37

186 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.4 CREATING CUSTOMIZED PLOTS

5.4.1 Colors

Color is often essential for visualizations to encode data or highlight elements
in a graphic. Protovis makes use of standard definitions for colors (defined at
www.w3.org/TR/css3-color/). This includes the use of a series of named colors,
such as “black”, “cyan”, or “lightgray”. In the following code, the list
of all named colors is provided in the variable array namedColors, and
the code displays the name and colors each in a series of columns, as shown in
Fig. 5.38.

var namedColors =

["aliceblue","antiquewhite","aqua","aquamarine",

"azure","beige","bisque","black","blanchedalmond","blue",

"blueviolet","brown","burlywood","cadetblue","chartreuse",

"chocolate","coral","cornflowerblue","cornsilk","crimson",

FIGURE 5.38 Display of all named colors

c05 19 August 2011; 9:37:37

5.4 CREATING CUSTOMIZED PLOTS 187

"cyan","darkblue","darkcyan","darkgoldenrod","darkgray",

"darkgreen","darkgrey","darkkhaki","darkmagenta",

"darkolivegreen",

"darkorange","darkorchid","darkred","darksalmon",

"darkseagreen",

"darkslateblue","darkslategray","darkslategrey",

"darkturquoise",

"darkviolet","deeppink","deepskyblue","dimgray","dimgrey",

"dodgerblue","firebrick","floralwhite","forestgreen",

"fuchsia",

"gainsboro","ghostwhite","gold","goldenrod","gray",

"grey","green",

"greenyellow","honeydew","hotpink","indianred",

"indigo","ivory",

"khaki","lavender","lavenderblush","lawngreen",

"lemonchiffon",

"lightblue","lightcoral","lightcyan",

"lightgoldenrodyellow","lightgray",

"lightgreen","lightgrey","lightpink","lightsalmon",

"lightseagreen",

"lightskyblue","lightslategray","lightslategrey",

"lightsteelblue",

"lightyellow","lime","limegreen","linen","magenta",

"maroon",

"mediumaquamarine","mediumblue","mediumorchid",

"mediumpurple",

"mediumseagreen","mediumslateblue","mediumspringgreen",

"mediumturquoise",

"mediumvioletred","midnightblue","mintcream",

"mistyrose","moccasin",

"navajowhite","navy","oldlace","olive","olivedrab",

"orange","orangered",

"orchid","palegoldenrod","palegreen",

"paleturquoise","palevioletred",

"papayawhip","peachpuff","peru","pink","plum",

"powderblue","purple","red",

"rosybrown","royalblue","saddlebrown","salmon",

"sandybrown","seagreen",

"seashell","sienna","silver","skyblue","slateblue",

"slategray","slategrey",

"snow","springgreen","steelblue","tan","teal",

"thistle","tomato",

"turquoise","violet","wheat","white","whitesmoke",

"yellow","yellowgreen"];

c05 19 August 2011; 9:37:37

188 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var panelWidth = 500, panelHeight = 300;

var nosRows = 30, columnWidth = 100, rowWidth = 10;

var chartPanel = new pv.Panel()

.width(panelWidth)

.height(panelHeight);

chartPanel.add(pv.Label)

.data(namedColors)

.text(function(d) d)

.top(function() (this.index%nosRows)*rowWidth)

.left(function() Math.floor(this.index/nosRows)

*columnWidth)

.textStyle(function(d) d);

chartPanel.render();

There are alternative and more flexible ways to define specific colors. One
approach is to use the red-green-blue (RGB) format, where the strength of each
of the three colors is combined to create a spectrum of colors. The RGB color
can be set using hexadecimal characters whereby the symbol “#” is followed by
either three characters (#rgb) or six characters (#rrggbb). For example, #fff and
#ffffff denote the color white. In the following code, five dot marks are drawn
using the RGB three-character color format for white, black, light dark gray,
gray, and dark gray, as shown in Fig. 5.39.

var rgbColorExamples = ["#fff","#000","#999","#666",
"#222"];

var panelWidth = 500, panelHeight = 200;

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

chartPanel.add(pv.Dot)
.data(rgbColorExamples)
.bottom(100)
.left(function() (this.index11)*75)
.radius(50)
.strokeStyle("black")
.fillStyle(function(d) d)

c05 19 August 2011; 9:37:37

5.4 CREATING CUSTOMIZED PLOTS 189

.add(pv.Label)
.bottom(30);

chartPanel.render();

Alternatively, colors can be defined with “rgb(. . .)” notation, where
the contents of the parentheses are either three numeric values (in the range
0�255) or three percentages. For example, rgb(255,255,255) and rgb
(100%,100%,100%) both denote the color white. Opacity can also be added
to a color using the RGBA definitions. The “A” references an alpha value,
which can take any number between 0 and 1 such as rgba(255,0,0,0.5).
The higher the value is, the more opaque is the color. Figure 5.40 illustrates its
use in generating five colored dot marks, shown with the corresponding RGBA
representation.

Colors can also be defined using the HSL (hue-saturation-lightness) format;
for example, hsl(120,100%,75%) is a light green. The first number is the
angle of the color and is represented as a number in the range 0�360 (red is 360,
blue is 240, green is 120). Saturation and lightness are represented as
percentages. Similar to the RGBA format, there is an HSLA format where
an additional alpha parameter can be specified to indicate the color’s
opaqueness.

Protovis also contains classes to generate color objects—pv.color.Hsl
and pv.Color.Rgb—that will create colors based on the HSL and RGB

FIGURE 5.39 Three-character RGB colors

c05 19 August 2011; 9:37:38

190 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

color definitions. For pv.color.HSL, methods hue, lightness, and
saturation are used to set or retrieve the color settings; for pv.color.
Rgb, methods red, green, and blue will get or set the color channels. In
addition, themethodsdarkerandlighter canbeused toadjust thebrightness
of the colors.

5.4.2 Formatting

The manner in which labels are presented can also be customized. The font
property is set based on W3C standard font definitions (defined at: http://www.
w3.org/TR/CSS2/fonts.html). For example, the following sets the font for the
label to be 12 pixels, bold, sans serif.

chartPanel.add(pv.Label)
.text("Temperature at Heathrow Airport")
.top(0)
.left(200)
.font("bold 12px sans-serif");

The way numbers, times, and dates are presented can also be controlled
using the pv.Format classes: pv.Format.date, pv.Format.number,

FIGURE 5.40 Using the RGBA color format

c05 19 August 2011; 9:37:38

5.4 CREATING CUSTOMIZED PLOTS 191

and pv.Format time. Changing the way these types of objects are drawn can
often make plots easier to read. The method format is used to generate a
specific rendering for a date, time, or number, whereas the method parse
converts a text representation to an internal object. The formatting for dates is
the same as the strftime format in C (defined at http://pubs.opengroup.org/
onlinepubs/009695399/functions/strftime.html).

In the following example, a list of three dates is defined, and two functions are
set up to define specific date formats. dateInputFormat is used to parse the
dates described, and the function dateOutputFormat is used to describe how
the date is to be presented. An array of date objects is created by mapping the
original list of dates (dateList) to a list of date objects by parsing the date
strings in the array. The “%m/%d/%y” expression defines how the date string is
formatted so the parser knows how to read it in. The date is redrawn by
formatting the date objects according to the output date format “%A %d %b %Y”.
The resulting reformatted dates are shown in Fig. 5.41.

var panelHeight = 100, panelWidth = 100;

var dateList = ["3/2/2009", "3/3/2009", "3/4/2009"];

var dateInputFormat = pv.Format.date("%m/%d/%y");
var dateOutputFormat = pv.Format.date("%A %d %b %Y");

FIGURE 5.41 Reformatted dates

c05 19 August 2011; 9:37:38

192 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Label)
.data(dateList.map(function(d)dateInputFormat.parse(d)))
.text(function(d) dateOutputFormat(d))
.left(10)
.top(function() this.index*20);

chartPanel.render();

Similarly, the pv.Format.time class will parse and format times, sup-
porting two types: “short” and “long”. Finally, numbers can be formatted
with the pv.Format.number class, which allows a considerable amount of
flexibility in how numbers are presented. The method fractionDigits
controls the number of digits to be presented after the decimal place,
whereas the function integerDigits controls the number of digits to be
displayed before the decimal place. For example, in the following code, a
number format function is declared as a variable (numberFormat) with two
decimal places. It is used to display the numbers in the list (numberList) as
shown in Fig. 5.42.

FIGURE 5.42 Formatted numbers

c05 19 August 2011; 9:37:38

5.4 CREATING CUSTOMIZED PLOTS 193

var panelHeight = 100, panelWidth = 100;

var numberList = [275436.2343, 4.55563, 16435345.4];

var numberFormat = pv.Format.number().fractionDigits(2);

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

chartPanel.add(pv.Label)
.data(numberList)
.text(function(d) numberFormat(d))
.left(10)
.top(function() this.index*20 1 20);

chartPanel.render();

5.4.3 Anchors

All marks have a number of defined positions close to the mark that are
called anchors. For example, a dot mark has five defined positions: “top”,
“bottom”, “left”, “right”, and “center”. In Fig. 5.43, label marks
have been added to a dot mark in the “top”, “bottom”, “left”, “right”,
and “center” positions.

FIGURE 5.43 Anchors used to position labels close to a dot mark

c05 19 August 2011; 9:37:38

194 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

An anchor is another type of mark; however, you will never see it directly
because it is used to conveniently position other marks. In the following
example, a simple bar chart is constructed with labels. To display the label of
the data at the top of each bar, an anchor mark is initially added with the target
defined as “top”. The label is then added to the anchor.

var barPanel = new pv.Panel()
.width(150)
.height(100);

var bar = barPanel.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.width(25)
.height(function(d) d * 30)
.left(function() this.index * 30);

bar.anchor("top").add(pv.Label);

barPanel.render();

Figure 5.44 shows the resulting simple bar chart with a label corresponding
to the data presented at the top of each bar.

FIGURE 5.44 Bar chart with label anchored at the top

c05 19 August 2011; 9:37:38

5.4 CREATING CUSTOMIZED PLOTS 195

In another example, a vertically aligned area mark is used to represent the
data. Dots are used to annotate the left and right boundaries of the plot, with
black diamonds used at the left and gray squares used at the right.

var barPanel = new pv.Panel()
.width(100)
.height(150);

var area = barPanel.add(pv.Area)
.data([1.4,2.3,2.7,1.6,1.2])
.left(10)
.fillStyle("lightgray")
.strokeStyle("lightgray")
.width(function(d) d * 30)
.bottom(function() this.index * 30 1 5);

area.anchor("left").add(pv.Dot)
.shape("diamond")
.fillStyle("black")
.strokeStyle("black");

area.anchor("right").add(pv.Dot)
.shape("square")
.fillStyle("gray")
.strokeStyle("gray");

barPanel.render();

This results in the plot shown in Fig. 5.45.
Similarly, anchor marks can be positioned in the center of marks used to

display the plot. To illustrate, a simple donut plot is constructed using the
wedge class. The target anchor position for each segment of the donut plot is set
to “center”. This results in the plot shown in Fig. 5.46.

var dataArray = [1.4,2.3,2.7,1.6,1.2],
sum = pv.sum(dataArray);

var wedgePanel = new pv.Panel()
.width(100)
.height(100);

var wedge = wedgePanel .add(pv.Wedge)
.data(dataArray)
.bottom(50)
.left(50)

c05 19 August 2011; 9:37:38

196 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

FIGURE 5.45 Area plot with dot marks (diamonds and squares) anchored to the left

and right

FIGURE 5.46 Donut plot with label anchored to the center of each wedge

c05 19 August 2011; 9:37:38

5.4 CREATING CUSTOMIZED PLOTS 197

.innerRadius(20)

.outerRadius(40)

.angle(function(d) d / sum * 2 * Math.PI);

wedge.anchor("center").add(pv.Label);

wedgePanel.render();

5.4.4 Rule

Axes and grid lines are essential elements of many graphics. These horizontal or
vertical lines are created in Protovis using the rule mark (pv.Rule). They are
positioned on the screen using the properties top (the distance from the top
margin of the panel), left (the distance from the left side margin of the panel),
bottom (the distance from the bottommargin of the panel),right (the distance
from the right edge margin of the panel), width (the width of the horizontal or
vertical line), and height (the height of the horizontal or vertical line). If the
bottom position is specified, then theheight is the distance from the bottom; if
the top position is set, then the height is the distance from the top.

Combinations of these properties create horizontal or vertical lines. A simple
approach is to set the bottom property to draw a horizontal line or set the left
property to create a vertical line. More control of the position of the lines can
be achieved using a combination of multiple properties; for example, you can
set the left, bottom, and top to create a vertical line or set the bottom,
left, and right to create a horizontal line.

In the following examples, a bar chart is created and added to a panel, and
then two rule marks are added to the panel (they are not added to the bar
because that would create a rule for each bar). The horizontal axis is drawn by
setting the bottom property to 0; the vertical axis is created by setting
the left property to 0. The length and height of the two rules is inherited
from the parent panel. The resulting chart, with a vertical and horizontal axis,
is shown in Fig. 5.47.

var barPanel = new pv.Panel()
.width(140)
.height(100)
.margin(5);

barPanel.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.width(20)
.height(function(d) d * 30)
.left(function() this.index * 30);

c05 19 August 2011; 9:37:38

198 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

barPanel.add(pv.Rule)
.bottom(0);

barPanel.add(pv.Rule)
.left(0);

barPanel.render();

The following example generates grid lines. The code uses method
pv.range, which creates a list of evenly spaced values starting at 0.5 and
incrementing at 0.5 intervals for values less than 3.5. Adding a rule mark
and assigning this data array to it creates a series of grid lines. In this example,
they are colored light gray. Figure 5.48 shows the resulting chart.

var barPanel = new pv.Panel()
.width(150)
.height(100)
.margin(5);

barPanel.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,1.2])
.bottom(0)
.width(20)
.height(function(d) d * 30)
.left(function() this.index * 30);

FIGURE 5.47 Two rule marks added to the x-axis and y-axis

c05 19 August 2011; 9:37:38

5.4 CREATING CUSTOMIZED PLOTS 199

barPanel.add(pv.Rule)
.data(pv.range(0.5,3.5,0.5))
.bottom(function(d) d * 30)
.strokeStyle("lightgray");

barPanel.add(pv.Rule)
.bottom(0);

barPanel.add(pv.Rule)
.left(0);

barPanel.render();

In a similar manner to the graphical elements discussed earlier, the
lineWidth property is used to set the number of pixels the lines are wide,
and the strokeStyle property is used to set the color of the line (as shown in
the preceding example).

5.4.5 Scales

As discussed in Chapter 3, the data formany graphics is displayed using aesthetic
variables such as the x- and y-positions of a mark and its color. For each data
variable, its values lie in data space (the domain) and need to bemapped to values
in an aesthetic space (the range). To achieve this, a function needs to perform a
mapping. Scales are functions that map data values to aesthetic values.

FIGURE 5.48 Grid lines added to the chart using the rule mark

c05 19 August 2011; 9:37:38

200 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

In the examples discussed so far, this has been performed using a simple
function, such as multiplying the data value by a constant. In Protovis, a series
of classes is dedicated to these types of mappings. The pv.Scale abstract
class is not used directly for the same reasons pv.Mark is not used directly.
Classes that are extensions of the pv.Scale class provide functions to map
continuous data onto aesthetic variables such as position or color (quantitative
scales), continuous data onto a discrete range (quantile scale), and categorical
values onto discrete colors or positions (ordinal scales). Because Protovis can
assign a function to the variable, these scaling functions can be defined upfront
as variables and then used throughout the code.

Quantitative scales are implementedwith threemethods:pv.Scale.linear,
pv.Scale.log, and pv.Scale.root. Each of these methods is an exten-
sion of the class pv.Scale.quantitiative, which is an abstract class that
is not used directly. In the following example, the method pv.Scale.linear
is defined as a variable (yMapping). This is a function that defines a mapping
from a range of data values (0 is the smallest data value, and 100 is the largest)
onto a vertical pixel position (between 0 and the height of the panel). A bar
mark is used to display the series of data values, and each of these values is
between 0 and 100.To calculate the height of the bar, the previously defined
yMapping variable is used. The resulting bar chart is shown in Fig. 5.49.
Note that the data array can be assigned to the function instead of minimum

FIGURE 5.49 Bar chart created with a linear scale function

c05 19 August 2011; 9:37:38

5.4 CREATING CUSTOMIZED PLOTS 201

and maximum values (along with an optional accessor function described in
Section 5.5.3).

var panelWidth = 300,
panelHeight = 200;

var yMapping = pv.Scale.linear(0, 100).range(0,
panelHeight);

var barChartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

barChartPanel.add(pv.Bar)
.data([15,32,41,59,67,73,81,93,94,96])
.width(20)
.bottom(0)
.height(yMapping)
.left(function() this.index * 30);

barChartPanel.render();

Scales can also be used to map the data domain to other aesthetic variables
of the graphic, such as color. In the following example, an additional variable
colorMapping maps the data values onto different shades between two
colors. In this example, the two colors are specified as “red” and “green”,
and the method automatically maps the color of the bars based on shades
between these two colors (using the fillStyle property). The resulting chart is
shown in Fig. 5.50.

var panelWidth = 300,
panelHeight = 200;

var yMapping = pv.Scale.linear(0, 100).range(0,
panelHeight)
colorMapping = pv.Scale.linear(0,100).range("red",
"yellow");

var barChartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

barChartPanel.add(pv.Bar)
.data([15,32,41,59,67,73,81,93,94,96])
.width(20)
.bottom(0)

c05 19 August 2011; 9:37:39

202 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.height(yMapping)

.left(function() this.index * 30)

.fillStyle(colorMapping);

barChartPanel.render();

It is also possible to subdivide the range (aesthetic space) of a domain (data
space). In Fig. 5.51, the bar chart was created in the same way as the previous
example; however, the code that mapped the data values onto a single range
defined by two colors

colorMapping =
pv.Scale.linear(0,100).range("red","green");

was replaced with code that maps the data values onto two ranges: red-to-
green (for data values 0 to 75), and green-to-blue (for data values 75 to 100):

colorMapping =
pv.Scale.linear(0,75,100).range("red","green","blue");

The ticks method is helpful for displaying plots with defined axes. This
method returns a series of evenly spaced intervals (around 5 to 10 values).

FIGURE 5.50 Bar chart colored using the linear scale function

c05 19 August 2011; 9:37:39

5.4 CREATING CUSTOMIZED PLOTS 203

These values can be used to annotate the plot’s axes with tick marks or be used
to create grid lines. In the following example, a bar chart is generated with tick
marks displayed on the y-axis. The code defines a yMapping variable, which is
a quantitative scale function to map data (in the range 0 to 100) onto the
panel’s vertical position (in the range 0 to the height of the panel). The y-axis is
added to the chart using the rule mark. A second rule mark is used to add the
ticks to the y-axis. The data property is defined as these ticks (a series of evenly
spaced values) using the ticks methods. The ticks are positioned to start 2
pixels to the left of the y-axis mark (positioned at 4 pixels from the left). The
width of the ticks is set to 2, so the ticks join with the y-axis. An anchor mark is
set to “left” and used to display the values for the y-axis ticks using the label
mark. To display these values, the method tickformat is called. The
resulting chart is shown in Fig. 5.52.

var panelWidth = 304,
panelHeight = 200;

var yMapping = pv.Scale.linear(0, 100).range(0,
panelHeight);

var barChartPanel = new pv.Panel()
.width(panelWidth)

FIGURE 5.51 Color scale using two ranges

c05 19 August 2011; 9:37:39

204 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.height(panelHeight)

.margin(20)

barChartPanel.add(pv.Bar)
.data([15,32,41,59,67,73,81,93,94,96])
.width(20)
.bottom(0)
.height(yMapping)
.left(function() this.index * 30 1 4);

barChartPanel.add(pv.Rule)
.left(4)
.add(pv.Rule)
.data(yMapping.ticks())
.bottom(yMapping)
.left(2)
.width(2)

.anchor("left").add(pv.Label)
.text(yMapping.tickFormat);

barChartPanel.add(pv.Rule)
.bottom(0);

barChartPanel.render();

FIGURE 5.52 Labeled y-axis using the ticks generated by the scale function

c05 19 August 2011; 9:37:39

5.4 CREATING CUSTOMIZED PLOTS 205

In the following example, a bar chart is created with the data displayed on a
log scale. To set up the log mapping, the pv.Scale.log function is assigned
to the yMapping variable. The range is defined as 0.01 to 7 and mapped to a
pixel location between 0 and the height of the panel. The bars are then
displayed in a similar manner to the previous example; however, because a
log mapping is used, the height of the bars corresponds to a log function. A
series of horizontal grid lines is then displayed on top of the bar chart panel
using the rule mark. The data used to calculate their vertical location is
computed using the ticks function, based on the previously defined log
scale (yMappings). The associated chart labels are displayed using the
tickformat method. Finally, the x-axis and y-axis are added as rule marks
to the chart. The resulting chart is shown in Fig. 5.53.

var panelWidth = 300,
panelHeight = 500;

var yMapping = pv.Scale.log(0.01,7).range(0,panelHeight);

var barChartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(30)

barChartPanel.add(pv.Bar)
.data([0.012,0.017,0.022,0.034,0.067,0.089,1.4,2.6,
4.6,6.4])

.width(20)

.bottom(0)

.height(yMapping)

.left(function() this.index * 30);

barChartPanel.add(pv.Rule)
.data(yMapping.ticks())
.strokeStyle("lightgray")
.bottom(yMapping)
.anchor("left").add(pv.Label)
.font("6pt San Serif")
.text(yMapping.tickFormat);

barChartPanel.add(pv.Rule)
.bottom(0);

barChartPanel.add(pv.Rule)
.left(0);

barChartPanel.render();

c05 19 August 2011; 9:37:39

206 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

Another quantitative mapping function is the pv.Scale.root, which
operates in a similar manner to the pv.Scale.log method; however, the
mapping is based on the root scale. To illustrate the use of this class, the log
scale function (pv.Scale.log) from the previous example is replaced with
the pv.Scale.root, and the resulting chart is shown in Fig. 5.54.

The class pv.Scale.quantile is an option to use when mapping values
whose domain (data space) can be ordered onto quantized values. The defaults
range is 0 to 1, with 0 the lowest value, and 1 the highest.

FIGURE 5.53 Bar chart created with a log scaling function

c05 19 August 2011; 9:37:39

5.4 CREATING CUSTOMIZED PLOTS 207

There is often no clear mapping of categorical data onto either position or
color space. The class pv.Scale.ordinal is used to explicitly define this
mapping. This class can be called with or without an explicit list of all
categories to visualize. In the following example, two pv.Scale.ordinal
methods are assigned to the variables ordinalYMapping and
ordinalColorMapping. ordinalYMapping maps the specified catego-
rical values to a vertical pixel location. The class is called with the list of all

FIGURE 5.54 Bar chart created with a root scaling function

c05 19 August 2011; 9:37:39

208 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

domain categories as arguments (“low”, “low-medium”, “medium”,
“medium-high”, “high”). Alternatively, the array can be assigned and its
different values used automatically. The method split was called to define the
minimum and maximum values for the mapped pixel locations, which is the
distance from the bottom of the screen (0) to the height of the panel. The
second ordinal mapping scale function defined is ordinalColorMapping,
which maps the same categories to a list of specific colors, detailed in the range.
Because the number of domain categories matches the number of colors, there
is a one-to-one mapping of the categories to the colors listed. Using these scale
mapping variables, a series of bar charts are generated from data whose height
and color are dependent on the scales defined, as shown in Fig. 5.55. Protovis
has several convenient color palettes (defined in pv.Colors) to use when
coloring ordinal values: Color13, Color19, Color20 (see the Protovis API for
more details).

var panelWidth = 260,
panelHeight = 200;

var ordinalYMapping = pv.Scale
.ordinal("low","low-medium","medium","medium-high",

"high")
.split(0,panelHeight);

FIGURE 5.55 Bar chart created with ordinal scaling functions

c05 19 August 2011; 9:37:39

5.4 CREATING CUSTOMIZED PLOTS 209

var ordinalColorMapping = pv.Scale
.ordinal("low","low-medium","medium","medium-high",

"high")
.range("white","lightgray","gray","darkgray","black");

var barChartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

barChartPanel.add(pv.Bar)
.data(["low","medium","high","medium","medium-high",
"high","low-medium","high"])

.width(20)

.bottom(5)

.height(ordinalYMapping)

.strokeStyle("black")

.left(function() this.index * 30 1 5)

.fillStyle(ordinalColorMapping);

barChartPanel.render();

The split method is used to calculate the pixel location for a series of
categorical values. Using the split method with min and max arguments will
result in the same number of explicit pixel locations as categories identified. The
position of these categories is evenly spaced. To avoid having the first and last
pixel location on each boundary, the method evenly spaces the pixel locations so
that the first and last is offset by half the distance separating the other adjacent
pixel locations. To position the first and last pixel location on the boundaries, the
methodsplitFlush shouldbe used insteadwith the sameparameters.Another
variation for identifying these pixel locations issplitBanded, whichhas a third
parameter. Like the split method, there is an offset for the first and last pixel
locations; however, in the splitBanded method, the size of this offset can be
controlled using the third parameter: band.

5.4.6 Exercises

5.4.6.1 Create a bar chart for the array [2,5,6,8,4,9] where values above 8
are set to a blue color defined using the RGB color scale, values below 3 are set
to a red color defined using the RGB scale, and all other values are defined as a
light gray (again defined using the RGB scale).

5.4.6.2 Create the same bar chart as Exercise 5.4.6.1, but use the HSL color
format to display the colors.

5.4.6.3 For the following array of dates in January 2011 [“2011 01 01”,
“2011 01 02”, “2011 01 03”, “2011 01 04”, “2011 01 05”], display
on the screen the full date (e.g., Monday 02 January 2011).

c05 19 August 2011; 9:37:39

210 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.4.6.4 Create a horizontally aligned area plot (colored “lightblue”), and
anchor a 3-pixel-wide green line to the top of the plot for the following array:
[3,5,7,8,7,9,14].

5.4.6.5 Create a bar chart for the array [5,7,6,2,8,9,6,4,3,6,
7,3,8,6,5,4,10,2,6,8,6,5,4,3,6], anchoring a label to the top of
the chart where the value is greater than 8.

5.4.6.6 Create a plot with the dot mark for the same data array as in Exercise
5.4.6.5, positioning the label above the dot for those values greater than 8.

5.4.6.7 Create a bar chart aligned with the y-axis using the linear scaling
functions for both axes for the array [124.5, 286.43, 134.76, 255.39,
461.38, 336.26].

5.4.6.8 Create a bar chart aligned with the y-axis chart using the log scaling
functions for the array [0.95, 28.63, 1.34, 245.69, 461.38,
336.26].

5.5 CREATING BASIC PLOTS

5.5.1 Overview

When creating visualizations using Protovis, you must keep several issues in
mind. First, Protovis and JavaScript are programming languages, so it is
important to pay attention to case and punctuation. For example, if you define
a variable myVariable, when you use it later in the code, it should be
referenced with the same capitalization (if you use myvariable instead, you
get an error). When defining a mark’s properties, each property is set using a
period (.) before the property name. Semicolons (;) are only used at the end of
portions of code to signify the mark or function is completely defined. Second,
it is important to note that the order in which the graphical objects are placed
on the screen is important because the objects placed later will cover those
placed earlier (if they overlap). Third, comments can be added to the code to
describe what different portions of the code are performing. This is particularly
helpful when rereading code previously written. The expression /* is used to
indicate the start of a comment and */ is used to identify that the comment is
complete. If the comment is contained on a single line, using // at the
beginning of the line identifies that line as a comment.

5.5.2 Handling Arrays and Data

The examples shown so far in this chapter have made use of an array of data in a
single list; for example, [1.2,3.4,2.8,3,6] is an array of four real numbers.
There are a number of convenient operations that can be performed on an array,
where anewarray is created from theoriginal array.filter generates anewarray
that is restricted to the elements that are satisfied by the defined function. For
example, the following code displays the list [6,7,5,7] on the screen because
these are the only elements of the list that are greater than 4.

c05 19 August 2011; 9:37:39

5.5 CREATING BASIC PLOTS 211

var dataArray = [2,4,6,7,5,7];

var panelWidth = 200, panelHeight = 200;

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

chartPanel.add(pv.Label)
.data(dataArray.filter(function(d) d.4))
.text(function(d) d)
.top(function() this.index*15 1 15)
.left(20);

chartPanel.render();

The line containing the filter statement is now exchanged with the
following line.

.data(dataArray.map(function(d) d14))

This results in the list [6,8,10,11,9,11] shown on the screen; that is,
four is added to each element of the array.

Other helpful methods that manipulate arrays include pv.uniq (returns a
list of unique values) and pv.normalize (generates an array that is normal-
ized where all elements add up to 1, which was described earlier). The full list of
methods to manipulate arrays are found in the pv class or the Array class and
are documented in the Protovis API.

Arrays can also be composed of any objects, including nested arrays. For
example, [[1,3,4,2],[5,2,3,5],[3,2,8,7]] is an array of three
arrays (nested array). Each of the nested arrays is composed of four integer
values. A series of methods is available to manipulate this type of data,
including pv.blend (to create a single array by concatenating each nested
array) and pv.transpose (to convert an m3 n matrix to an n3m matrix).
The Protovis API documentation outlines all methods for manipulating arrays
of data.

5.5.3 Reading Data from Files

Data can be accessed from outside the HTML file where the Protovis code is
written. The format for this external data is JSON (JavaScript Object Nota-
tion). The format uses square brackets for the array contents with curly
brackets for each observation.

In the following example, a file containing data on the monthly weather at
Heathrow airport is provided in a JSON format.

c05 19 August 2011; 9:37:39

212 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var heathrowWeather = [
{ month: "Jan", recordHigh: 63.3, averageHigh: 46.4,

averageLow: 36.3, recordLow: 12, precipitation: 2.01},
{ month: "Feb", recordHigh: 64.8, averageHigh: 47.1,

averageLow: 36, recordLow: 14.9, precipitation: 1.34},
{ month: "Mar", recordHigh: 73.9, averageHigh: 52.5,

averageLow: 38.8, recordLow: 20.7, precipitation: 1.65},
{ month: "Apr", recordHigh: 84.4, averageHigh: 57.7,

averageLow: 41.5, recordLow: 29.5, precipitation: 1.77},
{ month: "May", recordHigh: 91.8, averageHigh: 64.2,

averageLow: 47.3, recordLow: 31.6, precipitation: 1.85},
{ month: "Jun", recordHigh: 96.8, averageHigh: 69.8,

averageLow: 53.2, recordLow: 41.7, precipitation: 2.09},
{ month: "Jul", recordHigh: 99, averageHigh: 74.5,

averageLow: 57.6, recordLow: 46.2, precipitation: 1.5},
{ month: "Aug", recordHigh: 101.3, averageHigh: 73.8,

averageLow: 56.8, recordLow: 43.9, precipitation: 1.81},
{ month: "Sep", recordHigh: 92.5, averageHigh: 67.8,

averageLow: 52.2, recordLow: 38.1, precipitation: 2.2},
{ month: "Oct", recordHigh: 84, averageHigh: 60.1,

averageLow: 46.8, recordLow: 24.6, precipitation: 2.44},
{ month: "Nov", recordHigh: 70, averageHigh: 52,

averageLow: 40.8, recordLow: 21.9, precipitation: 2.05},
{ month: "Dec", recordHigh: 64, averageHigh: 46.8,

averageLow: 37, recordLow: 18.7, precipitation: 2.13}
];

The array uses square brackets ([and]) to denote the list of observations,
with each individual record shown within curly braces ({ and }). Each record is
composed of a consistent series of fields (in this example, month, recordHigh,
averageHigh, averageLow, recordLow, and precipitation). The
colon after each field indicates that the value for the field follows. Commas
separate the ‘FIELD’:‘VALUE’ pairs. The value can either be a text (indicated
with “ . . . ”) or numeric value (where the “ . . . ” is optional). This JSON file is
equivalent to a data table where the column headers are month, recordHigh,
averageHigh, averageLow, recordLow, and precipitation, and the values are the
elements in each row.

The location of the file (either on your computer or a URL pointing to a
location on the Web) should be specified in the header of the HTML file. For
example, if this JSON file is called Heathrow-Weather.js and is located in the
same directory as the HTML file containing the corresponding Protovis
visualization, then the following line should be added to the header block:

,scripttype="text/javascript"src="Heathrow-Weather.js".
,/script.

c05 19 August 2011; 9:37:40

5.5 CREATING BASIC PLOTS 213

The values of the individual fields can be accessed within the Protovis
code (e.g.,function(d) d.month accesses the month field when the
heathrowWeather variable is added to a mark).

5.5.4 Worked Examples

The following example creates a plot describing the average and extremeweather
conditions at Heathrow airport. The header portion of the HTML file contains
code to initialize the locationof theProtovis library, aswell as any external data to
be used. In this example, the data is contained in the file Heathrow-Weather.js,
which is located in the same directory as the HTML code.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"Heathrow Weather.js". ,/script.
,/head.

Following the header portion is the body of the code (between the
,body. and ,/body. tags). The code starts with the script tag indicating
that the code that follows is JavaScript with additional Protovis syntax.

,body.

,script type="text/javascript1protovis".

A number of variables are initially defined that indicate the dimensions of
the panel as well as the location of the legend.

var panelHeight = 400
panelWidth = 760
margin = 30
legendLeft = 670
legendTop = 90;

The temperatures will be displayed on the graphic, and a scale that maps
these values (from 0 to 110�F) onto the vertical position is defined because this
scale will be used multiple times.

var temperatureScale = pv.Scale.linear(0,110).range(0,
panelHeight);

Initially a new panel is created where the plot will be drawn.

c05 19 August 2011; 9:37:40

214 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

A label mark is added to the top of the plot for the plot title.

chartPanel.add(pv.Label)
.text("Temperature at Heathrow Airport")
.top(0)
.left(200)
.font("bold 14px sans-serif");

A series of dots are used to indicate the record-high temperatures. The pv.
Dot mark is added to the panel, and the data array (from the external JSON
file) is added (heathrowWeather). Each row of the data is an individual
month, which means that 12 dots will be drawn on the plot. Here, the record-
high temperatures are to be drawn, with the corresponding data found in the
recordHigh field of the array (accessed via d.recordHigh). This statement
must be within a function to access the field value. The vertical position of the
dot is calculated using the temperatureScale function, and the horizontal
position is a function of the order of the elements in the array. The dots are
colored red, with a black border.

chartPanel.add(pv.Dot)
.data(heathrowWeather)
.bottom(function(d) temperatureScale(d.recordHigh))
.left(function() this.index * 50 1 20 1 5)
.strokeStyle("black")
.fillStyle("red");

Abar is used to represent thehigh and lowaverage temperatures.Abarmark is
added to the plot panel, and an individual bar is generated for each element of the
heathrowWeather array (i.e., one bar per month). The bottom of each bar
maps onto the average low temperature value, and the top of the bar maps onto
the average high temperature. The bottom of the bar is calculated directly by
accessing the average low value and mapping it onto the vertical position using
the scale function (function(d) temperatureScale(d.averageLow)),
whereas the height is the difference between the average high and average low
mapped values. The horizontal position of the bars is again based on the order in
which the observations occur in the array, and the bars are colored in gray.

chartPanel.add(pv.Bar)
.data(heathrowWeather)
.bottom(function(d) temperatureScale(d.averageLow))

c05 19 August 2011; 9:37:40

5.5 CREATING BASIC PLOTS 215

.height(function(d) temperatureScale(d.averageHigh) -
temperatureScale(d.averageLow))

.left(function() this.index * 50 1 20)

.width(10)

.fillStyle("lightgray")

.strokeStyle("lightgray");

Blue dots (drawn as triangles) with black borders are used to display the
record-low temperatures and are mapped onto the plot in a manner similar to
mapping the record-high values.

chartPanel.add(pv.Dot)
.data(heathrowWeather)
.bottom(function(d) temperatureScale(d.recordLow))
.shape("triangle")
.left(function() this.index * 50 1 20 1 5)
.strokeStyle("black")
.fillStyle("blue");

A y-axis is added to the plot panel at a distance of 0 pixels from the left.
Because no other property is set, an axis is drawn along the entire height of the
panel.

chartPanel.add(pv.Rule)
.left(0);

A label “Temperature (Fahrenheit)” is drawn on the plot 20 pixels to the left
of the plot margin. The text is rotated by 90� counterclockwise.

chartPanel.add(pv.Label)
.text("Temperature (Fahrenheit)")
.left(-20)
.bottom(150)
.textAngle(-Math.PI/2);

A series of tick-mark values are generated using the temperatureScale
scale’s ticks function. Each tick mark is positioned using the temperature
scale function and has a width of 3 pixels. A label corresponding to each of the
tick-mark values is anchored to the left of each tick.

chartPanel.add(pv.Rule)
.data(temperatureScale.ticks())
.bottom(temperatureScale)
.left(0)
.width(3)
.anchor("left").add(pv.Label);

c05 19 August 2011; 9:37:40

216 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

The x-axis is drawn using the pv.Rule mark starting from the bottom left-
hand corner of the panel with a horizontal distance of 600 pixels.

chartPanel.add(pv.Rule)
.bottom(0)
.left(0)
.width(600);

Tick marks are added to the horizontal axis corresponding to each of the
observations in the array (i.e., one per month). The horizontal location of
the ticks uses the same function as the position of the corresponding marks.
Labels are added to each of the values and anchored at the bottom.

chartPanel.add(pv.Rule)
.data(heathrowWeather)
.bottom(0)
.left(function() this.index * 50 1 20)
.height(3)
.anchor("bottom").add(pv.Label)
.text(function(d) d.month);

A title for the x-axis is created and positioned in the center of the axis, 25
pixels below.

chartPanel.add(pv.Label)
.text("Months")
.bottom(-25)
.left(300);

A legend is drawn to indicate the meaning of each of the graphical
elements.

chartPanel.add(pv.Label)
.text("Legend")
.left(legendLeft)
.top(legendTop)
.font("bold 12px sans-serif")
.add(pv.Dot)
.left(legendLeft14)
.top(legendTop 1 30)
.fillStyle("red")
.strokeStyle("black")

.add(pv.Label)
.text("Record high temperature")
.left(legendLeft 1 15)

c05 19 August 2011; 9:37:40

5.5 CREATING BASIC PLOTS 217

.top(legendTop 1 37)

.font("12px sans-serif")
.add(pv.Bar)
.top(legendTop 1 50)
.left(legendLeft)
.height(40)
.width(10)
.fillStyle("gray")
.strokeStyle("gray")

.add(pv.Label)
.text("Average low to high")
.left(legendLeft 1 15)
.top(legendTop 1 75)

.add(pv.Dot)
.fillStyle("blue")
.strokeStyle("black")

.shape("triangle")
.left(legendLeft14)
.top(legendTop 1 110)

.add(pv.Label)
.text("Record low")
.left(legendLeft 1 15)
.top(legendTop 1 117);

chartPanel.render();

The script, body, and HTML tags are terminated to complete the code.

,/script.
,/body.
,/html.

The entire code follows with Fig. 5.56 showing the resulting visualization.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"Heathrow-Weather.js". ,/script.
,/head.

,body.

,script type="text/javascript1protovis".

c05 19 August 2011; 9:37:40

218 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var panelHeight = 400
panelWidth = 800
margin = 30
legendLeft = 670
legendTop = 90;

var temperatureScale = pv.Scale.linear(0,110).range(0,
panelHeight);

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Label)
.text("Temperature at Heathrow Airport")
.top(0)
.left(200)
.font("bold 14px sans-serif");

chartPanel.add(pv.Dot)

FIGURE 5.56 Plot displaying the temperature at Heathrow airport

c05 19 August 2011; 9:37:40

5.5 CREATING BASIC PLOTS 219

.data(heathrowWeather)

.bottom(function(d) temperatureScale(d.recordHigh))

.left(function() this.index * 50 1 20 1 5)

.strokeStyle("black")

.fillStyle("red");

chartPanel.add(pv.Bar)
.data(heathrowWeather)
.bottom(function(d) temperatureScale(d.averageLow))
.height(function(d) temperatureScale(d.averageHigh) -

temperatureScale(d.averageLow))
.left(function() this.index * 50 1 20)
.width(10)
.fillStyle("gray")
.strokeStyle("gray");

chartPanel.add(pv.Dot)
.data(heathrowWeather)
.bottom(function(d) temperatureScale(d.recordLow))
.shape("triangle")
.left(function() this.index * 50 1 20 1 5)
.strokeStyle("black")
.fillStyle("blue");

chartPanel.add(pv.Rule)
.left(0);

chartPanel.add(pv.Label)
.text("Temperature (Fahrenheit)")
.left(-20)
.bottom(150)
.textAngle(-Math.PI/2);

chartPanel.add(pv.Rule)
.data(temperatureScale.ticks())
.bottom(temperatureScale)
.left(0)
.width(3)
.anchor("left").add(pv.Label);

chartPanel.add(pv.Rule)
.bottom(0)
.left(0)
.width(600);

c05 19 August 2011; 9:37:40

220 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

chartPanel.add(pv.Rule)
.data(heathrowWeather)
.bottom(0)
.left(function() this.index * 50 1 20)
.height(3)
.anchor("bottom").add(pv.Label)
.text(function(d) d.month);

chartPanel.add(pv.Label)
.text("Months")
.bottom(-25)
.left(300);

chartPanel.add(pv.Label)
.text("Legend")
.left(legendLeft)
.top(legendTop)
.font("bold 12px sans-serif")
.add(pv.Dot)
.left(legendLeft14)
.top(legendTop 1 30)
.fillStyle("red")
.strokeStyle("black")

.add(pv.Label)
.text("Record high temperature")
.left(legendLeft 1 15)
.top(legendTop 1 37)
.font("12px sans-serif")

.add(pv.Bar)
.top(legendTop 1 50)
.left(legendLeft)
.height(40)
.width(10)
.fillStyle("gray")
.strokeStyle("gray")

.add(pv.Label)
.text("Average low to high")
.left(legendLeft 1 15)
.top(legendTop 1 75)

.add(pv.Dot)
.fillStyle("blue")
.strokeStyle("black")
.shape("triangle")
.left(legendLeft14)

c05 19 August 2011; 9:37:40

5.5 CREATING BASIC PLOTS 221

.top(legendTop 1 110)
.add(pv.Label)
.text("Record low")
.left(legendLeft 1 15)
.top(legendTop 1 117);

chartPanel.render();

,/script.
,/body.
,/html.

5.5.5 Exercises

5.5.5.1 A candlestick plot is often used to represent financial data, such as the
prices of stocks over a period of time. The plot presents information on the high
and low values for the day (using a line) and the opening and closing values
(using a bar). If the stock or fund closes higher than the opening value, the
color of the bar is white, whereas if the stock closes lower, the bar is filled in
(using dark gray in this example).

The following data captures information on the price for the Standard and
Poor’s 500 stock index for the month of January 2011. This data is located in
the file CandlestickData.js.

var standardAndPoorsData = [
{day: "2011 01 03", open: 1257.62, close: 1271.87, high:

1276.17, low: 1257.62},
{day: "2011 01 04", open: 1272.62, close: 1270.20, high:

1274.12, low: 1262.66},
{day: "2011 01 05", open: 1268.78, close: 1276.56, high:

1277.63, low: 1265.36},
{day: "2011 01 06", open: 1276.29, close: 1273.85, high:

1278.17, low: 1270.43},
{day: "2011 01 07", open: 1274.41, close: 1271.50, high:

1276.83, low: 1261.70},
{day: "2011 01 10", open: 1270.84, close: 1269.75, high:

1271.52, low: 1262.18},
{day: "2011 01 11", open: 1272.58, close: 1274.48, high:

1277.25, low: 1269.62},
{day: "2011 01 12", open: 1275.65, close: 1283.96, high:

1286.87, low: 1275.65},
{day: "2011 01 13", open: 1285.78, close: 1283.76, high:

1286.70, low: 1280.47},

c05 19 August 2011; 9:37:40

222 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

{day: "2011 01 14", open: 1283.90, close: 1293.24, high:
1293.24, low: 1281.24},

{day: "2011 01 18", open: 1293.22, close: 1295.02, high:
1296.06, low: 1290.16},

{day: "2011 01 19", open: 1294.52, close: 1281.92, high:
1294.60, low: 1278.92},

{day: "2011 01 20", open: 1280.85, close: 1280.26, high:
1283.35, low: 1271.26},

{day: "2011 01 21", open: 1283.63, close: 1283.35, high:
1291.21, low: 1282.07},

{day: "2011 01 24", open: 1283.29, close: 1290.84, high:
1291.93, low: 1282.47},

{day: "2011 01 25", open: 1288.17, close: 1291.18, high:
1291.26, low: 1281.07},

{day: "2011 01 26", open: 1291.97, close: 1292.63, high:
1299.74, low: 1291.97},

{day: "2011 01 27", open: 1297.51, close: 1299.54, high:
1301.29, low: 1294.41},

{day: "2011 01 28", open: 1299.63, close: 1276.34, high:
1302.67, low: 1275.10}

];

Using this data, create the candlestick plot as shown in Fig. 5.57.

5.6 DATA GRAPHICS

5.6.1 Frequency Histograms

Frequency histograms are regularly used to understand the variability in a list
of numbers. The numbers are divided into a series of bins that represent
specific values or values within a range. The data values are examined to
understand how many observations fall within each bin, and these bins are
plotted using bars whose length represents the number of observations.
Histograms can be used to understand the range of values as well as the type
of frequency distribution, such as whether the observations follow a normal
distribution.

In Protovis, two classes can be used to generate frequency histograms:
pv.histogram and pv.histogram.bin. The following example
generates a frequency histogram for a variable MW (molecular weight) for a
series of tranquilizing agents, collected from the PubChem database (http://
pubchem.ncbi.nlm.nih.gov/). These agents are defined under the variable
tranquilizingAgents,which includes fields describing these chemicals as
well as the type of tranquilizing agent (“Antianxiety”, “Antimanic”, and
“Antipyschotic”). The following shows a small portion of the table.

c05 19 August 2011; 9:37:40

5.6 DATA GRAPHICS 223

var tranquilizingAgents = [
{
CID: 441233,
MW: 133.190340,
HBDC: 1,
HBAC: 1,
XLogP: 1.5,
TC: 1,
TFC: 0,
MF: "C9H11N",
type: "Antianxiety",
class: 1

},
{
CID: 270840,
MW: 334.492860 ,
HBDC: 2 ,

FIGURE 5.57 Candlestick data from the S&P 500 in January 2011

c05 19 August 2011; 9:37:40

224 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

HBAC: 3 ,
XLogP: 4.2 ,
TC: 4 ,
TFC: 0 ,
MF: "C21H34O3",
type: "Antianxiety" ,
class: 1

},
. . .

In the following code, a series of variables is initially defined outlining the
height and width of the panel as well as the size of the margin.

var panelHeight = 300
panelWidth = 400
margin = 20

To understand the range of molecular weight values, the pv.max routine is
called to calculate the highest molecular weight value.

maxMolWtValue = pv.max(tranquilizingAgents, function
(d) d.molecularweight)

Because the ranges of molecular weights will be displayed along the x-axis, an
xMapping scale function variable is created. Thismaps the domain values (from
100 to the maximum molecular weight) onto the panel’s horizontal position.

xMapping = pv.Scale.linear(100, maxMolWtValue).range
(0, panelWidth)

Next, the histogram bins are calculated by using the histogram class
(pv.histogram) called with the data (tranquilizingAgents), along
with specifying an accessor function (function(d) d.MW). The method is
called to calculate an array of bins to be used in the frequency histogram.
The ticks method (from the xMapping scale variable) is used to identify
the cutoff points for the bins. An array is returned containing these bins
(pv.histogram.Bin). pv.histogram.Bin has three fields: dx (the size
of the bin’s range), x (the start value), and y (the number of observations in the
bin or a probability).

histogramBins = pv.histogram(tranquilizingAgents,
function(d)d.MW).bins(xMapping.ticks(20))

The y value type (i.e., frequency or probability) is dependent on how the
histogram was configured using the frequency method. A yMapping scale

c05 19 August 2011; 9:37:40

5.6 DATA GRAPHICS 225

variable is defined that uses the maximum histogram frequency count to
determine the domain range.

yMapping = pv.Scale.linear(0, pv.max(histogramBins,
function(d) d.y)).range(0, panelHeight);

A panel is initialized and a bar mark added whose individual bars are
configured based on the histogram bins previously calculated. In addition, rule
marks are used to display the x-axis and grid lines of the plot along with
appropriate boundary labels.

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Bar)
.data(histogramBins)
.bottom(0)
.left(function(d) xMapping(d.x))
.width(20)
.height(function(d) yMapping(d.y))
.fillStyle("darkgray")
.strokeStyle("white");

chartPanel.add(pv.Rule)
.data(yMapping.ticks(10))
.bottom(yMapping)
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)
.text(yMapping.tickFormat)
.strokeStyle("black");

chartPanel.add(pv.Rule)
.data(xMapping.ticks())
.left(xMapping)
.bottom(-3)
.height(3)

.anchor("bottom").add(pv.Label)
.text(xMapping.tickFormat);

chartPanel.add(pv.Rule)
.bottom(0);

chartPanel.render();

c05 19 August 2011; 9:37:41

226 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

Here is the entire code for displaying the histogram:

,html.
,head.
,script type="text/javascript" src="../protovis.js".

,/script.
,script type="text/javascript" src="Tranquilizers.js".

,/script.
,/head.

,body.

,script type="text/javascript1protovis".

var panelHeight = 300
panelWidth = 400
margin = 20
maxMolWtValue = pv.max(tranquilizingAgents,
function(d)d.MW)

xMapping = pv.Scale.linear(100, maxMolWtValue)
.range(0, panelWidth)

histogramBins = pv.histogram(tranquilizingAgents,
function(d)d.MW).bins(xMapping.ticks(20))

yMapping = pv.Scale.linear(0, pv.max
(histogramBins, function(d)d.y)).range(0,
panelHeight);

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Bar)
.data(histogramBins)
.bottom(0)
.left(function(d) xMapping(d.x))
.width(20)
.height(function(d) yMapping(d.y))
.fillStyle("darkgray")
.strokeStyle("white");

chartPanel.add(pv.Rule)
.data(yMapping.ticks(10))
.bottom(yMapping)
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)

c05 19 August 2011; 9:37:41

5.6 DATA GRAPHICS 227

.text(yMapping.tickFormat)

.strokeStyle("black");

chartPanel.add(pv.Rule)
.data(xMapping.ticks())
.left(xMapping)
.bottom(-3)
.height(3)

.anchor("bottom").add(pv.Label)
.text(xMapping.tickFormat);

chartPanel.add(pv.Rule)
.bottom(0);

chartPanel.render();

,/script.
,/body.
,/html.

The resulting frequency histogram is displayed in Fig. 5.58.

5.6.2 Box-and-Whisker Plots

A box-and-whisker plot is an alternative approach to understanding the
frequency distribution for an array of data. In this example, the results of
three experiments are initially defined as an array of nested arrays.

var experiments = ["Experiment 1","Experiment 2",
"Experiment 3"];

var dataValues = [[3,2,3,2,5,6,3,8,9,14,11,13],[5,3,2,5,
6,4,8,9,10,3,12,4],[3,6,5,8,7,3,9,10,14,12,11,3]];

Variables are initialized for the panel’s width and height along with the
width of the tail of the box-and-whisker plot, the width of the box-and-whisker
bar, and the size of the dot representing the mean value, as well as the colors for
the lines and boxes.

var width = 500, height = 200, tailWidth = 10, barWidth = 20,
meanDotSize = 2;

var fillColor = "lightgray", lineColor = "black";

The experimental values are initially examined to determine the maximum
and minimum values across all three experiments. This is calculated by creating
a new array containing the maximum value for each of the nested arrays, from

c05 19 August 2011; 9:37:41

228 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

which the maximum value across all three experiments is identified. Similarly,
the minimum value across all three experiments is calculated.

var maxValue = pv.max(dataValues.map(function(d) pv.max(d)));
var minValue = pv.min(dataValues.map(function(d) pv.min(d)));

A variable is created for the number of observations in each experiment,
using the experiment at index 0 as a prototype experiment.

var numberOfObservations = dataValues[0].length;

Two variables that reference functions are defined that will calculate the
upper-quartile value and lower-quartile value for a list of observations. First,
the list is ordered, and then the value in the position that is 3/4 (for upper
quartile) or 1/4 (for lower quartile) along the array is returned. Note that that
these functions only provide an approximation of upper- and lower quartiles.

FIGURE 5.58 Frequency histogram

c05 19 August 2011; 9:37:41

5.6 DATA GRAPHICS 229

var upperQuartile = function(d){ d.sort(pv.naturalOrder);
return d[Math.round(numberOfObservations*3/4)]; }

var lowerQuartile = function(d){ d.sort(pv.naturalOrder);
return d[Math.round(numberOfObservations/4)]; }

Two variables define functions to map the three individual experiments
along the x-axis and the data values for the entire range of possible values along
the y-axis.

var xScaleMapping = pv.Scale.ordinal(experiments).split
(0,width),

yScaleMapping = pv.Scale.linear(minValue,maxValue)
.range(0,height);

A chart panel is created.

var chartPanel = new pv.Panel().width(width).height(height)
.margin(20);

The y-axis is annotated with tick marks and labels added to the axis.

chartPanel.add(pv.Rule)
.data(yScaleMapping.ticks())
.bottom(function(d) yScaleMapping(d))
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)
.text(function(d) d);

An x-axis for the individual experiments is added along the bottom of the
panel.

chartPanel.add(pv.Rule)
.data(experiments)
.bottom(0)
.height(4)
.left(function(d) xScaleMapping(d))
.strokeStyle("lightgray")

.anchor("bottom")
.add(pv.Label).text(function(d) d);

A series of dots (drawn as horizontal ticks) are added to the chart for each
experiment that represents the maximum value.

chartPanel.add(pv.Dot)
.data(dataValues)

c05 19 August 2011; 9:37:41

230 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.left(function() xScaleMapping(experiments[this.index])
- (tailWidth/2))

.shape("tick")

.size(tailWidth)

.angle(Math.PI/2)

.strokeStyle(lineColor)

.bottom(function(d) yScaleMapping(pv.max(d)));

Similarly, the minimum value tick marks are added to the chart for each
experiment.

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments[this.index])

- (tailWidth/2))
.shape("tick")
.size(tailWidth)
.angle(Math.PI/2)
.strokeStyle(lineColor)
.bottom(function(d) yScaleMapping(pv.min(d)));

A series of lines (using the dot mark with a “tick” shape) are drawn
between the minimum and maximum values for each experiment.

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments[this.index]))
.shape("tick")
.strokeStyle(lineColor)
.size(function(d) yScaleMapping(pv.max(d)) -
yScaleMapping(pv.min(d)))

.bottom(function(d) yScaleMapping(pv.min(d)));

A box is created for each experiment; the top of the box is located at the
upper quartile, and the bottom of the box is located at the lower quartile.

chartPanel.add(pv.Bar)
.data(dataValues)
.left(function() xScaleMapping(experiments[this.index])
- (barWidth/2))

.bottom(function(d) yScaleMapping(lowerQuartile(d)))

.height(function(d) yScaleMapping(upperQuartile(d)) -
yScaleMapping(lowerQuartile(d)))

.fillStyle(fillColor)

.strokeStyle(lineColor)

.width(barWidth);

c05 19 August 2011; 9:37:41

5.6 DATA GRAPHICS 231

A single line (tick) is drawn for each of the experiments at the median
value.

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments[this.index])

- 10)
.shape("tick")
.size(20)
.strokeStyle(lineColor)
.angle(Math.PI/2)
.bottom(function(d) yScaleMapping(pv.median(d)));

A single circle (using pv.Dot) is added to each experiment’s plot that
represents the mean value of each experiment, and the chart is rendered.

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments[this.index]))
.size(20)
.strokeStyle(lineColor)
.fillStyle(lineColor)
.angle(Math.PI/2)
.bottom(function(d) yScaleMapping(pv.mean(d)));

chartPanel.render();

Figure 5.59 shows the resulting box-and-whisker plot for each of the
experiments.

In this example, a series of mathematical operations were performed on the
data array, including pv.min, pv.max, pv.median, and pv.mean. Many
additional calculations, such as pv.deviation (estimate of the standard
deviation), pv.variance (estimate of the variance), and pv.sum (summation
of the values in the list), are available for use and described in the Protovis API
documentation.

5.6.3 Scatterplots

A scatterplot is a helpful visualization to understand the relationship between
two continuous variables. In the following example, the same tranquilizer
dataset as used in Section 5.6.1 is used. The dimensions used to create the panel
are initially defined.

var panelWidth = 400,
panelHeight = 400,
margin = 40

c05 19 August 2011; 9:37:41

232 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

Molecular weight (MW) values are drawn on the x-axis, and XLogP values are
displayed on the y-axis. The minimum and maximum values for each of these
properties are calculated and used to generate scale functions for each property.
The nice function is added to the scales to ensure that easy-to-read boundaries
are produced.

minMolWtValue = pv.min(tranquilizingAgents, function(d)
d.MW)

maxMolWtValue = pv.max(tranquilizingAgents, function(d)
d.MW)

xScale = pv.Scale.linear(minMolWtValue , maxMolWtValue)
.range(0, panelWidth).nice(),

minXLogPValue = pv.min(tranquilizingAgents, function(d)
d.XLogP)

maxXLogPValue = pv.max(tranquilizingAgents, function(d)
d.XLogP)

yScale = pv.Scale.linear(minXLogPValue, maxXLogPValue)
.range(0, panelHeight).nice();

A chart panel is created.

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

FIGURE 5.59 Box-and-whisker plot

c05 19 August 2011; 9:37:41

5.6 DATA GRAPHICS 233

A series of horizontal grid lines are generated with labels placed to the left.

chartPanel.add(pv.Rule)
.data(yScale.ticks())
.bottom(yScale)

.anchor("left").add(pv.Label)
.text(yScale.tickFormat);

A vertically oriented axis label is added.

chartPanel.add(pv.Label)
.text("XLogP")
.left(-10)
.bottom(175)
.textAngle(-Math.PI/2);

A series of vertical grid lines are added to the plot with a label for each line
added at the bottom.

chartPanel.add(pv.Rule)
.data(xScale.ticks())
.left(xScale)

.anchor("bottom").add(pv.Label)
.text(xScale.tickFormat);

The x-axis title is added.

chartPanel.add(pv.Label)
.text("Molecular Weight")
.bottom(-25)
.left(150);

The data values are added to the plot as a series of dots (using pv.Dot) with
the distance from the left side calculated using the xScale function, and the
distance from the bottom of the panel calculated using the yScale function.

chartPanel.add(pv.Dot)
.data(tranquilizingAgents)
.left(function(d) xScale(d.MW))
.bottom(function(d) yScale(d.XLogP))
.fillStyle("lightgray")
.strokeStyle("black");

chartPanel.render();

Figure 5.60 shows the resulting scatterplot.

c05 19 August 2011; 9:37:41

234 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.6.4 Exercises

5.6.4.1 Re-create the histogram visualization from Section 5.6.1, and change
the number of bins to (i) 7 and (ii) approximately 40.

5.6.4.2 Create a frequency histogram for the property XLogP (distribution
coefficient).

5.6.4.3 Create a scatterplot using the tranquilizer data where each observa-
tions is color-coded according to the type of tranquilizer: red for antianxiety,
green for antimanic, and blue for antipsychotic.

5.6.4.4 A logistic regression model (Myatt & Johnson, 2009) was generated
to predict whether an observation is positive (1) or negative (0). The logistic
regression model calculates a probability. A cutoff can be used to assign the
calculated prediction probability as positive or negative. For example, using a
0.5 cutoff will assign values greater than or equal to 0.5 as positive and values
less than 0.5 as negative. A ROC plot (Receiver Operating Characteristic)

FIGURE 5.60 Scatterplot for the tranquilizing agents

c05 19 August 2011; 9:37:41

5.6 DATA GRAPHICS 235

assesses the quality of a model. Different cutoff values are used, the false
positive rate (or sensitivity) is plotted along the x-axis, and the false positive
rate (or 1-specificity) is plotted along the y-axis, as shown in Fig. 5.61. The plot
should be to the left of the diagonal line, with better models having plots close
to the top-left corner.

A dataset of actual values along with the predicted probabilities is provided
in the file actualAndPredicted.js. A few examples are shown here:

var actualVSPredicted = [
{ actual: 0 , predicted: 0.411},
{ actual: 0 , predicted: 0.305},
{ actual: 0 , predicted: 0.485},
{ actual: 0 , predicted: 0.191},
. . .
];

The number of true positives (TP) is the number of observations that are
correctly predicted as positive. The number of true negatives (TN) is the
number of observations that are correctly predicted as negative. The number of

FIGURE 5.61 ROC plot

c05 19 August 2011; 9:37:41

236 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

false positives (FP) is the number of observations that are predicted positive but
are in fact negative. The number of false negatives (FN) is the number of
observations that are predicted as negative but are in fact positive. These
numbers change with different cutoff values. Sensitivity is calculated as TP /
(TP1FN); specificity is calculated as TN / (TN1FP). Create the ROC plot as
shown in Fig. 5.61.

5.7 COMPOSITE PLOTS

5.7.1 Creating Grouped Plots Using Multiple Panels

So far in this chapter, we have used a single panel and added marks to it. More
complex visualizations can be created by nesting panels within panels. In the
following simple example, a pv.Panel container mark is added to the root
panel (chartPanel). An array with two elements (each element a nested
array) is added to the panel. This will result in two panels being added to the
root panel. Each panel is positioned at a distance based on its index value. The
first panel is positioned at a distance of 0 pixels from the left of the root panel
(03 10), and the second panel (at index 1) is positioned 10 pixels from the left
(13 10). A bar mark is added to each of the panels, and the data property is
set to the corresponding nested array. The bars are positioned relative to each
panel; however, because the second panel is offset by 10 pixels, the grouped
histogram plot is displayed as shown in Fig. 5.62. The color of the bars is based
on the index position of the parent. The bars contained in the panel at index 0
are “lightgray”, and the second panel bars are “darkgray”.

var chartPanel = new pv.Panel()
.width(200)
.height(150);

chartPanel.add(pv.Panel)
.data([[10, 20, 25, 28, 31, 32, 34],

[15, 22, 24, 21, 25, 31, 36]])
.left(function() this.index * 10)

.add(pv.Bar)
.data(function(d) d)
.bottom(0)
.width(10)
.fillStyle(function() (this.parent.index == 0)?

"lightgray" : "darkgray")
.height(function(d) d * 3)
.left(function() this.index * 30);

chartPanel.render();

c05 19 August 2011; 9:37:41

5.7 COMPOSITE PLOTS 237

5.7.2 Inheritance

An important aspect of programming in Protovis is its use of inheritance. This
concept was reviewed earlier in this chapter. In this example, a bar mark
(pv.Bar) is added to a panel, and appropriate properties (such as data,
bottom, and left) are set. A second bar mark is added. This mark inherits
the properties of the original bar mark (such as bottom and width). The use
of inheritance simplifies the code because the second bar mark can reuse the
properties assigned to the first bar mark. The properties of the new mark
(such as data and fillStyle) can, in turn, be overridden to customize its
appearance. The resulting grouped bar chart is shown in Fig. 5.63.

var chartPanel = new pv.Panel()
.width(200)
.height(150);

chartPanel.add(pv.Bar)
.data([10, 20, 25, 28, 31, 32, 34])
.left(function() this.index * 10)
.bottom(0)
.width(10)
.fillStyle("darkgray")
.height(function(d) d * 3)

FIGURE 5.62 Grouped histogram using multiple panels

c05 19 August 2011; 9:37:41

238 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.left(function() this.index * 30)

.add(pv.Bar)

.data([15, 22, 24, 21, 25, 31, 36])

.left(function() this.index * 30 1 10)

.fillStyle("lightgray");

chartPanel.render();

Another approach to simplifying the code is to use off-screen inheritance.
Here an off-screen mark is defined by creating a variable for this prototype
mark and assigning values or functions to its different properties. Now, when a
new mark is added to a panel, by using the extend expression with the off-
screen mark, the new mark’s properties are inherited from the off-screen mark’s
properties. For example, in the following code, an off-screen label mark is
created (offScreenMark) to be used as a prototype. The left property is set
(half the parent panel’s width) along with the font type and text color. A label is
now added to a chart panel, which inherits the properties from the off-screen
mark using the expression .extends(offScreenMark). The new label
added to the panel inherits the left, font, and textStyle properties from
offScreenMark. The resulting visualization is shown in Fig. 5.64.

var offScreenMark = new pv.Label()
.left(function() this.parent.width() / 2)

FIGURE 5.63 Grouped bar chart using inheritance

c05 19 August 2011; 9:37:42

5.7 COMPOSITE PLOTS 239

.font("12px sans-serif")
.textStyle("blue");

var chartPanel = new pv.Panel()
.width(200)
.height(150);

chartPanel.add(pv.Label)
.extend(offScreenMark)
.data(["string-a","string-b","string-c"])
.top(function() this.index * 20 1 20);

chartPanel.render();

5.7.3 Property Chaining

Properties assigned to a mark can be reused with other properties or with other
marks. For example, in the following code, an area mark (pv.Area) is added
to the panel and colored black. A second area mark is added to the previous
area mark. This mark inherits the properties of the first mark; however, the new
area overrides a number of the properties. The second area mark then reuses
the bottom and height from its parent mark to compute the new bottom for the
mark (positioned at the top of the previous mark). This property reuse is

FIGURE 5.64 Labels displayed using off-screen marks

c05 19 August 2011; 9:37:42

240 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

referred to as property chaining. The height of the new area mark inherits the
previous mark’s function, and it is computed using the new marks data. The
resulting plot is shown in Fig. 5.65.

var chartPanel = new pv.Panel()
.width(200)
.height(150);

var area = chartPanel.add(pv.Area)
.data([5, 15, 22, 14, 32, 25])
.bottom(0)
.height(function(d) d * 4)
.left(function() this.index * 25)
.fillStyle("black");

area.add(pv.Area)
.data([4, 6, 3, 8, 4, 7])
.bottom(function() area.bottom() 1 area.height())
.fillStyle("gray");

chartPanel.render();

FIGURE 5.65 Use of property chaining to create a stacked area plot

c05 19 August 2011; 9:37:42

5.7 COMPOSITE PLOTS 241

5.7.4 Creating Plot Matrices Using Multiple Panels

In the following example, a scatterplot matrix is generated using the tranquil-
izer data from Section 5.6.1. The layout is based on the scatterplot matrix
example from the Protovis Web site. The JavaScript file Tranquilizers.js
contains the external data, which includes the list of tranquilizing agent
categories to consider (agents), a list of properties to display in the scatterplot
matrix (compoundProperties), and the data on the different tranquilizing
agents (tranquilizingAgents). Two example entries are displayed for the
tranquilizingAgents array.

var agents = ["Antianxiety", "Antimanic", "Antipsychotic"];

var compoundProperties = ["MW", "HBDC", "XLogP"];

var tranquilizingAgents = [
{
CID: 441233,
MW: 133.190340,
HBDC: 1,
HBAC: 1,
XLogP: 1.5,
TC: 1,
TFC: 0,
MF: "C9H11N",
type: "Antianxiety",
class: 1

},
{
CID: 270840,
MW: 334.492860,
HBDC: 2,
HBAC: 3,
XLogP: 4.2,
TC: 4,
TFC: 0,
MF: "C21H34O3",
type: "Antianxiety", class: 1

},
...

To make the code easier to change at a later time, a number of variables were
initially created that define the size of the scatterplot matrix elements to be
visualized. A 33 3 grid of panels will be created by initially adding three panels
vertically that cover the majority of the width of the root panel, and then to each
of these panels three additional panels will be added. The inner panels will all have

c05 19 August 2011; 9:37:42

242 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

identical width and height values. The size of the scatterplots is set to 125 pixels,
with the main space between the cells defined as 16 pixels and a small margin
around each scatterplot panel of 4 pixels. The height and width of the entire panel
is determined by summing up the individual plot sizes as well as taking into
account the margins and spaces between the cells. The initial three vertically
placed rectangular panels have a height set according to the height of the
scatterplot panel with a small margin on either side (rowCellHeight).

var scatterplotCellSize = 125, spaceBetweenCells = 16,
cellMargin = 4;
var numberOfProperties = compoundProperties.length;
var panelSize = (numberOfProperties * scatterplotCellSize) 1

((numberOfProperties11) * spaceBetweenCells) 1
((2*numberOfProperties) * cellMargin);

var rowCellHeight = scatterplotCellSize 1 (2 * cellMargin);

The scatterplots will be encoding the three different types of tranquilizers in
the dataset using three colors: “white”, “gray”, and “black”.

var tranquilizerColor = pv.colors("white", "gray", "black");

The three properties to be used in the scatterplot matrix are listed in the
compoundProperties array. To easily identify the corresponding scaling
function for each of the properties, a mapping function is defined using
pv.dict. Here, the scaling functions are indexed using the specific property
name as a key. When this function is later called with this key (i.e., the property
name), the corresponding linear scaling function is returned. The domain range
of the scaling function is set using the entire list of tranquilizing agents along
with an accessor function to identify the specific property.

var mappedPropertyScale = pv.dict(compoundProperties,
function(property)

pv.Scale.linear(tranquilizingAgents, function(agent)
agent[property])

.range(0, scatterplotCellSize));

The root panel is initially created based on the dimensions previously
calculated and is colored gray as shown in Fig. 5.66.

var scatterplotMatrixPanel = new pv.Panel()
.width(panelSize)
.height(panelSize)
.left(10)
.top(10)
.fillStyle("gray");

c05 19 August 2011; 9:37:42

5.7 COMPOSITE PLOTS 243

Into the root panel, a series of panels (three in this example) are added. These
panels are positioned to fill most of the horizontal space and are evenly spaced
from the top of the screen, as shown in Fig. 5.67, and colored in light gray.

var cellRows = scatterplotMatrixPanel.add(pv.Panel)
.data(compoundProperties)
.top(function() (this.index * (rowCellHeight 1

spaceBetweenCells)) 1 spaceBetweenCells)
.left(spaceBetweenCells)
.right(spaceBetweenCells)
.height(rowCellHeight)
.fillStyle("lightgray");

FIGURE 5.66 Root panel of the scatterplot matrix

c05 19 August 2011; 9:37:42

244 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

Next, the individual panels making up the grid are added (nine panels in
this example). For each of the row panels (r is used to indicate each row
panel), a new array of data is created. This array contains an element for
each of the values in the compoundProperty array. This new array is
created through the array-mapping function (map), which creates a new array
with the same number of elements but whose values are the result of the
function. In this example, a new array of data values is generated where each
element is a unique pair of values representing combinations of properties
(referred to as parentColumnProperty and parentRowProperty).
Each of the possible scatterplot cells are colored in white and shown in
Fig. 5.68.

FIGURE 5.67 Adding three vertical panels to the scatterplot matrix

c05 19 August 2011; 9:37:42

5.7 COMPOSITE PLOTS 245

var cellMatrix = cellRows.add(pv.Panel)
.data(function(r) compoundProperties.map(function(c)
({parentColumnProperty:c, parentRowProperty:r})))

.left(function() this.index * (scatterplotCellSize 1
spaceBetweenCells 1 (2*cellMargin)) 1 cellMargin)

.width(scatterplotCellSize)

.height(scatterplotCellSize)

.top(cellMargin)

.fillStyle("white");

Only the off-diagonal cells will be used to display the individual scatterplots
(the diagonals will be used to name the axes). Panels are added to display the

FIGURE 5.68 Adding panels (shown in white) to the vertical panels to create the grid

c05 19 August 2011; 9:37:42

246 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

scatterplots. A function is used to determine whether any of the cells should be
visible or not. Any cell where the corresponding column and row properties are
not identical will be visible, as shown in the light gray shading with a dark gray
border in Fig. 5.69.

var scatterplotPanels = cellMatrix.add(pv.Panel)
.visible(function(d) d.parentColumnProperty!=

d.parentRowProperty)
.fillStyle("#eee")
.strokeStyle("darkgray");

FIGURE 5.69 Identifying the panels on which to plot the scatterplots

c05 19 August 2011; 9:37:42

5.7 COMPOSITE PLOTS 247

Next, a series of vertical grid lines are added to each of the visible scatterplot
panels. A look-up is performed to identify the corresponding scaling function
for the vertical property.

var columnGridLine = scatterplotPanels.add(pv.Rule)
.data(function(t) mappedPropertyScale

[t.parentColumnProperty].ticks(5))
.left(function(d, t) mappedPropertyScale

[t.parentColumnProperty](d))
.strokeStyle("white");

Labels are then added to the tick lines along the top and bottom of the
scatterplot matrix panel. Where the row index is 0, the tick labels are positioned
at the top of the grid lines. Where the row panel index is the last element, the
grid labels are positioned at the bottom of the grid lines.

columnGridLine.anchor("bottom").add(pv.Label)
.visible(function() (cellMatrix.parent.index ==

numberOfProperties - 1))
.text(function(d, t) mappedPropertyScale

[t.parentColumnProperty].tickFormat(d))
.textStyle("white");

columnGridLine.anchor("top").add(pv.Label)
.visible(function() (cellMatrix.parent.index == 0))
.text(function(d, t) mappedPropertyScale

[t.parentColumnProperty].tickFormat(d))
.textStyle("white");

In a similar manner, the horizontal grid lines and corresponding labels are
added to the scatterplot matrix. The grid lines and labels are shown in Fig. 5.70,
drawn in white.

var rowGridLines = scatterplotPanels.add(pv.Rule)
.data(function(t) mappedPropertyScale

[t.parentRowProperty].ticks(5))
.bottom(function(d, t) mappedPropertyScale
[t.parentRowProperty](d))

.strokeStyle("white");

rowGridLines.anchor("left").add(pv.Label)
.visible(function() (cellMatrix.index == 0))
.text(function(d, t) mappedPropertyScale

[t.parentRowProperty].tickFormat(d))
.textStyle("white");

c05 19 August 2011; 9:37:43

248 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

rowGridLines.anchor("right").add(pv.Label)
.visible(function() (cellMatrix.index ==

numberOfProperties - 1))
.text(function(d, t) mappedPropertyScale

[t.parentRowProperty].tickFormat(d))
.textStyle("white");

Each of the scatterplot panels to display is associated with two propert-
ies (parentColumnProperty and parentRowProperty), which are
the x-axis and y-axis, respectively, of the scatterplot. Dots are placed
onto each of the scatterplots corresponding to each observation in the

FIGURE 5.70 Adding grid lines and labels to the individual scatterplots

c05 19 August 2011; 9:37:43

5.7 COMPOSITE PLOTS 249

tranquilizingAgents array. The horizontal and vertical mapping of the
domain data onto an individual scatterplot is performed using a scaling function.
The specific scaling function is identified using the mappedPropertyScale
function. The dots are colored according to the tranquilizerColor list
defined at the start. The resulting scatterplots are shown in Fig. 5.71.

scatterplotPanels.add(pv.Dot)
.data(tranquilizingAgents)
.left(function(d, t) mappedPropertyScale
[t.parentColumnProperty]
(d[t.parentColumnProperty]))

FIGURE 5.71 Adding the dots to the individual scatterplots

c05 19 August 2011; 9:37:43

250 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.bottom(function(d, t) mappedPropertyScale
[t.parentRowProperty](d[t.parentRowProperty]))

.size(10)

.strokeStyle("gray")

.fillStyle(function(d) tranquilizerColor(d.type));

Property names are added to the diagonal panels for the axes, as shown in
Fig. 5.72.

cellMatrix.anchor("center").add(pv.Label)
.visible(function(t) t.parentColumnProperty==

t.parentRowProperty)

FIGURE 5.72 Adding the axis labels

c05 19 August 2011; 9:37:43

5.7 COMPOSITE PLOTS 251

.font("bold 12px sans-serif")

.textStyle("gray")

.text(function(t) t.parentColumnProperty);

Finally, a legend is added to the bottom of the scatterplot matrix to convey
the meaning of the color-coding, as shown in Fig. 5.73.

scatterplotMatrixPanel.add(pv.Dot)
.data(agents)
.bottom(7)
.left(function() (rowCellHeight) 1 (2 *

spaceBetweenCells) 1 this.index * 80)

FIGURE 5.73 Adding the legend for the coloring

c05 19 August 2011; 9:37:43

252 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.size(5)

.lineWidth(0.5)

.strokeStyle("black")

.fillStyle(tranquilizerColor)
.anchor("right").add(pv.Label).textStyle("white");

scatterplotMatrixPanel.render();

5.7.5 Layout Management

In Protovis, you can create a large variety of rich visualizations by combining
visual elements in different ways. Although this approach provides a great deal
of flexibility, many types of visualizations are used often. To support these
commonly used composite views, Protovis has a series of standardized
techniques for these layouts, such as grids, hierarchies, and networks (hierar-
chies and networks will be reviewed in the next sections). This makes the
development of commonly used visual organizations quicker and easier. These
layouts share many similarities with the panel class used throughout.

One type of layout is the grid layout (pv.Layout.Grid), which creates a
matrix of cells with each cell evenly spaced. This view corresponds to a 2-D
array, for example, the grid

11 12 13 14
21 22 23 24
31 32 33 34

would be represented as a 2-D array:

[[11,12,13,14],[21,22,23,24],[31,32,33,34]].

In the following example, a 2-D array is specified (heatmap), and a panel is
created (based on the size of the matrix defined). A grid layout is added to the
panel, and the number of rows is set by assigning the heatmap. With these
assignments, we are customizing the layout of the panel. The cells will be
visualized using the bar mark, which is added to the cell directly (not the panel).
A cell is referred to as amark prototype, which contains default property settings
for anymarks that are assigned to it. In this example, the cells are coloredbasedon
their data values, with green colors for the lower numbers, red shades for the
larger numbers, and gray for those in the middle, as shown in Fig. 5.74.

var heatmap = [[2,3,8,9,7,6,4,3],[4,6,8,9,5,6,4,3],[5,7,
8,9,11,12,9,6,4,3],[3,4,6,8,9,8,7,5,4]];

var nosCols = heatmap[0].length,
nosRows = heatmap.length;

c05 19 August 2011; 9:37:43

5.7 COMPOSITE PLOTS 253

var vis = new pv.Panel()
.width(nosCols * 30)
.height(nosRows * 30)
.margin(2)
.strokeStyle("gray")
.lineWidth(2);

vis.add(pv.Layout.Grid)
.rows(heatmap)

.cell.add(pv.Bar)
.fillStyle(pv.Scale.linear()

.domain(0, 4, 8, 12)

.range("green", "gray", "red"));

vis.render();

5.7.6 Networks

A network is an organization of different nodes that are connected in some
manner. To use such an organization, the nodes and connections between
nodes need to be defined. In the following example, a series of financial
transactions between companies is listed. First the companies are described
(nodes in the network), along with a typeOfBusiness assignment (1 are
financial companies, 2 are communications companies, 3 are pharmaceu-
ticals, and 4 are energy). The format for the nodes must conform to the

FIGURE 5.74 Heatmap drawn using the grid layout

c05 19 August 2011; 9:37:43

254 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

pv.Layout.Network.Node interface. Next, the relationships between the
nodes are enumerated (links). Each link has a source and a target represent-
ing the link between the nodes. The first node (“Nations Bank Corp”) is at
index 0, and the second node (“BankAmerica Corp”) is at index 1, and so on.
The first link in the list has the source 0 and target 1, hence it describes a link
between “Nations Bank Corp” and “BankAmercia Corp”. The value
associated with this link is 6.16 (meaning “Nations Bank Corp” purchased
“BankAmerica Corp” for 6.16 3 $10 billions). The format for these links
must conform with the pv.Layout.Network.Link interface.

var financialTransactions = {
nodes:[
{nodeName:"Nations Bank Corp", typeOfBusiness:1},
{nodeName:"BankAmerica Corp", typeOfBusiness:1},
{nodeName:"Travelers Group", typeOfBusiness:1},
{nodeName:"Citycorp", typeOfBusiness:1},
{nodeName:"ATT", typeOfBusiness:2},
{nodeName:"Telecom Inc", typeOfBusiness:2},
{nodeName:"Vodafone", typeOfBusiness:2},
{nodeName:"Airtouch Comm", typeOfBusiness:2},
{nodeName:"Aventis", typeOfBusiness:3},
{nodeName:"SanofiSynthelabo", typeOfBusiness:3},
{nodeName:"SBC Communications", typeOfBusiness:1},
{nodeName:"Ameritech Corp", typeOfBusiness:1},
{nodeName:"Exxon Corp", typeOfBusiness:4},
{nodeName:"Mobile Corp", typeOfBusiness:4},
{nodeName:"Mannesmann", typeOfBusiness:2},
{nodeName:"Pfizer Inc", typeOfBusiness:3},
{nodeName:"WarnerLambert Co", typeOfBusiness:3},
{nodeName:"GlaxoWellcome", typeOfBusiness:3},
{nodeName:"SmithKline Beecham", typeOfBusiness:3},
{nodeName:"America Online", typeOfBusiness:2},
{nodeName:"Time Warner", typeOfBusiness:2},
{nodeName:"Bell Atlantic Corp", typeOfBusiness:2},
{nodeName:"GTE Corp", typeOfBusiness:2},
{nodeName:"Comcast Crop", typeOfBusiness:2},
{nodeName:"ATT Broadband", typeOfBusiness:2},
{nodeName:"Royal Dutch Petrol", typeOfBusiness:4},
{nodeName:"Shell Trans Trade", typeOfBusiness:4},
{nodeName:"BellSouth Corp", typeOfBusiness:2}
],
links:[
{source:0, target:1, value:6.16},
{source:2, target:3, value:7.25},
{source:4, target:5, value:6.99},

c05 19 August 2011; 9:37:43

5.7 COMPOSITE PLOTS 255

{source:6, target:7, value:6.55},
{source:8, target:9, value:6.56},
{source:10, target:11, value:7.04},
{source:12, target:13, value:8.51},
{source:6, target:14, value:20.28},
{source:15, target:16, value:8.88},
{source:17, target:18, value:7.87},
{source:19, target:20, value:18.16},
{source:21, target:22, value:7.13},
{source:23, target:24, value:7.29},
{source:25, target:26, value:8.03},
{source:4, target:27, value:8.94}

]
};

The following code, after creating the chart panel, sets up a panel according
to the arc layout (pv.Layout.Arc). The nodes and links to be displayed are
added to their respective mark prototypes. The arc is visualized using a line
mark, and the nodes are color-coded according to the type of business, as
shown in Fig. 5.75.

var chartPanel = new pv.Panel()
.width(880)
.height(410)
.bottom(120);

var networkArc = chartPanel.add(pv.Layout.Arc)
.nodes(financialTransactions.nodes)

.links(financialTransactions.links);

networkArc.link.add(pv.Line);

networkArc.node.add(pv.Dot)
.radius(5)
.fillStyle(pv.Colors.category19().by(function(d)

d.typeOfBusiness))
.strokeStyle("black");

networkArc.label.add(pv.Label);

chartPanel.render();

The pv.Layout.Matrix is an example of another layout approach for
networks.

c05 19 August 2011; 9:37:43

256 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.7.7 Hierarchies

To create a hierarchical view in Protovis, the relationships between the nodes
need to be defined. In a similar manner to reading an external data table,
Protovis can also read hierarchies of information, such as a JavaScript
hierarchy. In the following example, a hierarchy of central nervous system
(CNS) medications is presented. The hierarchical relationships are depicted by
embedding the subclasses within their parent classes. The Protovis class
pv.Dom provides an internal representation for this hierarchical object to be
used with different hierarchical layout managers. By default, the items that
have values (such as imipramine) are the hierarchy leaves.

var CNSMedication = {
CNSMedication: {
Antidepressants: {
Tricyclics: {
imipramine: "3696",
amitriptyline: "2160",
clomipramine: "2801"

},

FIGURE 5.75 Arc layout representing a network of transactions

c05 19 August 2011; 9:37:43

5.7 COMPOSITE PLOTS 257

Heterocyclics: {
amoxapine: "2170",
maprotiline: "4011",
venlafaxine: "5656"

},
SSRI: {
fluoxetine: "3386",
sertraline: "68617",
paroxetine: "43815",
fluvoxamine: "5324346"

},
MAOs: {
tranylcyprominesulfate: "26069",
isocarboxazid: "3759",
phenelzinesulfate: "61100"

}
},
Anitmanic:{
lithium: "3028194",
carbamazepine: "2554",
depakene: "3121"

}
}
};

In the following example, a hierarchy of CNS medications is included in a
JavaScript file. Thepv.dommethodwill create the hierarchy object, and the top-
level node“CNSMedication” is assignedas the rootnode.Thehierarchyobject
is then used to determine the size of the panel, by calling the nodes()method to
retrieve the list of all nodes, which is used to determine the required height of the
panel. A layout for the panel (indentPanelLayout) is added to the chart’s
root panel. The nodes of the hierarchy are assigned to the nodes property. The
linemark is added to the linkobject. If this is not added, therewould be no explicit
mark to link the nodes, although they would still be organized as a hierarchy
through indentation. The individual nodes of the hierarchy are created by first
addinganewpanel, a dot, and then thenode’s label, anchored to the left and right,
respectively. The resulting hierarchy is shown in Fig. 5.76.

var hierarchy = pv.dom(CNSMedication)
.root("CNSMedication");

var chartPanel = new pv.Panel()
.width(200)
.height(function() (hierarchy.nodes().length 1 1) * 15)
.margin(10);

c05 19 August 2011; 9:37:44

258 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

var indentPanelLayout = chartPanel.add(pv.Layout.Indent)
.nodes(function() hierarchy.nodes())

.depth(15)

.breadth(15);

indentPanelLayout.link.add(pv.Line);

var indentNode = indentPanelLayout.node.add(pv.Panel)

FIGURE 5.76 Hierarchy view using indentPanelLayout

c05 19 August 2011; 9:37:44

5.7 COMPOSITE PLOTS 259

.top(function(n) n.y - 6)
.height(15)
.right(6)
.strokeStyle(null);

indentNode.anchor("left").add(pv.Dot)
.strokeStyle("#darkgray")
.fillStyle("gray")

.anchor("right").add(pv.Label)
.text(function(n) n.nodeName);

chartPanel.render();

A number of layouts support hierarchical displays, including
pv.Layout.Cluster, pv.Layout.Pack, pv.Layout.Partition,
pv.Layout.Tree, and pv.Layout.Treemap. They are defined in the
Protovis API documentation.

5.7.8 Sparklines

Sparklines refer to small data visualizations that are contained within a
paragraph of text. This type of visualization can be created using a combination
of Protovis for generating the individual graphics and HTML where para-
graphs are detailed.

In the following example, based on the examples from the Protovis Web site,
three small plots are defined as functions and called within the paragraph at the
bottom of the HTML page. The resulting display is shown in Fig. 5.77.

FIGURE 5.77 Illustrations of sparkline, embedding graphics within the paragraphs

c05 19 August 2011; 9:37:44

260 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

,body.
,script type="text/javascript1protovis".

var newDrugs = [36,46,40,42,39,35,34,29,24,33,29];

var expenditure = [100,105,120,130,140,150,175,195,210,
230,245];

var chemBio2005 = [70,30];
var chemBio2006 = [72,28];

function sparkline(data) {
var n = data.length, width = n*3, height = 10,

min = pv.min.index(data), max = pv.max.index(data);

var vis = new pv.Panel().width(width).height(height)
.margin(2);

vis.add(pv.Line)
.data(data)
.left(pv.Scale.linear(0, n - 1).range(0, width)
.by(pv.index))

.bottom(pv.Scale.linear(data).range(0, height))

.strokeStyle("#000")

.lineWidth(1);

vis.render();
}

function sparkwedge(data) {
var n = data.length, width = 20, height = 20;

var vis = new pv.Panel().width(width).height(height);

vis.add(pv.Wedge)
.data(pv.normalize(data))
.left(10)

c05 19 August 2011; 9:37:44

5.7 COMPOSITE PLOTS 261

.bottom(10)

.outerRadius(10)

.angle(function(d) Math.PI * 2 * d);

vis.render();
}

function sparkbar(data) {
var width = 35, height = 12;

var vis = new pv.Panel().width(width).height(height);

vis.add(pv.Bar)
.data(data)
.width(2)
.left(function() 3 * this.index)
.height(function(d) Math.round(0.25 * d))
.bottom(0);

vis.render();
}
,/script.

The number of new drugs coming to the market has not grown
significantly over the last decade
,script type=“text/javascript1protovis”.
sparkbar(newDrugs);,/script.

yet the total expenditure in R&D has expanded dramatically
,script type=“text/javascript1protovis”.
sparkline(expenditure);,/script..

The proportion of chemicals vs biotechnology products
in development did not change significantly between 2005
,script type=“text/javascript+protovis”.
sparkwedge(chemBio2005);,/script.

and 2006
,script type=“text/javascript1protovis”.
sparkwedge(chemBio2005);,/script..

,/body.
,/html.

5.7.9 Exercises

5.7.9.1 Trellis plots are used to describe multiple dimensions concerning groups
of data.The JavaScript file PI-PII-PIII-Clinical-Trials.js contains the number of
drugs in phase I, phase II, and phase III for three fictitious pharmaceutical

c05 19 August 2011; 9:37:44

262 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

companies (Alphapharma, Betapharma, and Gammapharma). Two entries are
shown here:

var clinicalTrials = [
{ numberOfDrugs: 10, clinicalTrial: "Phase I", disease:

"cancer", company: "Alphapharm" },
{ numberOfDrugs: 8, clinicalTrial: "Phase II", disease:

"cancer", company: "Alphapharm" },

Create the trellis plot as shown in Fig. 5.78.

5.8 INTERACTIVE PLOTS

5.8.1 Overview

In many situations, you may want to interact with a plot. You might want to
understand more details concerning an element of the plot, such as the
underlying data behind a bar within a bar chart. The JavaScript Protovis
toolkit handles events such as mouse clicks and mouse moves. These
events include the following: “click”, “mousedown”, “mouseup”,
“mouseover”, “mousemove”, and “mouseout”. A full list is provided at
www.w3.org/TR/SVGTiny12/interact.html#SVGEvents. The following section
outlines the use of these events to provide interaction with different graphics.

5.8.2 Tooltips

A simple approach to annotating marks within a graphic is to assign a value
to the mark’s title property. In the following example, an image mark is
added to the panel. The title property is set to “John Wiley & Sons, Inc.”.
This results in a tooltip appearing when the mouse cursor hovers over the
mark, as shown in Fig. 5.79. Note that this approach only handles plain text
tooltips.

var chartPanel = new pv.Panel()
.width(200)
.height(100);

chartPanel.add(pv.Image)
.url("wiley-logo.bmp")
.left(25)
.bottom(25)
.height(50)
.width(151)
.title("John Wiley & Sons, Inc.");

chartPanel.render();

c05 19 August 2011; 9:37:44

5.8 INTERACTIVE PLOTS 263

5.8.3 Hyperlinks

Another simple approach to drilling down into details concerning one or
more elements of a plot is to use hyperlinks to go to another Web page that
contains more information. In the following example, an image is added to a
panel. The mark’s cursor property is set to pointer. Other cursor options
are provided at www.w3.org/TR/CSS2/ui.html#propdef-cursor. They include

FIGURE 5.78 Trellis plot for three fictitious pharmaceutical companies

c05 19 August 2011; 9:37:44

264 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

“auto”, “crosshair”, “move”, “text”, “wait”, and “progress”.
The title is also set to explain the hyperlink action and to be presented as a
tooltip when the mouse cursor hovers over the mark. In this example, three
events are considered: “mouseover”, “mouseout”, and “click”. When a
“mouseover” event is captured, the value of the hyperlink status is set; when
the “mouseout” event is captured, it is reset to present no information.
A “click” event triggers the hyperlink action, performed by setting the
self.location property to the URL where the Web page is to be redirected.

var chartPanel = new pv.Panel()
.width(200)
.height(100);

chartPanel.add(pv.Image)
.url("wiley-logo.bmp")
.left(25)
.bottom(25)
.height(50)
.width(151)
.cursor("pointer")
.title("Hyperlink to John Wiley & Sons, Inc. website")
.event("mouseover", function() self.status =

"Go to \"http://www.wiley.com\"")
.event("mouseout", function() self.status = "")
.event("click", function() self.location =

"http://www.wiley.com");

chartPanel.render();

FIGURE 5.79 Tooltip display when mouse cursor hovers over a mark

c05 19 August 2011; 9:37:44

5.8 INTERACTIVE PLOTS 265

5.8.4 Local Variables and Events

When handling events, it is often important to store a local variable concerning
the state of the visualization. This is performed with a method def that takes
the name of the local variable as the first parameter, with a default value as the
second parameter. In the following example, a local variable currOffset is
defined in the root panel. The value will be set when one of the data elements
has been selected. It is initialized to �1 to indicate that no value has been set. A
pie chart is created in which the individual slices are color-coded light gray if
they correspond to the selected item and color-coded black for the other slices.
Two events, “mouseover” and “mouseout”, are captured. When the mouse
cursor is moved over one of the slices, a function is called that sets the value of
the local variable (currOffset) to indicate that the indexed slice has been
selected. The function also returns the chartPanel, which in turn results in
the panel calling the render() function to redraw the pie chart. The
“mouseout” event resets the local variable to �1, indicating that no value is
currently selected. Because the function also returns the panel, the pie chart
is redrawn, and all the chart slices are drawn in black because currOffset is
now set to�1. Fig. 5.80 shows an example viewwith themouse cursormoved into
the gray slice, whereas Fig. 5.81 illustrates the results of a “mouseout” event.

var chartPanel = new pv.Panel()
.def("currOffset", -1)
.width(200)
.height(200);

var data = [26,32,75,26,34], sum = pv.sum(data);

var wedge = chartPanel.add(pv.Wedge)
.data(data)
.left(75)
.bottom(75)
.outerRadius(70)
.angle(function(d) d / sum * 2 * Math.PI)
.strokeStyle("white")
.fillStyle(function() chartPanel.currOffset() ==

this.index ?
"lightgray" : "black")

.event("mouseover", function() chartPanel.currOffset
(this.index))

.event("mouseout", function() chartPanel.currOffset(-1))
.anchor("center").add(pv.Label)
.textStyle(function() chartPanel.currOffset() ==

this.index ? "black" : "white");

chartPanel.render();

c05 19 August 2011; 9:37:44

266 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.8.5 Behavior

Protovis includes a number of built-in classes to handle events for a series of
common types of interactions, including drag, pan, point, resize, select,
and zoom. Depending on how an event is initiated, a behavior is regis-
tered based on this initiating event, such as a “mouseover” event. The
pv.Behavior.point is an example of one of these built-in Protovis
behavior classes. With this class, the behavior identifies whether the mouse
cursor is close to a mark, which will trigger an event. Where marks are close
together, this class identifies the closest mark to the mouse cursor (such as in a
dense region of dots in a scatterplot). Where marks are part of a continuous
trend (such as a line mark), the class also identifies the closest mark.

FIGURE 5.80 Mouse cursor moved over slice (32)

c05 19 August 2011; 9:37:44

5.8 INTERACTIVE PLOTS 267

In this example, the point behavior is added to the scatterplot examples from
Section 5.6.3. The following code is added to the chart panel’s declaration.

.event("all")

.event("mousemove", pv.Behavior.point());

This entry ensures that any “mousemove” events that are performed
within the panel of the scatterplot are identified. A specified behavior
(pv.Behavior.point()) is bound to the mousemove event and is handled
within the marks that are added to the panel. An optional property can be
assigned to this point to change the radius of the circle within which the event
should be considered. The default is 30 pixels; however, an “Infinity”
value can be assigned where the entire panel should be considered. As an
aside, the .event("all") is used here to catch the first event when the panel
is translucent.

A local variable is defined to identify the selected scatterplot dot.

.def("active", -1)

FIGURE 5.81 Mouse cursor moved away from the pie chart

c05 19 August 2011; 9:37:45

268 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

Two events are added to the dot marks: “point” and “unpoint”. In this
example, the “point” event identifies the mark closest to the mouse cursor
(by default, within a 30-pixel radius). This event is handled by setting the
this.active property to the current index position, which is the selected
scatterplot dot. This code also returns the parent panel, which is redrawn with
the render method. Similarly, an “unpoint” event is handled to recognize
when the mouse cursor is moved away. Here, the active property is reset to �1.

.event("point", function() this.active
(this.index).parent)

.event("unpoint", function() this.active(-1).parent)

A label is drawn next to the scatterplot dot; however, it is only visible
when the active value equals the current index, that is, the selected
scatterplot dot.

.anchor("right").add(pv.Label)
.visible(function() this.anchorTarget().active() ==

this.index)
.text(function(d) d.id);

The following code produces the scatterplot, as shown in Fig. 5.82, where
a label (e.g., “47979”) is placed next to the dot when a cursor is moved close
to it.

var panelWidth = 400,
panelHeight = 400,
margin = 30
maxMolWtValue = pv.max(tranquilizingAgents,
function(d)d.MW)

xScale = pv.Scale.linear(0, maxMolWtValue)
.range(0, panelWidth).nice(),

minALogPValue = pv.min(tranquilizingAgents,
function(d)d.XLogP)

maxALogPValue = pv.max(tranquilizingAgents,
function(d)d.XLogP)

yScale = pv.Scale.linear(minALogPValue,
maxALogPValue).range(0, panelHeight).nice();

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin)
.event("all")
.event("mousemove", pv.Behavior.point());

c05 19 August 2011; 9:37:45

5.8 INTERACTIVE PLOTS 269

chartPanel.add(pv.Rule)
.data(yScale.ticks())
.bottom(yScale)

.anchor("left").add(pv.Label)
.text(yScale.tickFormat);

chartPanel.add(pv.Label)
.text("XLogP")
.left(-10)
.bottom(175)
.textAngle(-Math.PI/2);

chartPanel.add(pv.Rule)
.data(xScale.ticks())

FIGURE 5.82 Scatterplot dot annotated with the observation id (47979) using the

point behavior

c05 19 August 2011; 9:37:45

270 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

.left(xScale)
.anchor("bottom").add(pv.Label)
.text(xScale.tickFormat);

chartPanel.add(pv.Label)
.text("Molecular Weight")
.bottom(-25)
.left(150);

chartPanel.add(pv.Dot)
.def("active", -1)
.data(tranquilizingAgents)
.left(function(d) xScale(d.MW))
.bottom(function(d) yScale(d.XLogP))
.fillStyle("lightgray")
.strokeStyle("black")
.event("point", function() this.active(this.index).parent)
.event("unpoint", function() this.active(-1).parent)

.anchor("right").add(pv.Label)
.visible(function() this.anchorTarget().active() ==
this.index)

.text(function(d) d.CID);

chartPanel.render();

In situations where only one dimension needs to be considered, the
x-dimension or y-dimension can be “collapse”. pv.Behavior.point is
one of six different types of behaviors defined in Protovis, which include
drag, pan, resize, select, and zoom (see the API description for more details).
Events can also be generated using JavaScript controls, such as buttons,
external to the Protovis code (see examples on the Protovis Web site for
illustrations).

5.8.6 Exercises

5.8.6.1 Add a tooltip to the box-and-whisker plot created in Section 5.6.2 to
generate the text shown in Fig. 5.83.

5.8.6.2 Modify the scatterplot visualization described in Section 5.8.5 where,
by clicking on the scatterplot point, the user is redirected to a Web page
with the details on the specific tranquilizing agent. The CID property is a
unique identification for each of the agents. The PubChem database
contains the underlying information on each CID record. For example, the
URL http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=441233
will display the record for the agent whose CID is 441233 (the first observation
in the list).

c05 19 August 2011; 9:37:45

5.8 INTERACTIVE PLOTS 271

5.8.6.3 Using the ROC plot created in Exercise 5.6.4.4, generate an
interactive ROC plot so that moving a cursor close to a point in the plot
provides more information on the cutoff and the quality of the underlying
logistic regression model at that point, as shown in Fig. 5.84.

FIGURE 5.83 Tooltips added to the box-and-whisker plot

FIGURE 5.84 Interactive ROC plot

c05 19 August 2011; 9:37:45

272 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.9 PROTOVIS SUMMARY

The Protovis graphical framework is composed of panels (canvases within
which visualizations are drawn) and marks (specific objects that are drawn).
Properties that can be set to customize these marks are summarized in
Table 5.1.

The use of these properties to position a mark on a panel is summarized in
Fig. 5.85.

Colors can be set using

� Named colors, for example, “black”, “maroon”, “lightgray”

� RGB format, for example, rgb(24,243,117), rgb(40%,60%,80%),
or rgba (30%,35%,40%,0.6)

� HSL format, for example, hsl(130,80%,40%) or hsla
(140,70%,55%,0.3)

� Protovis classes, for example, pv.Color.Rgb, pv.Color.Hsl

Text can be formatted with

� pv.Format.date (formats dates using the strftime function from C)

� pv.Format.time (formats time)

� pv.Format.number (adds appropriate commas and truncates digits)

TABLE 5.1 Summary of the Different Mark’s Properties

Data Positioning Size Style Tooltips Visible

d
a
t
a

t
o
p

b
o
t
t
o
m

l
e
f
t

r
i
g
h
t

W
i
d
t
h

h
e
i
g
h
t

fi
l
l
S
t
y
l
e

s
t
r
o
k
e
S
t
y
l
e

l
i
n
e
W
i
d
t
h

t
i
t
l
e

v
i
s
i
b
l
e

Bar � � � � � � � � � � � �
Label* � � � � � � �
Dot** � � � � � � � � � �
Line � � � � � � � � �
Area � � � � � � � � � � � �
Wedge*** � � � � � � � � � �
Image � � � � � � � � �
* Other label properties: textAlign, textBaseline, textMargin, textAngle, font, textStyle
** Other dot properties: size, shape
*** Other wedge properties: startAngle, endAngle, angle, innerRadius, outerRadius

c05 19 August 2011; 9:37:45

5.9 PROTOVIS SUMMARY 273

Plots can be annotated with

� Axes and grid lines (pv.Rule)

� A mark in a specific position close to another mark (pv.Anchor)

Table 5.2 summarizes a number of commonly used scaling functions in
Protovis.

Table 5.3 describes a number of the main functions to handle data in
Protovis, and Table 5.4 describes some of the commonly used mathematical
operations.

Protovis has a number of standardized techniques for layouts, such as grids,
hierarchies, and networks.

Protovis includes a number of built-in classes to handle events for a series of
common types of interactions, including drag, pan, point, resize, select, and
zoom. The pv.Behavior.point is an example of one of these built-in
Protovis behavior classes.

FIGURE 5.85 Summary of marks and how to position marks on a panel

TABLE 5.2 Summary of Common Scaling Functions in Protovis

Protovis Class Description

pv.Scale.linear Maps continuous data onto dimensions of the chart such as

location or color

pv.Scale.ordinal Maps categorical values onto discrete colors or position on

the chart

pv.Scale.quantile Maps continuous data onto a discrete range

c05 19 August 2011; 9:37:46

274 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

5.10 FURTHER READING

As discussed earlier, the most important accompanying documentation to this
chapter is the detailed API provided on the Protovis Web site (http://mbostock.
github.com/protovis/jsdoc/). The Website also contains useful summaries and
examples. A discussion group on the Protovis language currently contains
technical discussions at http://groups.google.com/group/protovis.

A number of additional online tutorials have been created that describe the
Protovis language and potential applications, including the Knight Digital
Media Center data visualization tutorials (http://multimedia.journalism.berke
ley.edu/), a three-part tutorial at eagereyes.org (http://eagereyes.org/tutorials/
protovis-primer-part-1, http://eagereyes.org/tutorials/protovis-primer-part-2,
http://eagereyes.org/tutorials/protovis-primer-part-3), and a five-part tutorial
at www.jeromecukier.net/?p=429.

An overview on Protovis has been documented in “Declarative Language
Design for Interactive Visualization” (Heer & Bostock, 2010) with background
to the language provided in “Prefuse: A toolkit for interactive information
visualization” (Heer et al., 2005) and “Software design patterns for information
visualization” (Heer & Agrawala, 2006). Background on toolkit designs for
building graphical applications is provided in “Toolkit design for interactive
structured graphics” (Bederson et al., 2004).

A lot of useful accompanying information is also on wikipedia around the
JavaScript language (http://en.wikipedia.org/wiki/JavaScript) and JSON file
format (http://en.wikipedia.org/wiki/JSON).

TABLE 5.3 Selected Functions to Handle Data in Protovis

Protovis Class

or Method Description

pv.uniq Returns a list of unique values

pv.normalize Generates an array that is normalized where all elements add up to 1

pv.blend Creates a single array by concatenating each nested array

pv.transpose Converts an m3 n matrix to an n3m matrix

pv.dict Mapping function indexed using a key

TABLE 5.4 Selected Mathematical Operation in Protovis

Protovis Class or Method Description

pv.range The difference between the minimum and maximum value

pv.min The minimum value

pv.max The maximum value

pv.sum Summation of the values in the list

pv.mean The average value calculated from a list

pv.median The value in the center, when the list is ordered.

c05 19 August 2011; 9:37:46

5.10 FURTHER READING 275

Additional utilities for converting CSV files to JSON files are available
at http://www.cparker15.com/utilities/csv-to-json/ and http://shancarter.com/
data_converter/.

A new JavaScript library D3.js (http://mbostock.github.com/d3/) is being
developed for building custom visualizations to be displayed in a Web browser,
with a focus on interactive visualization.

c05 19 August 2011; 9:37:46

276 HANDS-ON: CREATING INTERACTIVE VISUALIZATIONS WITH PROTOVIS

APPENDIX A

EXERCISE CODE EXAMPLES

5.1.4.1. Follow the instructions in Section 5.1.2, and create the visualization as
shown in Fig. 5.2.

The following is an example implementation with Fig. A.1 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(150)

.height(100)
.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,0.8])
.bottom(0)
.width(20)
.height(function(d) d * 25)
.left(function() this.index * 30)

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

277

bapp 19 August 2011; 9:31:46

.root.render();
,/script.

,/body.
,/html.

5.1.4.2. Change the array values from [1.4,2.3,2.7,1.6,0.8] to
[1.4,2.3,2.7,1.6,0.8,1.4], change the width from 150 to 180, and
save the file. Refresh the Web browser.

The following is an example implementation with Fig. A.2 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(180)

.height(100)
.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,0.8,1.4])
.bottom(0)
.width(20)
.height(function(d) d * 25)
.left(function() this.index * 30)

FIGURE A.1 Exercise 5.1.4.1 screenshot

bapp 19 August 2011; 9:31:47

278 EXERCISE CODE EXAMPLES

.root.render();
,/script.

,/body.
,/html.

5.1.4.3. Change the function for the height field to function(d) d * 20,
save the file, and refresh the Web browser.

The following is an example implementation with Fig. A.3 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(100)
.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,0.8,1.4])
.bottom(0)
.width(20)
.height(function(d) d * 20)
.left(function() this.index * 30)

FIGURE A.2 Exercise 5.1.4.2 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 279

.root.render();
,/script.

,/body.
,/html.

5.1.4.4. Replace the word bottom with top, save the file, and refresh the
Web browser.

The following is an example implementation with Fig. A.4 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(100)
.add(pv.Bar)
.data([1.4,2.3,2.7,1.6,0.8,1.4])
.top(0)
.width(20)

FIGURE A.3 Exercise 5.1.4.3 screenshot

bapp 19 August 2011; 9:31:47

280 EXERCISE CODE EXAMPLES

.height(function(d) d * 20)

.left(function() this.index * 30)
.root.render();

,/script.
,/body.

,/html.

5.1.4.5. Create a new label visualization by removing the block of code
starting with .add(pv.Bar)and ending with .left(function() this.
index * 30), change the panel width to 100, change the panel height to 50,
and add the four lines:

.add(pv.Label)
.top(20)
.left(10)
.text("Exercise example")

Save the file, and refresh the Web browser.
The following is an example implementation with Fig. A.5 showing the

resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.4 Exercise 5.1.4.4 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 281

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(100)
.add(pv.Label)
.top(20)
.left(10)
.text("Exercise example")

.root.render();
,/script.

,/body.
,/html.

5.1.4.6. Change the left property value to 140, save the file, and refresh the
Web browser.

The following is an example implementation with Fig. A.6 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

FIGURE A.5 Exercise 5.1.4.5 screenshot

bapp 19 August 2011; 9:31:47

282 EXERCISE CODE EXAMPLES

.width(200)

.height(100)
.add(pv.Label)
.top(20)
.left(140)
.text("Exercise example")

.root.render();
,/script.

,/body.
,/html.

5.1.4.7. Change the width of the panel to 250, save the file, and refresh the
Web browser.

The following is an example implementation with Fig. A.7 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(250)

.height(100)
.add(pv.Label)

FIGURE A.6 Exercise 5.1.4.6 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 283

.top(20)

.left(140)

.text("Exercise example")
.root.render();

,/script.
,/body.

,/html.

5.2.6.1 Create the chart as shown in Fig. 5.10.
The following is an example implementation with Fig. A.8 showing the

resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

,body.

,script type="text/javascript+protovis".

var panelWidth = 200, panelHeight = 150, barWidth = 20;
var barChartData = [1.2,4.3,2.3,0.9,5.2];
var barColor = function(d) (d , 2) || (d . 5) ? "black" :
"gray";

FIGURE A.7 Exercise 5.1.4.7 screenshot

bapp 19 August 2011; 9:31:47

284 EXERCISE CODE EXAMPLES

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

chartPanel.add(pv.Bar)
.data(barChartData)
.bottom(0)
.width(barWidth)
.height(function(d) d * 25)
.fillStyle(function(d) barColor(d))
.left(function() this.index * 30)

.root.render();

,/script.
,/body.

,/html.

5.2.6.2 Create a chart for the data [3,6,5,2,8,4,3] where the bars are
presented as shown in Fig. 5.11.

The following is an example implementation with Fig. A.9 showing the
resulting screenshot.

FIGURE A.8 Exercise 5.2.6.1 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 285

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Bar)
.data([3,6,5,2,8,4,3])
.left(0)
.height(20)
.width(function(d) d * 20)

FIGURE A.9 Exercise 5.2.6.2 screenshot

bapp 19 August 2011; 9:31:47

286 EXERCISE CODE EXAMPLES

.top(function() this.index * 30)
.root.render();

,/script.
,/body.

,/html.

5.2.6.3 For the chart generated in Exercise 5.2.6.2, color the bars “orange”
for data values greater than 5; otherwise, color the bars “lightblue”.

The following is an example implementation with Fig. A.10 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.10 Exercise 5.2.6.3 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 287

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Bar)
.data([3,6,5,2,8,4,3])
.left(0)
.height(20)
.width(function(d) d * 20)
.top(function() this.index * 30)
.fillStyle(function(d) d . 5 ? "orange" : "lightblue")
.root.render();

,/script.
,/body.

,/html.

5.2.6.4 For the chart created in Exercise 5.2.6.2, color even-valued bars
“lightgray” and odd valued bars “darkgray”. Note that the mod function
(d%2) will return 0 if the value is even and 1 if the value is odd.

The following is an example implementation with Fig. A.11 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Bar)
.data([3,6,5,2,8,4,3])
.left(0)
.height(20)
.width(function(d) d * 20)
.top(function() this.index * 30)

.fillStyle(function(d) (d % 2) == 0 ? "lightgray" :
"darkgray")

.root.render();
,/script.

,/body.
,/html.

bapp 19 August 2011; 9:31:47

288 EXERCISE CODE EXAMPLES

5.3.8.1 Create a bar chart aligned with the x-axis from the array
[3,5,6,8,9,8,11] with a “lightblue” bar, a border drawn in “blue”,
and data value labels.

The following is an example implementation with Fig. A.12 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

FIGURE A.11 Exercise 5.2.6.4 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 289

.height(150)
.add(pv.Bar)
.data([3,5,6,8,9,8,11])
.bottom(0)
.width(15)
.left(function() this.index * 30)
.height(function(d) d * 12)
.fillStyle("lightblue")
.strokeStyle("blue")

.root.render();
,/script.

,/body.
,/html.

5.3.8.2 Create a bar chart aligned with the y-axis with the same attributes as
Exercise 5.3.8.1.

The following is an example implementation with Fig. A.13 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.12 Exercise 5.3.8.1 screenshot

bapp 19 August 2011; 9:31:47

290 EXERCISE CODE EXAMPLES

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Bar)
.data([3,5,6,8,9,8,11])
.left(0)
.height(15)
.top(function() this.index * 30)
.width(function(d) d * 12)
.fillStyle("lightblue")
.strokeStyle("blue")

.root.render();
,/script.
,/body.
,/html.

FIGURE A.13 Exercise 5.3.8.2 screenshot

bapp 19 August 2011; 9:31:47

APPENDIX A 291

5.3.8.3 Create a graphic from the array [3,5,6,8,9,8,11] using
“maroon” crosses at a 45� angle and with a radius of 8 pixels to represent
the data values. Add a label to each of the data values.

The following is an example implementation with Fig. A.14 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Dot)
.data([3,5,6,8,9,8,11])
.left(function() this.index * 30 + 5)

FIGURE A.14 Exercise 5.3.8.3 screenshot

bapp 19 August 2011; 9:31:48

292 EXERCISE CODE EXAMPLES

.bottom(function(d) d * 12)

.strokeStyle("maroon")

.shape("cross")

.radius(8)

.angle(Math.PI / 4)
.add(pv.Label)
.root.render();

,/script.
,/body.

,/html.

5.3.8.4 Create a line plot from the array [4.3,5.4,7.3,6.9,10.3,
11.5] using the cardinal interpolate option, and color the line “darkgreen”
with a 2-pixel width.

The following is an example implementation with Fig. A.15 showing the
resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.15 Exercise 5.3.8.4 screenshot

bapp 19 August 2011; 9:31:48

APPENDIX A 293

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("cardinal")

.root.render();
,/script.

,/body.
,/html.

5.3.8.5 Create five different line plots based on Exercise 5.3.8.4 with different
tension values: 0, 0.25, 0.5, 0.75, 1.

The following is an example implementation (where tension is 0) with
Fig. A.16 showing the resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("cardinal")
.tension(0)

.root.render();
,/script.

,/body.
,/html.

bapp 19 August 2011; 9:31:48

294 EXERCISE CODE EXAMPLES

The following is an example implementation (where tension is 0.25) with
Fig. A.17 showing the resulting screenshot.

,html.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("cardinal")

FIGURE A.16 Exercise 5.3.8.5 screenshot (tension is 0)

bapp 19 August 2011; 9:31:48

APPENDIX A 295

.tension(0.25)
.root.render();

,/script.
,/body.

,/html.

The following is an example implementation (where tension is 0.5) with
Fig. A.18 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)

FIGURE A.17 Exercise 5.3.8.5 screenshot (tension is 0.25)

bapp 19 August 2011; 9:31:48

296 EXERCISE CODE EXAMPLES

.bottom(function(d) d * 12)

.strokeStyle("darkgreen")

.lineWidth(2)

.interpolate("cardinal")

.tension(0.5)
.root.render();

,/script.
,/body.

,/html.

The following is an example implementation (where tension is 0.75) with
Fig. A.19 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

FIGURE A.18 Exercise 5.3.8.5 screenshot (tension is 0.5)

bapp 19 August 2011; 9:31:48

APPENDIX A 297

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("cardinal")
.tension(0.75)

.root.render();
,/script.

,/body.
,/html.

The following is an example implementation (where tension is 1) with
Fig. A.20 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.19 Exercise 5.3.8.5 screenshot (tension is 0.75)

bapp 19 August 2011; 9:31:48

298 EXERCISE CODE EXAMPLES

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("cardinal")
.tension(1)

.root.render();
,/script.

,/body.
,/html.

5.3.8.6 Create six different line plots based on Exercise 5.3.8.4, where
the interpolate property is set to “linear”, “step-before”, “step-
after”, “polar”, “polar-reverse”, and “basis”, respectively.

FIGURE A.20 Exercise 5.3.8.5 screenshot (tension is 1)

bapp 19 August 2011; 9:31:48

APPENDIX A 299

The following is an example implementation (interpolate property is
“linear”) with Fig. A.21 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)

FIGURE A.21 Exercise 5.3.8.6 screenshot (interpolate property is “linear”)

bapp 19 August 2011; 9:31:48

300 EXERCISE CODE EXAMPLES

.interpolate("linear")
.root.render();

,/script.
,/body.

,/html.

The following is an example implementation (interpolate property is
“step-before”) with Fig. A.22 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])

FIGURE A.22 Exercise 5.3.8.6 screenshot (interpolate property is “step-before”)

bapp 19 August 2011; 9:31:48

APPENDIX A 301

.left(function() this.index * 30 + 5)

.bottom(function(d) d * 12)

.strokeStyle("darkgreen")

.lineWidth(2)

.interpolate("step-before")
.root.render();

,/script.
,/body.

,/html.

The following is an example implementation (interpolate property is
“step-after”) with Fig. A.23 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

FIGURE A.23 Exercise 5.3.8.6 screenshot (interpolate property is “step-after”)

bapp 19 August 2011; 9:31:48

302 EXERCISE CODE EXAMPLES

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("step-after")

.root.render();
,/script.

,/body.
,/html.

The following is an example implementation (interpolate property is
“polar”) with Fig. A.24 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.24 Exercise 5.3.8.6 screenshot (interpolate property is “polar”)

bapp 19 August 2011; 9:31:48

APPENDIX A 303

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("polar")

.root.render();
,/script.

,/body.
,/html.

The following is an example implementation (interpolate property is
“polar-reverse”) with Fig. A.25 showing the resulting screenshot.

FIGURE A.25 Exercise 5.3.8.6 screenshot (interpolate property is “polar-
reverse”)

bapp 19 August 2011; 9:31:49

304 EXERCISE CODE EXAMPLES

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("polar-reverse")

.root.render();
,/script.

,/body.
,/html.

The following is an example implementation (interpolate property is
“basis”) with Fig. A.26 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(300)

.height(200)
.add(pv.Line)
.data([4.3,5.4,7.3,6.9,10.3,11.5])
.left(function() this.index * 30 + 5)
.bottom(function(d) d * 12)
.strokeStyle("darkgreen")
.lineWidth(2)
.interpolate("basis")

.root.render();
,/script.

,/body.
,/html.

bapp 19 August 2011; 9:31:49

APPENDIX A 305

5.3.8.7 Create a vertically aligned area plot from the array [43.6,54.8,
47.2,34,7,58.6,34.1] where the left polyline is along the y-axis, and the
variation in the data is shown in the right polyline. The inner region of the chart
should be colored “steelblue” with “darkblue” border.

The following is an example implementation with Fig. A.27 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)
.top(function() this.index * 50)

FIGURE A.26 Exercise 5.3.8.6 screenshot (interpolate property is “basis”)

bapp 19 August 2011; 9:31:49

306 EXERCISE CODE EXAMPLES

.fillStyle("steelblue")

.strokeStyle("darkblue")
.root.render();

,/script.
,/body.

,/html.

5.3.8.8 Create seven different plots by modifying the plot created in Exercise
5.3.8.7 so that each chart uses a different interpolate option (“linear”,
“step-before”, “step-after”, “polar”, “polar-reverse”,
“basis”, and “cardinal”).

The following is an example implementation (interpolate property is
“linear”) with Fig. A.28 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.27 Exercise 5.3.8.7 screenshot

bapp 19 August 2011; 9:31:49

APPENDIX A 307

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)
.top(function() this.index * 50)
.fillStyle("steelblue")
.strokeStyle("darkblue")
.interpolate("linear")

.root.render();
,/script.

,/body.
,/html.

FIGURE A.28 Exercise 5.3.8.8 screenshot (interpolate property is “linear”)

bapp 19 August 2011; 9:31:49

308 EXERCISE CODE EXAMPLES

The following is an example implementation (interpolate property is
“step-before”) with Fig. A.29 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)

FIGURE A.29 Exercise 5.3.8.8 screenshot (interpolate property is “step-before”)

bapp 19 August 2011; 9:31:49

APPENDIX A 309

.top(function() this.index * 50)

.fillStyle("steelblue")

.strokeStyle("darkblue")

.interpolate("step-before")
.root.render();

,/script.
,/body.

,/html.

The following is an example implementation (interpolate property is
“step-after”) with Fig. A.30 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.30 Exercise 5.3.8.8 screenshot (interpolate property is “step-after”)

bapp 19 August 2011; 9:31:49

310 EXERCISE CODE EXAMPLES

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)
.top(function() this.index * 50)
.fillStyle("steelblue")
.strokeStyle("darkblue")
.interpolate("step-after")

.root.render();
,/script.

,/body.
,/html.

The following is an example implementation (interpolate property is
“polar”) with Fig. A.31 showing the resulting screenshot. It should be noted
that “polar” is not a supported option for the area mark and hence Fig. A.31
shows the linear default view.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)
.top(function() this.index * 50)
.fillStyle("steelblue")
.strokeStyle("darkblue")
.interpolate("polar")

.root.render();
,/script.

,/body.
,/html.

bapp 19 August 2011; 9:31:49

APPENDIX A 311

The following is an example implementation (interpolate property is
“polar-reverse”) with Fig. A.32 showing the resulting screenshot. It
should be noted that “polar-reverse” is not a supported option for the
area mark and hence Fig. A.32 shows the linear default view.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)

FIGURE A.31 Exercise 5.3.8.8 screenshot (interpolate property is “polar”)

bapp 19 August 2011; 9:31:49

312 EXERCISE CODE EXAMPLES

.width(function(d) d * 3)

.top(function() this.index * 50)

.fillStyle("steelblue")

.strokeStyle("darkblue")

.interpolate("polar-reverse")
.root.render();

,/script.
,/body.

,/html.

The following is an example implementation (interpolate property is
“basis”) with Fig. A.33 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.32 Exercise 5.3.8.8 screenshot (interpolate property is “polar-reverse”)

bapp 19 August 2011; 9:31:49

APPENDIX A 313

,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)
.top(function() this.index * 50)
.fillStyle("steelblue")
.strokeStyle("darkblue")
.interpolate("basis")

.root.render();
,/script.

,/body.
,/html.

FIGURE A.33 Exercise 5.3.8.8 screenshot (interpolate property is “basis”)

bapp 19 August 2011; 9:31:49

314 EXERCISE CODE EXAMPLES

The following is an example implementation (interpolate property is
“cardinal”) with Fig. A.34 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(300)
.add(pv.Area)
.data([43.6,54.8,47.2,34,7,58.6,34.1])
.left(0)
.width(function(d) d * 3)

FIGURE A.34 Exercise 5.3.8.8 screenshot (interpolate property is “cardinal”)

bapp 19 August 2011; 9:31:49

APPENDIX A 315

.top(function() this.index * 50)

.fillStyle("steelblue")

.strokeStyle("darkblue")

.interpolate("cardinal")
.root.render();

,/script.
,/body.

,/html.

5.3.8.9 Create a donut plot corresponding to the array [4, 5, 7, 8, 2] with the
colors “white”, “lightgray”, “gray”, “darkgray”, and “black”, and
also add a label to each of the wedges showing the data value.

The following is an example implementation with Fig. A.35 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.35 Exercise 5.3.8.9 screenshot

bapp 19 August 2011; 9:31:49

316 EXERCISE CODE EXAMPLES

,body.
,script type="text/javascript+protovis".

var dataArray = [4,5,7,8,2];

var chartPanel = new pv.Panel()
.width(200)
.height(200);

var wedge = chartPanel.add(pv.Wedge)
.data(dataArray)
.left(100)
.bottom(100)
.outerRadius(75)
.innerRadius(25)
.angle(function(d) (d/pv.sum(dataArray))*Math.PI*2)
.strokeStyle("black")

.fillStyle(pv.colors("white", "lightgray", "gray",
"darkgray", "black"));

wedge.add(pv.Label)
.left(function() 45 * Math.cos(wedge.midAngle()) + 100)
.bottom(function() -45 * Math.sin(wedge.midAngle()) +

100)
.textStyle(function() this.index == 4 ? "white" :
"black")

.textAlign("center")

.textBaseline("middle");

chartPanel.render();

,/script.
,/body.

,/html.

5.3.8.10 Create an image using the wiley-logo.bmp file that is 302 pixels wide
and100 pixels high with a black border of 10 pixels.

The following is an example implementation with Fig. A.36 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

bapp 19 August 2011; 9:31:50

APPENDIX A 317

,body.
,script type="text/javascript+protovis".

new pv.Panel()
.width(350)
.height(150)

.add(pv.Image)
.url("wiley-logo.bmp")
.left(25)
.bottom(25)
.height(100)
.width(302)
.lineWidth(10)
.strokeStyle("black")

.root.render();

,/script.
,/body.

,/html.

5.4.6.1 Create a bar chart for the array [2,5,6,8,4,9] where values
above 8 are set to a blue color defined using the RGB color scale, values below 3

FIGURE A.36 Exercise 5.3.8.10 screenshot

bapp 19 August 2011; 9:31:50

318 EXERCISE CODE EXAMPLES

are set to a red color defined using the RGB scale, and all other values are
defined as a light gray (again defined using the RGB scale).

The following is an example implementation with Fig. A.37 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(150)
.add(pv.Bar)
.data([2,5,6,8,4,9])
.bottom(0)
.width(15)
.left(function() this.index * 30)
.height(function(d) d * 12)

FIGURE A.37 Exercise 5.4.6.1 screenshot

bapp 19 August 2011; 9:31:50

APPENDIX A 319

.fillStyle(function(d) d.8 ? "rgb(0,0,255)" : (d,3 ?
"rgb(255,0,0)" : "rgb(200,200,200)"))

.root.render();
,/script.

,/body.
,/html.

5.4.6.2 Create the same bar chart as in Exercise 5.4.6.1, but use the HSL
color format to display the colors.

The following is an example implementation with Fig. A.38 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".
new pv.Panel()

.width(200)

.height(150)
.add(pv.Bar)

FIGURE A.38 Exercise 5.4.6.2 screenshot

bapp 19 August 2011; 9:31:50

320 EXERCISE CODE EXAMPLES

.data([2,5,6,8,4,9])

.bottom(0)

.width(15)

.left(function() this.index * 30)

.height(function(d) d * 12)
.fillStyle(function(d) d.8 ? "hsl(240,50%,50%)" : (d,3

? "hsl(360,50%,50%)" : "hsl(0,0%,80%)"))
.root.render();

,/script.
,/body.

,/html.

5.4.6.3 For the following array of dates in January 2011 [“2011 01 01”,
“2011 01 02”, “2011 01 03”, “2011 01 04”, 2011 01 05”], display on
the screen the full date (e.g., Monday 02 January 2011).

The following is an example implementation with Fig. A.39 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.

FIGURE A.39 Exercise 5.4.6.3 screenshot

bapp 19 August 2011; 9:31:50

APPENDIX A 321

,body.
,script type="text/javascript+protovis".

var panelHeight = 100, panelWidth = 200, margin = 10;
var dateList = ["2011 01 01", "2011 01 02", "2011 01 03",

"2011 01 04", "2011 01 05"];
var dateInputFormat = pv.Format.date("%y %m %d");
var dateOutputFormat = pv.Format.date("%A %d %B %Y");

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Label)
.data(dateList.map(function(d) dateInputFormat.parse

(d)))
.text(function(d) dateOutputFormat(d))
.left(10)
.top(function() this.index*20);

chartPanel.render();

,/script.
,/body.

,/html.

5.4.6.4 Create a horizontally aligned area plot (colored “lightblue”) and
anchor a 3-pixel-wide green line to the top of the chart for the following array:
[3,5,7,8,7,9,14].

The following is an example implementation with Fig. A.40 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".

var areaPanel = new pv.Panel()
.width(220)
.height(150);

bapp 19 August 2011; 9:31:50

322 EXERCISE CODE EXAMPLES

var area = areaPanel.add(pv.Area)
.data([3,5,7,8,7,9,14])
.fillStyle("lightblue")
.left(function() this.index * 30)
.height(function(d) d*6)
.bottom(0);

area.anchor("top").add(pv.Line)
.strokeStyle("green")
.lineWidth(3);

areaPanel.render();

,/script.
,/body.

,/html.

5.4.6.5 Create a bar chart for the array [5,7,6,2,8,9,6,4,3,6,7,3,
8,6,5,4,10,2,6,8,6,5,4,3,6], anchoring a label to the top of the chart
where the value is greater than 8.

The following is an example implementation with Fig. A.41 showing the
resulting screenshot.

FIGURE A.40 Exercise 5.4.6.4 screenshot

bapp 19 August 2011; 9:31:50

APPENDIX A 323

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".

var barPanel = new pv.Panel()
.width(400)
.height(160);

var bars = barPanel.add(pv.Bar)
.data([5,7,6,2,8,9,6,4,3,6,7,3,8,6,5,4,10,2,6,8,6,

5,4,3,6])
.width(13)
.left(function() this.index * 15 + 5)
.height(function(d) d * 10)
.bottom(0);

bars.anchor("top").add(pv.Label)
.textStyle("white")
.visible(function(d) d . 8);

barPanel.render();

,/script.
,/body.

,/html.

FIGURE A.41 Exercise 5.4.6.5 screenshot

bapp 19 August 2011; 9:31:50

324 EXERCISE CODE EXAMPLES

5.4.6.6 Create a plot with the dot mark for the same data array as in Exercise
5.4.6.5, positioning the label above the dot for those values greater than 8.

The following is an example implementation with Fig. A.42 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".

var dotPanel = new pv.Panel()
.width(400)
.height(160);

var dots = dotPanel.add(pv.Dot)
.data([5,7,6,2,8,9,6,4,3,6,7,3,8,6,5,4,10,2,6,8,

6,5,4,3,6])
.size(8)
.left(function() this.index * 15 + 5)
.bottom(function(d) d * 10)
.add(pv.Line);

dots.anchor("top").add(pv.Label)

FIGURE A.42 Exercise 5.4.6.6 screenshot

bapp 19 August 2011; 9:31:50

APPENDIX A 325

.visible(function(d) d . 8);

dotPanel.render();

,/script.
,/body.

,/html.

5.4.6.7 Create a bar chart aligned with the y-axis using the linear scaling
functions for both axes for the array [124.5, 286.43, 134.76, 255.39,
461.38, 336.26].

The following is an example implementation with Fig. A.43 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=
"../protovis.js". ,/script.

,/head.
,body.
,script type="text/javascript+protovis".

var panelWidth = 200, panelHeight = 150;

FIGURE A.43 Exercise 5.4.6.7 screenshot

bapp 19 August 2011; 9:31:50

326 EXERCISE CODE EXAMPLES

var xScaleMapping = pv.Scale.linear(0, 500).range(0,
panelHeight);

var barPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

var bars = barPanel.add(pv.Bar)
.data([124.5,286.43,134.76,255.39,461.38,336.26])
.top(function() this.index * 25)
.height(20)
.left(0)
.width(function(d) xScaleMapping(d));

barPanel.render();

,/script.
,/body.

,/html.

5.4.6.8 Create a bar chart aligned with the y-axis chart using the log scaling
functions for the array [0.95, 28.63, 1.34, 245.69, 461.38,
336.26].

The following is an example implementation with Fig. A.44 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".

var panelWidth = 200, panelHeight = 150;

var xScaleMapping = pv.Scale.log(0.9, 500).range(0,
panelHeight);

var barPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight);

var bars = barPanel.add(pv.Bar)
.data([0.95, 28.63, 1.34, 245.69, 461.38, 336.26])
.top(function() this.index * 25)

bapp 19 August 2011; 9:31:50

APPENDIX A 327

.height(20)

.left(0)

.width(function(d) xScaleMapping(d));

barPanel.render();

,/script.
,/body.

,/html.

5.5.5.1 A candlestick plot is often used to represent financial data, such as
the prices of stocks over a period of time. The plot presents information on the
high and low values for the day (using a line) and the opening and closing
values (using a bar). If the stock or fund closes higher than the opening value,
the color of the bar is white, whereas if the stock closes lower, the bar is filled in
(using dark gray in this example).

The following data captures information on the price for the Standard and
Poors 500 stock index for the month of January 2011. This data is located in the
file CandlestickData.js

var standardAndPoorsData = [
{day: "2011 01 03", open: 1257.62, close: 1271.87, high:
1276.17, low: 1257.62},
{day: "2011 01 04", open: 1272.62, close: 1270.20, high:
1274.12, low: 1262.66},

FIGURE A.44 Exercise 5.4.6.8 screenshot

bapp 19 August 2011; 9:31:50

328 EXERCISE CODE EXAMPLES

{day: "2011 01 05", open: 1268.78, close: 1276.56, high:
1277.63, low: 1265.36},
{day: "2011 01 06", open: 1276.29, close: 1273.85, high:
1278.17, low: 1270.43},
{day: "2011 01 07", open: 1274.41, close: 1271.50, high:
1276.83, low: 1261.70},
{day: "2011 01 10", open: 1270.84, close: 1269.75, high:
1271.52, low: 1262.18},
{day: "2011 01 11", open: 1272.58, close: 1274.48, high:
1277.25, low: 1269.62},
{day: "2011 01 12", open: 1275.65, close: 1283.96, high:
1286.87, low: 1275.65},
{day: "2011 01 13", open: 1285.78, close: 1283.76, high:
1286.70, low: 1280.47},
{day: "2011 01 14", open: 1283.90, close: 1293.24, high:
1293.24, low: 1281.24},
{day: "2011 01 18", open: 1293.22, close: 1295.02, high:
1296.06, low: 1290.16},
{day: "2011 01 19", open: 1294.52, close: 1281.92, high:
1294.60, low: 1278.92},
{day: "2011 01 20", open: 1280.85, close: 1280.26, high:
1283.35, low: 1271.26},
{day: "2011 01 21", open: 1283.63, close: 1283.35, high:
1291.21, low: 1282.07},
{day: "2011 01 24", open: 1283.29, close: 1290.84, high:
1291.93, low: 1282.47},
{day: "2011 01 25", open: 1288.17, close: 1291.18, high:
1291.26, low: 1281.07},
{day: "2011 01 26", open: 1291.97, close: 1292.63, high:
1299.74, low: 1291.97},
{day: "2011 01 27", open: 1297.51, close: 1299.54, high:
1301.29, low: 1294.41},
{day: "2011 01 28", open: 1299.63, close: 1276.34, high:
1302.67, low: 1275.10}
];

Using this data, create the candlestick plot as shown in Fig. 5.57.
The following is an example implementation with Fig. A.45 showing the

resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"candlestickData.js". ,/script.
,/head.

bapp 19 August 2011; 9:31:50

APPENDIX A 329

,body.

,script type="text/javascript+protovis".

var panelHeight = 350
panelWidth = 560
margin = 50
barWidth = 10
legendLeft = 670
legendTop = 90;

var standardAndPoorsScale = pv.Scale.linear(1250,1310)
.range(0,panelHeight);

var dateInputFormat = pv.Format.date("%y %m %d");
var dateOutputFormat = pv.Format.date("%d");

var chartPanel = new pv.Panel()

FIGURE A.45 Exercise 5.5.5.1 screenshot

bapp 19 August 2011; 9:31:50

330 EXERCISE CODE EXAMPLES

.width(panelWidth)

.height(panelHeight)

.margin(margin);

chartPanel.add(pv.Label)
.text("Candlestick chart for the S&P 500 in January 2011")
.top(0)
.left(100)
.font("bold 12pt sans-serif");

chartPanel.add(pv.Dot)
.data(standardAndPoorsData)
.shape("tick")
.bottom(function(d) standardAndPoorsScale (d.low))

.size(function(d) (standardAndPoorsScale(d.high) -
standardAndPoorsScale(d.low)))

.left(function() this.index * 30 + 10 + (barWidth/2))

.strokeStyle("black");

chartPanel.add(pv.Bar)
.data(standardAndPoorsData)
.bottom(function(d) standardAndPoorsScale (d.open ,
d.close ? d.open : d.close))

.height(function(d) (d.open , d.close ?
standardAndPoorsScale (d.close) -
standardAndPoorsScale (d.open) :
standardAndPoorsScale (d.open) -
standardAndPoorsScale (d.close)))

.left(function() this.index * 30 + 10)

.width(barWidth)
.fillStyle(function(d) d.open , d.close ? "white" :
"darkgray")

.strokeStyle("black");

chartPanel.add(pv.Rule)
.left(0);

chartPanel.add(pv.Rule)
.data(standardAndPoorsScale.ticks())
.bottom(standardAndPoorsScale)
.left(0)
.width(3)
.anchor("left").add(pv.Label);

chartPanel.add(pv.Rule)

bapp 19 August 2011; 9:31:51

APPENDIX A 331

.bottom(0)

.left(0)

.width(panelWidth);

chartPanel.add(pv.Rule)
.data(standardAndPoorsData)
.bottom(0)
.left(function() this.index * 30 + 10 + (barWidth/2))
.height(3)
.anchor("bottom").add(pv.Label)
.text(function(d) dateOutputFormat(dateInputFormat .

parse (d.day)));

chartPanel.add(pv.Label)
.text("Days in January 2011")
.bottom(-25)
.left(220);

chartPanel.render();

,/script.
,/body.

,/html.

5.6.4.1 Re-create the histogram visualization from Section 5.6.1, and change
the number of bins to (i) 7 and (ii) approximately 40.

The following is an example implementation where the number of bins is 7
with Fig. A.46 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"Tranquilizers.js". ,/script.
,/head.

,body.

,script type="text/javascript+protovis".

var panelHeight = 300
panelWidth = 400
margin = 20
maxMolWtValue = pv.max(tranquilizingAgents,

function(d) d.MW)

bapp 19 August 2011; 9:31:51

332 EXERCISE CODE EXAMPLES

xMapping = pv.Scale.linear(100, maxMolWtValue)
.range(0, panelWidth)

histogramBins = pv.histogram(tranquilizingAgents,
function(d)d.MW).bins(xMapping.ticks(7))

yMapping = pv.Scale.linear(0, pv.max
(histogramBins, function(d) d.y)).range(0, panelHeight);

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Bar)
.data(histogramBins)
.bottom(0)
.left(function(d) xMapping(d.x))
.width(50)
.height(function(d) yMapping(d.y))

FIGURE A.46 Exercise 5.6.4.1 screenshot (number of bins is 7)

bapp 19 August 2011; 9:31:51

APPENDIX A 333

.fillStyle("darkgray")

.strokeStyle("white");

chartPanel.add(pv.Rule)
.data(yMapping.ticks(10))
.bottom(yMapping)
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)
.text(yMapping.tickFormat)
.strokeStyle("black");

chartPanel.add(pv.Rule)
.data(xMapping.ticks())
.left(xMapping)
.bottom(-3)
.height(3)

.anchor("bottom").add(pv.Label)
.text(xMapping.tickFormat);

chartPanel.add(pv.Rule)
.bottom(0);

chartPanel.render();

,/script.
,/body.

,/html.

The following is an example implementation where the number of bins is
approximately 40 with Fig. A.47 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"Tranquilizers.js". ,/script.
,/head.

,body.

,script type="text/javascript+protovis".

var panelHeight = 300
panelWidth = 400
margin = 20

bapp 19 August 2011; 9:31:51

334 EXERCISE CODE EXAMPLES

maxMolWtValue = pv.max(tranquilizingAgents,
function(d) d.MW)

xMapping = pv.Scale.linear(100, maxMolWtValue)
.range(0, panelWidth)

histogramBins = pv.histogram(tranquilizingAgents,
function(d)d.MW).bins(xMapping.ticks(40))

yMapping = pv.Scale.linear(0, pv
.max(histogramBins, function(d) d.y))
.range(0, panelHeight);

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Bar)
.data(histogramBins)

FIGURE A.47 Exercise 5.6.4.1 screenshot (number of bins is approximately 40)

bapp 19 August 2011; 9:31:51

APPENDIX A 335

.bottom(0)

.left(function(d) xMapping(d.x))

.width(10)

.height(function(d) yMapping(d.y))

.fillStyle("darkgray")

.strokeStyle("white");

chartPanel.add(pv.Rule)
.data(yMapping.ticks(10))
.bottom(yMapping)
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)
.text(yMapping.tickFormat)
.strokeStyle("black");

chartPanel.add(pv.Rule)
.data(xMapping.ticks())
.left(xMapping)
.bottom(-3)
.height(3)

.anchor("bottom").add(pv.Label)
.text(xMapping.tickFormat);

chartPanel.add(pv.Rule)
.bottom(0);

chartPanel.render();

,/script.
,/body.

,/html.

5.6.4.2 Create a frequency histogram for the propertyXLogP (distribution
coefficient).

The following is an example implementation where the data is XLogP with
Fig. A.48 showing the resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"Tranquilizers.js". ,/script.
,/head.

bapp 19 August 2011; 9:31:51

336 EXERCISE CODE EXAMPLES

,body.

,script type="text/javascript+protovis".

var panelHeight = 300
panelWidth = 400
margin = 20
minXLogPValue = pv.min(tranquilizingAgents,
function(d) d.XLogP)

maxXLogPValue = pv.max(tranquilizingAgents,
function(d) d.XLogP)

xMapping = pv.Scale.linear(minXLogPValue,
maxXLogPValue).range(0, panelWidth)

histogramBins = pv.histogram(tranquilizingAgents,
function(d)d.XLogP).bins(xMapping.ticks(20))

yMapping = pv.Scale.linear(0, pv.max(histogramBins,
function(d) d.y)).range(0, panelHeight);

FIGURE A.48 Exercise 5.6.4.2 screenshot

bapp 19 August 2011; 9:31:51

APPENDIX A 337

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Bar)
.data(histogramBins)
.bottom(0)
.left(function(d) xMapping(d.x))
.width(20)
.height(function(d) yMapping(d.y))
.fillStyle("darkgray")
.strokeStyle("white");

chartPanel.add(pv.Rule)
.data(yMapping.ticks(10))
.bottom(yMapping)
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)
.text(yMapping.tickFormat)
.strokeStyle("black");

chartPanel.add(pv.Rule)
.data(xMapping.ticks())
.left(xMapping)
.bottom(-3)
.height(3)

.anchor("bottom").add(pv.Label)
.text(xMapping.tickFormat);

chartPanel.add(pv.Rule)
.bottom(0);

chartPanel.render();

,/script.
,/body.

,/html.

5.6.4.3 Create a scatterplot using the tranquilizer data where each observa-
tions is color-coded according to the type of tranquilizer: red for antianxiety,
green for antimanic, and blue for antipsychotic.

The following is an example implementation with Fig. A.49 showing the
resulting screenshot.

bapp 19 August 2011; 9:31:51

338 EXERCISE CODE EXAMPLES

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"Tranquilizers.js". ,/script.
,/head.

,body.

,script type="text/javascript+protovis".

var panelWidth = 400,
panelHeight = 400,
margin = 40

FIGURE A.49 Exercise 5.6.4.3 screenshot

bapp 19 August 2011; 9:31:51

APPENDIX A 339

minMolWtValue = pv.min(tranquilizingAgents, function(d)
d.MW)

maxMolWtValue = pv.max(tranquilizingAgents, function(d)
d.MW)

xScale = pv.Scale.linear(minMolWtValue , maxMolWtValue)
.range(0, panelWidth).nice(),

minXLogPValue = pv.min(tranquilizingAgents, function(d)
d.XLogP)

maxXLogPValue = pv.max(tranquilizingAgents, function(d)
d.XLogP)

yScale = pv.Scale.linear(minXLogPValue, maxXLogPValue)
.range(0, panelHeight).nice();

var tranquilizerColor = pv.colors("red", "green", "blue");

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin);

chartPanel.add(pv.Rule)
.data(yScale.ticks())
.bottom(yScale)

.anchor("left").add(pv.Label)
.text(yScale.tickFormat);

chartPanel.add(pv.Label)
.text("XLogP")
.left(-10)
.bottom(175)
.textAngle(-Math.PI/2);

chartPanel.add(pv.Rule)
.data(xScale.ticks())
.left(xScale)

.anchor("bottom").add(pv.Label)
.text(xScale.tickFormat);

chartPanel.add(pv.Label)
.text("Molecular Weight")
.bottom(-25)
.left(150);

chartPanel.add(pv.Dot)
.data(tranquilizingAgents)
.left(function(d) xScale(d.MW))

bapp 19 August 2011; 9:31:51

340 EXERCISE CODE EXAMPLES

.bottom(function(d) yScale(d.XLogP))

.fillStyle("lightgray")

.lineWidth(0.5)

.strokeStyle("black")

.fillStyle(function(d) tranquilizerColor(d.type));

chartPanel.render();

,/script.
,/body.

,/html.

5.6.4.4 A logistic regression model (Myatt & Johnson, 2009) was generated
to predict whether an observation is positive (1) or negative (0). The logistic
regression model calculates a probability. A cutoff can be used to assign the
calculated prediction probability as positive or negative. For example, using a
0.5 cutoff will assign values greater than or equal to 0.5 as positive and values
less than 0.5 as negative. A ROC plot (Receiver Operating Characteristic)
assesses the quality of a model. Different cut-off values can be used, the false
positive rate (or sensitivity) is plotted along the x-axis, and the false positive
rate (or 1-specificity) is plotted along the y-axis, as shown in Fig. 5.61. The plot
should be to the left of the diagonal line, with better models having plots close
to the top-left corner.

A Dataset of actual values, along with the predicted probabilities, is
provided in the file actualAndPredicted.js. A few examples are shown here:

var actualVSPredicted = [
{ actual: 0 , predicted: 0.411},
{ actual: 0 , predicted: 0.305},
{ actual: 0 , predicted: 0.485},
{ actual: 0 , predicted: 0.191},
. . .
];

The number of true positives (TP) is the number of observations that are
correctly predicted as positive. The number of true negatives (TN) is the
number of observations that are correctly predicted as negative. The number of
false positives (FP) is the number of observations that are predicted positive but
are in fact negative. The number of false negatives (FN) is the number of
observations that are predicted as negative but are in fact positive. These
numbers change with different cut-off values. Sensitivity is calculated as TP /
(TP+FN); specificity is calculated as TN / (TN+FP).

Create the ROC plot as shown in Fig. 5.61.
The following is an example implementation with Fig. A.50 showing the

resulting screenshot.

bapp 19 August 2011; 9:31:51

APPENDIX A 341

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"actualAndProbability.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".

var width = 300, height = 200, margin = 40;

var cutoffs = pv.range(0,1.01,0.01);

var truePositive = function(actual, predicted, cutoff)
((predicted .= cutoff) && (actual == 1)) ? 1 : 0;

var trueNegative = function(actual, predicted, cutoff)
((predicted , cutoff) && (actual == 0)) ? 1 : 0;

var falsePositive = function(actual, predicted, cutoff)
((predicted .= cutoff) && (actual == 0)) ? 1 : 0;

var falseNegative = function(actual, predicted, cutoff)
((predicted , cutoff) && (actual == 1)) ? 1 : 0;

FIGURE A.50 Exercise 5.6.4.4 screenshot

bapp 19 August 2011; 9:31:51

342 EXERCISE CODE EXAMPLES

var numberTruePositives = function(cutoff)
pv.sum(actualVSPredicted.map(function(d) truePositive

(d.actual, d.predicted, cutoff)));
var numberTrueNegatives = function(cutoff)

pv.sum(actualVSPredicted.map(function(d) trueNegative
(d.actual, d.predicted, cutoff)));
var numberFalsePositives = function(cutoff)

pv.sum(actualVSPredicted.map(function(d)
falsePositive(d.actual, d.predicted, cutoff)));

var numberFalseNegatives = function(cutoff)
pv.sum(actualVSPredicted.map(function(d)

falseNegative(d.actual, d.predicted, cutoff)));

var sensitivity = function(cutoff)
(numberTruePositives(cutoff) / (numberTruePositives
(cutoff) + numberFalseNegatives(cutoff)));

var specificity = function(cutoff)
(numberTrueNegatives(cutoff) / (numberTrueNegatives
(cutoff) + numberFalsePositives(cutoff)));

var xScaleMapping = pv.Scale.linear(0,1).range(0,width),
yScaleMapping = pv.Scale.linear(0,1).range(0,height);

var chartPanel = new pv.Panel().width(width + 400).height
(height).margin(margin);

chartPanel.add(pv.Label)
.left(150)
.top(-5)
.text("ROC Plot");

chartPanel.add(pv.Rule)
.strokeStyle("lightgray")
.left(0);

chartPanel.add(pv.Rule)
.strokeStyle("lightgray")
.width(xScaleMapping(1))
.bottom(0);

chartPanel.add(pv.Rule)
.data(yScaleMapping.ticks(10))
.bottom(yScaleMapping)
.left(0)
.width(4)
.strokeStyle("lightgray")

bapp 19 August 2011; 9:31:52

APPENDIX A 343

.anchor("left").add(pv.Label)
.text(yScaleMapping.tickFormat);

chartPanel.add(pv.Label)
.text("True positive rate (sensitivity)")
.left(-20)
.bottom(35)
.textAngle(-Math.PI/2);

chartPanel.add(pv.Rule)
.data(xScaleMapping.ticks(10))
.left(xScaleMapping)
.bottom(0)
.height(4)
.strokeStyle("lightgray")

.anchor("bottom").add(pv.Label)
.text(yScaleMapping.tickFormat);

chartPanel.add(pv.Label)
.text("False positive rate (1-specificity)")
.bottom(-25)
.left(65);

chartPanel.add(pv.Line)
.data(cutoffs)
.bottom(function(d) yScaleMapping(sensitivity(d)))
.left(function(d) xScaleMapping(1-specificity(d)))
.strokeStyle("lightblue")

.interpolate("basis")
.add(pv.Dot)
.shape("triangle")
.size(2)
.strokeStyle("lightblue");

chartPanel.add(pv.Line)
.data(pv.range(0,1.1,0.1))
.bottom(function(d) yScaleMapping((d)))
.left(function(d) xScaleMapping((d)))
.strokeStyle("green")
.add(pv.Dot)
.shape("square")
.size(2);

chartPanel.render();

,/script.
,/body.

,/html.

bapp 19 August 2011; 9:31:52

344 EXERCISE CODE EXAMPLES

5.7.9.1 Trellis plots are used to describe multiple dimensions concerning
groups of data.The JavaScript file PI-PII-PIII-Clinical-Trials.js contains the
number of drugs in phase I, phase II, and phase III for three fictitious
pharmaceutical companies (Alphapharma, Betapharma, and Gammapharma).
Two entries are shown here:

var clinicalTrials = [
{ numberOfDrugs: 10, clinicalTrial: "Phase I", disease:
"cancer", company: "Alphapharm" },
{ numberOfDrugs: 8, clinicalTrial: "Phase II", disease:
"cancer", company: "Alphapharm" },

Create the trellis plot as shown in Fig. 5.78.
The following is an example implementation with Fig. A.51 showing the

resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=

"PI-PII-PIII-Clinical-Trials.js". ,/script.
,/head.

,body.
,script type="text/javascript+protovis".

var uniqueCompanies = pv.uniq(clinicalTrials, function(d)
d.company);

var uniqueDiseases = pv.uniq(clinicalTrials, function(d)
d.disease);

var uniqueClinicalTrials = pv.uniq(clinicalTrials,
function(d) d.clinicalTrial);

var cellHeight = 150;
var chartHeight = cellHeight*uniqueCompanies.length,

chartWidth = 150, margin = 70;

var maxDrugCount = pv.max(clinicalTrials, function(d)
d.numberOfDrugs);

var diseaseScale = pv.Scale.ordinal(uniqueDiseases).split
(0,(cellHeight-15));

var colorScale = pv.Scale.ordinal(uniqueClinicalTrials);
var drugCountScale = pv.Scale.linear(0,maxDrugCount)

.range(0,chartWidth);

bapp 19 August 2011; 9:31:52

APPENDIX A 345

var colorScale = pv.Scale.ordinal(uniqueClinicalTrials)
.split("red", "green", "blue");

var chartPanel = new pv.Panel()
.width(chartWidth+10)

FIGURE A.51 Exercise 5.7.9.1 screenshot

bapp 19 August 2011; 9:31:52

346 EXERCISE CODE EXAMPLES

.height(chartHeight)

.margin(margin)

.add(pv.Bar)

.fillStyle("lightgray");

var companyCells = chartPanel.add(pv.Panel)
.data(uniqueCompanies)
.left(0)
.top(function() this.index * cellHeight)
.height(cellHeight);

companyCells.add(pv.Bar)
.top(0)
.height(15)
.strokeStyle("darkgray")
.fillStyle("gray")

.anchor("center").add(pv.Label)
.strokeStyle("darkgray");

companyCells.add(pv.Rule)
.data(uniqueDiseases)
.left(-5)
.width(5)
.bottom(function(d) diseaseScale(d))
.anchor("left").add(pv.Label).text(function (d) d);

var clinicalTrialCells = companyCells.add(pv.Panel)
.data(uniqueClinicalTrials)
.bottom(0)
.left(0)
.height(cellHeight-15);

clinicalTrialCells.add(pv.Dot)
.def("cti", function() this.parent.index)
.def("coi", function() this.parent.parent.index)
.data(clinicalTrials)
.visible(function(d) ((d.clinicalTrial ==

uniqueClinicalTrials[this.cti()]) && (d.company ==
uniqueCompanies[this.coi()])))

.bottom(function(d) diseaseScale(d.disease))

.left(function(d) drugCountScale(d.numberOfDrugs));

chartPanel.add(pv.Rule)
.data(drugCountScale.ticks())
.bottom(-5)

bapp 19 August 2011; 9:31:52

APPENDIX A 347

.height(5)

.left(function(d) drugCountScale(d))

.anchor("bottom").add(pv.Label);

chartPanel.render();

,/script.
,/body.

,/html.

5.8.6.1 Add a tooltip to the box-and-whisker plot created in Section 5.6.2 to
generate the text shown in Fig. 5.83.

The following is an example implementation with Fig. A.52 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,/head.
,body.
,script type="text/javascript+protovis".

var experiments = ["Experiment 1","Experiment 2",
"Experiment 3"];

FIGURE A.52 Exercise 5.8.6.1 screenshot

bapp 19 August 2011; 9:31:52

348 EXERCISE CODE EXAMPLES

var dataValues = [[3,2,3,2,5,6,3,8,9,14,11,13],
[5,3,2,5,6,4,8,9,10,3,12,4],
[3,6,5,8,7,3,9,10,14,12,11,3]];

var width = 500, height = 200, tailWidth = 10, barWidth = 20,
meanDotSize = 2;

var fillColor = "lightgray", lineColor = "black";

var numberFormat = pv.Format.number().fractionDigits(2);

var maxValue = pv.max(dataValues.map(function(d) pv.max
(d)));

var minValue = pv.min(dataValues.map(function(d) pv.min
(d)));

var numberOfObservations = dataValues[0].length;

var upperQuartile = function(d){ d.sort(pv.naturalOrder);
return d[Math.round(numberOfObservations*3/4)]; }

var lowerQuartile = function(d){ d.sort(pv.naturalOrder);
return d[Math.round(numberOfObservations/4)]; }

var xScaleMapping = pv.Scale.ordinal(experiments).split
(0,width),
yScaleMapping = pv.Scale.linear(minValue,maxValue)

.range(0,height);

var chartPanel = new pv.Panel().width(width).height
(height).margin(20);

chartPanel.add(pv.Rule)
.data(yScaleMapping.ticks())
.bottom(function(d) yScaleMapping(d))
.strokeStyle("lightgray")
.anchor("left").add(pv.Label)
.text(function(d) d);

chartPanel.add(pv.Rule)
.data(experiments)
.bottom(0)
.height(4)
.left(function(d) xScaleMapping(d))
.strokeStyle("lightgray")
.anchor("bottom")
.add(pv.Label).text(function(d) d);

bapp 19 August 2011; 9:31:52

APPENDIX A 349

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments

[this.index]) - (tailWidth/2))
.shape("tick")
.size(tailWidth)
.angle(Math.PI/2)
.strokeStyle(lineColor)
.bottom(function(d) yScaleMapping(pv.max(d)));

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments

[this.index]) - (tailWidth/2))
.shape("tick")
.size(tailWidth)
.angle(Math.PI/2)
.strokeStyle(lineColor)
.bottom(function(d) yScaleMapping(pv.min(d)));

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments

[this.index]))
.shape("tick")
.strokeStyle(lineColor)
.size(function(d) yScaleMapping(pv.max(d)) -
yScaleMapping(pv.min(d)))

.bottom(function(d) yScaleMapping(pv.min(d)));

chartPanel.add(pv.Bar)
.data(dataValues)
.left(function() xScaleMapping(experiments

[this.index]) - (barWidth/2))
.bottom(function(d) yScaleMapping(lowerQuartile(d)))
.height(function(d) yScaleMapping(upperQuartile(d)) -

yScaleMapping(lowerQuartile(d)))
.fillStyle(fillColor)
.strokeStyle(lineColor)
.width(barWidth)

.title(function(d) "Min: " + numberFormat (pv.min(d)) +
" Max: " + numberFormat (pv.max(d)) + " LQ: " +
numberFormat (lowerQuartile(d)) + " Median: " +
numberFormat (pv.median(d)) + " UQ: " + numberFormat

bapp 19 August 2011; 9:31:52

350 EXERCISE CODE EXAMPLES

(upperQuartile(d)) + " Mean: " + numberFormat
(pv.mean(d)));

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments

[this.index]) - 10)
.shape("tick")
.size(20)
.strokeStyle(lineColor)
.angle(Math.PI/2)
.bottom(function(d) yScaleMapping(pv.median(d)));

chartPanel.add(pv.Dot)
.data(dataValues)
.left(function() xScaleMapping(experiments

[this.index]))
.size(20)
.strokeStyle(lineColor)
.fillStyle(lineColor)
.angle(Math.PI/2)
.bottom(function(d) yScaleMapping(pv.mean(d)));

chartPanel.render();

,/script.
,/body.

,/html.

5.8.6.2 Modify the scatterplot visualization described in Section 5.8.5 where,
by clicking on the scatterplot point, the user is redirected to a Web page with
the details on the specific tranquilizing agent. The CID property is a unique
identification for each of the agents. The PubChem database contains the
underlying information on each CID record. For example, the URL http://
pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=441233 will display
the record for the agent whose CID is 441233 (the first observation in the list).

The following is an example implementation with Fig. A. 53 showing the
resulting screenshot and Fig. A.54 showing the results of clicking on one of the
scatterplot dots.

,html.
,head.
,script type=“text/javascript” src=

“../protovis.js”. ,/script.

bapp 19 August 2011; 9:31:52

APPENDIX A 351

,script type=“text/javascript” src=
“Tranquilizers.js”. ,/script.

,/head.
,body.

,script type=“text/javascript+protovis”.

var panelWidth = 400,
panelHeight = 400,
margin = 30
maxMolWtValue = pv.max(tranquilizingAgents,
function(d) d.MW)

xScale = pv.Scale.linear(0, maxMolWtValue)
.range(0, panelWidth).nice(),

minALogPValue = pv.min(tranquilizingAgents,
function(d) d.XLogP)

maxALogPValue = pv.max(tranquilizingAgents, function(d)
d.XLogP)

FIGURE A.53 Exercise 5.8.6.2 screenshot

bapp 19 August 2011; 9:31:52

352 EXERCISE CODE EXAMPLES

yScale = pv.Scale.linear(minALogPValue, maxALogPValue)
.range(0, panelHeight).nice();

var chartPanel = new pv.Panel()
.width(panelWidth)
.height(panelHeight)
.margin(margin)
.event(“all”)
.event(“mousedown”, pv.Behavior.point());

chartPanel.add(pv.Rule)
.data(yScale.ticks())
.bottom(yScale)

.anchor(“left”).add(pv.Label)
.text(yScale.tickFormat);

chartPanel.add(pv.Label)
.text(“XLogP”)
.left(-10)
.bottom(175)
.textAngle(-Math.PI/2);

chartPanel.add(pv.Rule)
.data(xScale.ticks())

FIGURE A.54 Exercise 5.8.6.2 screenshot (hyperlink result)

bapp 19 August 2011; 9:31:52

APPENDIX A 353

.left(xScale)
.anchor(“bottom”).add(pv.Label)
.text(xScale.tickFormat);

chartPanel.add(pv.Label)
.text(“Molecular Weight”)
.bottom(-25)
.left(150);

chartPanel.add(pv.Dot)
.data(tranquilizingAgents)
.left(function(d) xScale(d.MW))
.bottom(function(d) yScale(d.XLogP))
.fillStyle(“lightgray”)
.strokeStyle(“black”)
.event(“point”, function(d) self.location =

“http://pubchem.ncbi.nlm.nih.gov/summary/summary.
cgi?cid=” 1 d.CID);

chartPanel.render();

,/script.
,/body.

,/html.

5.8.6.3 Using the ROC plot created in Exercise 5.6.4.4, generate an
interactive ROC plot so that moving a cursor close to a point in the plot
provides more information on the cutoff and the quality of the underlying
logistic regression model at that point, as shown in Fig. 5.84.

The following is an example implementation with Fig. A.55 showing the
resulting screenshot.

,HTML.
,head.
,script type="text/javascript" src=

"../protovis.js". ,/script.
,script type="text/javascript" src=
"actualAndProbability.js". ,/script.

,/head.
,body.
,script type="text/javascript+protovis".

var width = 300, height = 200, margin = 40;

var cutoffs = pv.range(0,1.01,0.01);
var selectedCutoff = -1;

bapp 19 August 2011; 9:31:52

354 EXERCISE CODE EXAMPLES

var twoDPFormat = pv.Format.number().fractionDigits(0,2);

var truePositive = function(actual, predicted, cutoff)
((predicted .= cutoff) && (actual == 1)) ? 1 : 0;

var trueNegative = function(actual, predicted, cutoff)
((predicted , cutoff) && (actual == 0)) ? 1 : 0;

var falsePositive = function(actual, predicted, cutoff)
((predicted .= cutoff) && (actual == 0)) ? 1 : 0;

var falseNegative = function(actual, predicted, cutoff)
((predicted , cutoff) && (actual == 1)) ? 1 : 0;

var numberTruePositives = function(cutoff)
pv.sum(actualVSPredicted.map(function(d) truePositive
(d.actual, d.predicted, cutoff)));

var numberTrueNegatives = function(cutoff)
pv.sum(actualVSPredicted.map(function(d) trueNegative
(d.actual, d.predicted, cutoff)));

var numberFalsePositives = function(cutoff)
pv.sum(actualVSPredicted.map(function(d)

falsePositive(d.actual, d.predicted, cutoff)));
var numberFalseNegatives = function(cutoff)

pv.sum(actualVSPredicted.map(function(d)
falseNegative(d.actual, d.predicted, cutoff)));

var accuracy = function(cutoff)
(((numberTruePositives(cutoff) + numberTrueNegatives

(cutoff)) / (numberTruePositives(cutoff) +

FIGURE A.55 Exercise 5.8.6.3 screenshot

bapp 19 August 2011; 9:31:52

APPENDIX A 355

numberTrueNegatives(cutoff) + numberFalsePositives
(cutoff) + numberFalseNegatives(cutoff))));

var sensitivity = function(cutoff)
(numberTruePositives(cutoff) / (numberTruePositives
(cutoff) + numberFalseNegatives(cutoff)));

var specificity = function(cutoff)
(numberTrueNegatives(cutoff) / (numberTrueNegatives
(cutoff) + numberFalsePositives(cutoff)));

var xScaleMapping = pv.Scale.linear(0,1).range(0,width),
yScaleMapping = pv.Scale.linear(0,1).range(0,height);

var chartPanel = new pv.Panel().width(width + 400)
.height(height).margin(margin)
.def("selectedCutoff", -1)
.event("mousemove", pv.Behavior.point());

chartPanel.add(pv.Label)
.left(150)
.top(-5)
.text("ROC Plot");

chartPanel.add(pv.Rule)
.strokeStyle("lightgray")
.left(0);

chartPanel.add(pv.Rule)
.strokeStyle("lightgray")
.width(xScaleMapping(1))
.bottom(0);

chartPanel.add(pv.Rule)
.data(yScaleMapping.ticks(10))
.bottom(yScaleMapping)
.left(0)
.width(4)
.strokeStyle("lightgray")

.anchor("left").add(pv.Label)
.text(yScaleMapping.tickFormat);

chartPanel.add(pv.Label)
.text("True positive rate (sensitivity)")
.left(-20)
.bottom(35)
.textAngle(-Math.PI/2);

bapp 19 August 2011; 9:31:53

356 EXERCISE CODE EXAMPLES

chartPanel.add(pv.Rule)
.data(xScaleMapping.ticks(10))
.left(xScaleMapping)
.bottom(0)
.height(4)
.strokeStyle("lightgray")

.anchor("bottom").add(pv.Label)
.text(yScaleMapping.tickFormat);

chartPanel.add(pv.Label)
.text("False positive rate (1-specificity)")
.bottom(-25)
.left(65);

chartPanel.add(pv.Line)
.data(cutoffs)
.bottom(function(d) yScaleMapping(sensitivity(d)))
.left(function(d) xScaleMapping(1-specificity(d)))
.strokeStyle("lightblue")

.add(pv.Dot)
.event("point", function(d) { selectedCutoff =

this.index; return chartPanel; })
.event("unpoint", function(d) { selectedCutoff = -1;

return chartPanel; })
.shape("triangle")
.size(function() selectedCutoff == this.index ? 12 : 2)
.strokeStyle(function() selectedCutoff == this.index ?

"darkblue" : "lightblue");

chartPanel.add(pv.Line)
.data(pv.range(0,1.1,0.1))
.bottom(function(d) yScaleMapping((d)))
.left(function(d) xScaleMapping((d)))
.strokeStyle("green")
.add(pv.Dot)
.shape("square")
.size(2);

chartPanel.add(pv.Label)
.left(400)
.bottom(height-50)
.text(function() selectedCutoff != -1 ? "Cutoff = " +

twoDPFormat(cutoffs[selectedCutoff]) : "");

bapp 19 August 2011; 9:31:53

APPENDIX A 357

chartPanel.add(pv.Label)
.left(400)
.bottom(height-65)
.text(function() selectedCutoff != -1 ? "Number of true

positives = " + numberTruePositives
(cutoffs[selectedCutoff]) : "");

chartPanel.add(pv.Label)
.left(400)
.bottom(height-80)
.text(function() selectedCutoff != -1 ? "Number of true

negatives = " + numberTrueNegatives
(cutoffs[selectedCutoff]) : "");

chartPanel.add(pv.Label)
.left(400)
.bottom(height-95)
.text(function() selectedCutoff != -1 ? "Number of false

positives = " + numberFalsePositives
(cutoffs[selectedCutoff]) : "");

chartPanel.add(pv.Label)
.left(400)
.bottom(height-110)
.text(function() selectedCutoff != -1 ? "Number of false

negatives = " + numberFalseNegatives
(cutoffs[selectedCutoff]) : "");

chartPanel.add(pv.Label)
.left(400)
.bottom(height-125)
.text(function() selectedCutoff != -1 ? "Accuracy = " +

twoDPFormat(accuracy(cutoffs[selectedCutoff])) : "");

chartPanel.add(pv.Label)
.left(400)
.bottom(height-140)
.text(function() selectedCutoff != -1 ? "Sensitivity = " +

twoDPFormat(sensitivity(cutoffs[selectedCutoff])):"");

chartPanel.add(pv.Label)
.left(400)
.bottom(height-155)

bapp 19 August 2011; 9:31:53

358 EXERCISE CODE EXAMPLES

.text(function() selectedCutoff != -1 ? "Specificity = " +
twoDPFormat(specificity(cutoffs[selectedCutoff])) : "");

chartPanel.render();

,/script.
,/body.

,/html.

bapp 19 August 2011; 9:31:53

APPENDIX A 359

bapp 19 August 2011; 9:31:53

BIBLIOGRAPHY

Adelson, E. (n.d.). Illusions and demos. Retrieved March 2011 from http://web.mit.edu/

persci/people/adelson/illusions_demos.html

Ahlberg, C., & Shneiderman, B. (1999). Visual information seeking: Tight coupling of

dynamic query filters with starfield displays. In Readings in information visualization:

Using vision to think (interactive technologies). Boston: Morgan Kaufmann.

Baddeley, A. (2010). Working memory. Scholarpedia, 5(2), 3015, revision #76180.

Becker, R. A., Eick, S. G., & Wilks, A. R. (1999). Visualizing network data. In Readings

in information visualization: Using vision to think (interactive technologies). Boston:

Morgan Kaufmann.

Bederson, B. B., Grosjean, J., & Meyer, J. (2004). Toolkit design for interactive

structured graphics. IEEE Transactions on Software Engineering, 30(8), 535�546.

Bederson, B. B., Stead, L., & Hollan, J. D. (1994). Padþþ: Advances in multiscale

interfaces. In Proceedings of CHI 94: Conference on Human Factors in Computing

Systems,(pp. 315�316). New York: ACM Press.

Berrar, B. P., Dubitzky, W., & Granzow, M. (2003). A practical approach to microarray

data analysis. Heidelberg: Springer.

Bertin, J. (1983). Semiology of graphics: Diagrams, networks, maps. (William J.

Bergtrans.). Madison, WI: The University of Wisconsin Press.

Bostock, M., & Heer, J. (2009). Protovis: A graphical toolkit for visualization. IEEE

Transactions on Visualization and Computer Graphics, 15(6), 1121�1128.

Brooks, F. P. (1996). The computer scientist as toolsmith II. Communications of the

ACM, 39(3), 61�68.

Card, S. K., Mackinlay, J., & Shneiderman, B.(Eds.) (1999). Readings in information

visualization: Using vision to think (interactive technologies). Boston: Morgan

Kaufmann.

Chandler, D. (2007). Semiotics: The basics. London: Routledge.

Cleveland, W. S. (1993). Visualizing data. Summit, NJ: Hobart Press.

Cleveland,W. S. (1994).The elements of graphing data (2nd ed.). Summit,NJ:Hobart Press.

Cockburn, A., Karlson, A., & Bederson, B. B. (2008). A review of overviewþdetail,

zooming, and focusþcontext interfaces. ACM Computing Surveys, 41(1:2), 1�31.

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

361

bbiblio 19 August 2011; 9:33:1

Codd, E. F. (1990). The relational model for database management (2nd ed.). Menlo

Park, CA: Addison-Wesley.

Constantine, L. L., & Lockwood, L. A. D. (1999). Software for use: Aa practical guide to

the models and methods of usage-centered design. New York: ACM Press.

Eichenbaum, H. (2008). Memory. Scholarpedia, 3(3), 1747, revision #72202.

EPA. (2011). 2011 fuel economy guide data. Available online at http://www.fueleco

nomy.gov/feg/download.shtml

Fekete, J. D., & Plaisant, C. (2002). Interactive information visualization of a million

items. In Proceedings of IEEE Symposium on Information Visualization 2002,

117�124; (DOI:10.1109/INFVIS.2002.1173156). Available online at http://www.cs.

umd.edu/local-cgi-bin/hcil/rr.pl?number=2002-01

FGED Society. (2011). Minimum information about a microarray experiment -

MIAME. Retrieved March 2011 from http://www.mged.org/Workgroups/MIAME/

miame.html

Green, M. (1998). Toward a perceptual science of multidimensional data visualization:

Bertin and beyond. Available online at http://graphics.stanford.edu/courses/cs448b-

06-winter/papers/Green_Towards.pdf

Heer, J., Stuart, C. K., & Landay, J. A. (2005). Prefuse: A toolkit for interactive

information visualization. In Proceedings of the SIGCHI conference on Human

factors in computing systems (CHI ‘05), 421�430. New York: ACM Press.

(DOI:10.1145/1054972.1055031)

Heer, J., & Agrawala, M. (2006). Software design patterns for information visualization.

IEEE Transactions on Visualization and Computer Graphic, 12(5), 853�860.

(DOI:10.1109/TVCG.2006.178)

Heer, J., & Bostock, M. (2010). Declarative language design for interactive visualization.

IEEE Transactions on Visualization and Computer Graphic, 16(6), 1149�1156.

(DOI:10.1109/TVCG.2010.144)

Hey, T., Tansley, S., & Tollè, K. (2009). The fourth paradigm: Data-intensive scientific

discovery. Redmond, WA: Microsoft Research.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (2000). Understanding robust and

exploratory data analysis, library classics ed. Hoboken, NJ: JohnWiley and Sons, Inc.

Holtzblatt, K., & Beyer, H. (1998). Contextual design: Defining customer-centered

systems. Boston: Morgan Kaufmann.

Hotzblatt, K., Wendell, J. B., & Wood, S. (2005). Rapid contextual design: A how-to

guide to key techniques for user-centered design. Boston: Morgan Kaufmann.

Johnson, J. (2008). GUI bloopers: Common user interface design don’ts and dos (2nd ed.).

Boston: Morgan Kaufmann.

Johnson, J. (2010). Designing with the mind in mind: Simple guide to understanding user

interface rules. Boston: Morgan Kaufmann.

Johnson J., & Henderson, A. (2002). Conceptual models: Begin by designing what to

design. Interactions, 9(1), 25�32. (DOI:10.1145/503355.503366)

Kelley, D. (1996). The designer’s stance: An interview with David Kelley by Bradley

Hartfield. In Bringing design to software. New York: ACM Press.

Kossyln, S. M. (2006). Graph design for the eye and mind. New York: Oxford

University Press.

Kuniavsky, M. (2003). Observing the user experience: A practitioner’s guide to user

research. Boston: Morgan Kaufmann.

bbiblio 19 August 2011; 9:33:1

362 BIBLIOGRAPHY

Luck, S. J. (2007). Visual short-term memory. Scholarpedia, 2(6), 3328, revision #47721.

Mack, A., & Rock, I. (2000). Inattentional blindness. Cambridge, MA: The MIT Press.

Malacara, D. (2002). Color vision and colorimetry: Theory and applications. Bellingham,

WA: SPIE Publications.

Marr, D. (2010).Vision. Cambridge,MA: TheMITPress. (Original work published 1982)

Mullet, K., & Sano, D. (1995). Designing visual interfaces: Communication oriented

techniques. Englewood Cliffs, NJ: Prentice Hall.

Myatt, G. J. (2006). Making sense of data: A practical guide to exploratory data analysis

and data mining. Hoboken, NJ: John Wiley and Sons, Inc.

Myatt, G. J., & Johnson, W. P. (2009).Making sense of data II: A practical guide to data

visualization, advanced data mining methods, and applications. Hoboken, NJ: John

Wiley and Sons, Inc.

Nielsen J. (1993). Usability engineering. Boston: Morgan Kauffman.

Norman, D. (1994). Things that make us smart. New York: Basic Books.

Norman, D. (2002). The design of everyday things. New York: Basic Book.

Norman, D. (2004). Emotional design. New York: Basic Book.

Norman, D. (2010). Living with complexity. Cambridge, MA: The MIT Press.

Palmer, S. (1999). Vision science: Photons to phenomenology. Cambridge, MA: The MIT

Press.

Pinker, S. (1997). How the mind works. New York: W.H. Norton and Company.

Protovis. (n.d.). Retrieved March 2011 from http://vis.stanford.edu/protovis/

Pylyshyn, Z. W. (2003). Seeing and visualizing: It’s not what you think. Cambridge, MA:

The MIT Press.

Reingold, E. M., Charness, N., Pomplun, M., Stampe, D. M. (2001). The perceptual

aspect of skilled performance in chess: evidence from eye movements. American

Psychological Society, 12(1), 48�55.

Reisberg, D. (1987). External representations and the advantages of externalizing one’s

thoughts. In Proceedings of the Eighth Annual Conference of the Cognitive Science

Society. Hillsdale, NJ. Erlbaum Associates, Inc.

Roth, S. F., Chuah, M. C., Kerpedjiev, S., & Kolojejchick, J. A. (1997). Toward an

information visualization workspace: Combining multiple means of expression.

Human-Computer Interaction, 12, 131�185. Mahwah, NJ: Lawrence Erlbaum

Associates, Inc.

Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction design: Beyond human-computer

interaction (2nd ed.). Hoboken, NJ: John Wiley and Sons, Inc.

Shneiderman, B., Plaisant, C. (2010). Designing the user interface: Strategies for effective

human-computer interaction (5th ed.). Boston, MA: Addison-Wesley.

Spence, R. (2001). Information visualization. New York: ACM Press.

Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic

reasoning: Logic and implementation. Cognitive Science, 19, 97�140.

Theus, M., & Urbanek, S. (2008). Interactive graphics for data analysis: Principles and

examples. Boca Raton, FL: Chapman and Hall/CRC.

Thomas, J. J., & Cook, K. (Eds.). (2005). Illuminating the path: The research and

development agenda for visual analytics. Richland, WA: National Visualization and

Analytics Center.

Tidwell, J. (2005). Designing interfaces. Sebastopol, CA: O’Reilly.

bbiblio 19 August 2011; 9:33:1

BIBLIOGRAPHY 363

Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT:

Graphics Press.

Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.

Tversky, B. (1997). Cognitive principles of graphic displays. AAAI Technical Report

FS-97-03.AAAI. Available online at http://www.aaai.org/Papers/Symposia/Fall/

1997/FS-97-03/FS97-03-015.pdf

Tversky, B. (2003). Spatial schemas in depictions. In Spatial schemas and abstract

thought. Cambridge, MA: The MIT Press.

Unwin, A., Theus, M., & Hofmann, H. (2006). Graphics of large datasets. Singapore:

Springer.

Unwin, A. (2008). Good graphics? In Handbook of data visualization. Berlin: Springer.

Velmans, M. (1999). When perception becomes conscious. British Journal of Psychology,

90(4), 543�566. Available online at http://cogprints.org/838/

Wainer, H. (1997). Visual revelations: Graphical tales of fate and deception from

Napolean Bonaparte to Ross Perot. New York: Copernicus.

Wainer, H. (2005). Graphic discovery: A trout in the milk and other visual adventures.

Princeton, NJ: Princeton University Press.

Ward, W., Grinstein, G., & Keim, D. (2010). Interactive data visualization: Foundations,

techniques, and applications. Natick, MA: A. K.Peters, Ltd.

Ware, C. (2000). Information visualization: Perception for design. Boston: Morgan

Kaufmann.

Ware, C. (2008). Visual thinking for design. Boston: Morgan Kaufmann.

Wertheirmer, M. (1923).Laws of organization in perceptual form. In The Internet

Resource Classics in the History of Psychology. Available online at http://psychclassics.

yorku.ca/Wertheimer/Forms/forms.htm

Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. Heidelberg: Springer.

Wilkinson, L., Rubin, M., Rope, D., & Norton, A. (2001).nViZn: An algebra-based

visualization system. In International Symposium on Smart Graphics 2001. Avail-

able online at http://www.cs.uic.edu/Bwilkinson/Publications/ibm.pdf

Wilkinson, L. (2005). The grammar of graphics. Canada: Springer.

Yaffa, J. (2007 August 12). The road to clarity. The New York Times Magazine.

Available online at http://www.nytimes.com/2007/08/12/magazine/12fonts-t.html?

pagewanted=1&_r=1

Yarbus, A. L. (1967). Eye movements and vision. (Basil Haigh, Trans.). New York:

Plenum Press. Available online at http://wexler.free.fr/library/files/yarbus%20%

281967%29%20eye%20movements%20and%20vision.pdf

Zhang, J. (1997). The nature of external representations in problem solving. Cognitive

Science, 21(2),179�217. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

(DOI:10.1016/S0364-0213(99)80022-6)

Zhang, J. (2001). External representations in complex information processing tasks.

In Encyclopedia of Microcomputers. New York: Marcel.

bbiblio 19 August 2011; 9:33:2

364 BIBLIOGRAPHY

INDEX

2-D features, see also Information processing

extracted from retinal image, 37

extraction during perception, 3

use in surface analysis, 4

2-D retinal image, 29

2.5-D sketch, see also Information processing

surface representation, 40

3-D internal representation, 44. See also

Information processing

3-D representations

creation and use of during

perception, 4

3-D surfaces, see also Information processing

perceiving, 38

Absorption spectra of cones in retina, 50

Abstract class, 154. See also Protovis

Abstraction defined in Protovis, 21

Accuracy in tasks, 13. See also Task analysis

Achromatic channel in color perception,

see Luminance channel

Action associations, object/

conceptual models and, 14

Action sequence, 113. See also Action theory

Action theory, 112�113. See also Design

process

application to design, 114�115

Actions, 116. See also Object/action analysis

grouping of in user interfaces, 130

invisible, 130

organization of, 129

signifiers of, 129�130

Adelson, E. H., 37

Adobe Illustrator, 146

Aesthetic attributes

defined, 88, 95�96

examples of, 96

Aesthetics, 87. See also Graphic pipeline

importance of, in design, 122

Agrawala, M., 276

AI, see Artificial intelligence

Algorithmic level of explanation, 30�31

Ambient optic array in vision, 31

Amygdala, in brain, 61

Analogies, designing conceptual models

from, 13

Analysis, in visual analytics, 2

Analysis of tasks, see Task analysis

Anchors in Protovis, 194�98. See also Protovis

anchors

Area(s)

as graphical element, 65, 76, 78. See also

Graphical elements

Protovis, see Protovis areas

Arrays, in Protovis, 211. See also Data,

Protovis

Artifact models, 113. See also Work models

Artifacts of work, 111. See also

Design process

Artificial intelligence contrasted with amplified

intelligence, 2

Attention, 112. See also Cognition

visual interfaces and, 123

visual perception and, 53

focus of, 53

Attention, visual, see Visual attention

Attentional focus, see Focus of attention

Attentional system, in human brain, 4

Attributes, object

identifying, in object/action analysis, see

Object/action analysis

conceptual models and, 14. See also

Conceptual models

Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations,
First Edition. Glenn J. Myatt and Wayne P. Johnson.
r 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

365

bindex 19 August 2011; 9:33:42

Auditory perception, in semiotics, 68

Axes, 92, 139. See also Graphical grammar

components

Axes, Protovis, see Protovis axes

Axons, function of, in brain, 25

Backward connections in neural networks, 36.

See also Neural networks

Baddeley, A., 59

Bars, Protovis, see Protovis bars

Becker, R. A., 6, 103

Bederson, B. B., 7, 276

Bell, G., 18

Berrar, B. P., 106

Bertin, J., 6 17, 66, 103, 145

Beyer, H., 111 118 144

Biological computation, information-

processing paradigm and, 24

Blue/yellow, 48. See also Color balance

Bostock, M.., 96, 101, 147, 276

Bottom-up processing in perception, 53

Brain

biological computation and, 25

regions of, 34

role in visual perception, 25

topological mappings in, 34

Brightness, as emitted light, 47

Brooks, F. P., Jr., 2, 18

Cancer cell lines, 7

Canvas, Protovis, 152

Card, S. K., 6, 19, 145

Cartesian coordinate system, see Coordinate

systems, Cartesian

Category-based processing, 3, 4, 44�45. See

also Information theory

Category-based stage in visual

perception, 30

Cell body function in brain, 25

Cerebral cortex in brain, 61

CERN Hadron particle accelerator, 1

Chambers, J., 103

Chandler, D., 103

Characteristics as defined by Bertin, 17

Charting tools, 146

disadvantages of, 147

Checkershadow illusion, 37, 38

Chiasma, 34. See also Visual pathways

Chromatic channels as mechanisms for color

perception, 49, 50

Ciliary muscles of eye, 31

Class as used in Protovis, 154

Class, abstract, as used in Protovis, 154

Class, concrete, as used in Protovis, 154

Classification of objects in perception, 4.

See also Visual perception

Cleveland, W. S., 140, 145

Closure, Gestalt principle of, 41. See also

Gestalt principles; Palmer principles

Clues as navigational aids, 125. See also

Navigation

Cockburn, A., 145

Codes, defined in semiotics, 66

Cognition, mental processes of, 112

Cognition

representation and, ix

role of in Intelligence Amplified system, 9

value of representation in, 21

Cognitive processes

influence on perception of, 53

perception and, 5

Cognitive psychology, visualization and, ix

Cognitive science, visualization and, ix

Cognitive system, 24�29

Cognitive task(s)

effect of saccade on, 55

example of, 4�5

impact of external representations on, 22

Cognitive tools

external representations as, 21

history of, 20

Cognitive work, 112

Color(s), 3, 77. See also Properties of 2-D

features

as design elements for visual forms, 10

perception of, 46�50

physics of, 45

as mixture of wavelengths, 47

phenomena of primary, 48�49

primary, 47

Protovis, 187�191. See also Protovis colors

Color afterimages as phenomena of color, 48

Color balance as phenomena of

color, 48�49

Color blindness

as phenomena of color, 48

monochromatic or dichromatic, 48

Color constancy, 51

Color light mixtures as phenomena of color,

47�48

Color models, Munsell, 47

Color perception theories

dual-process theory, 49

opponent process theory, 49

trichromatic theory, 48

Color processing of retinal image, 51

bindex 19 August 2011; 9:33:42

366 INDEX

Color receptors’ role in color

perception, 47�48

Color, simultaneous contrast as

phenomena of, 48

Color space

dimensions of, 46

graphical grammars and, 92

Command interaction style, 14. See also

Interaction style

Common fate, Gestalt principle of, 41. See also

Gestalt principles; Palmer principles

Common region, Gestalt principle of, 41. See

also Gestalt principles; Palmer principles

Complexity defined, 104. See also Simplicity

Complexity, designing for, 104�108

Complexity, managing in visualization design,

132

Complexity in navigation, 124

Components, data

graphic representations of, 71. See also

Information analysis

Computation in data processing pipelines, 15

Computational level of explanation, 30�31

Computational theory of the mind, 27

Computational tools for high-throughput

analysis, 8

Computer graphics

in visual form design, 8

role in visualization, 2

Computer vision role in understanding visual

perception, 28

Conceptual models, 13, 105, 107

as specifications, 119

design of, 13�14, 108

designing, 114�115

effects of poorly designed, 106

extracting details for designing, 111

factors in designing, 106

purpose of, 117

questions for design of, 115

Concrete class, 154. See also Class

Cones, types of, in eye, 50

Constantine, L., 113, 118, 145

Containers, 118. See also Graphical

components

Containers as support for activities of users, 122

Containment relationship, 116. See also Object/

action analysis

Context switching, mental, 134

designing to reduce, 125

Context+detail as interactive visualization

technique, 7

Contextual design

storyboarding in, 117

visioning in, 117

Contextual inquiry, 111. See also Work,

methods for observing

use of results of, 115

Continuity, Gestalt principle of, 41. See also

Gestalt principles; Palmer principles

Continuous surface, 39. See also Surface

orientation

Contours in surface analysis, 38. See also

Information processing

Contrast edges, analysis of, 51�53

Controls, 118. See also Graphical components

as signifiers in visual interfaces, 122

Conventions defined in semiotics, 66

Conversational interaction style, 14. See also

Interaction styles

Cook, K., 2

COORD statement in Wilkinson graphics

specification, 89

Coordinate systems, 94�95. See also Graphical

grammar components

guides and, 89, 90, 92, 95

rendering tick marks and, 95

Cartesian, 66, 85, 89, 95

Cartesian, as semiotic code, 66

polar, 85, 86, 87, 89, 95

Coordinate transformations, benefits of, 95

Coordinates, 87. See also Graphic pipeline,

coordinates

Covert acts as mechanism for focusing

attention, 53. See also Focus of attention

CSV files, converting to JSON, 276

Curved surfaces, effect on reflection, 39. See

also Surface orientation

D3 graphics library, 276

Data

cleaning in data processing pipelines, 15

integration across microarray experiments, 8

levels of organization, 73�74

normalization of, in data processing

pipelines, 15

sources of, for analysis, 8

Data arrays, Protovis

handling nested, 212

handling of object, 212

Data components

properties of qualitative, 74

comparing ordered, 74

differentiating ordered, 74

length of, 75

long, 75

bindex 19 August 2011; 9:33:42

INDEX 367

Data components (continued)

of type interval, 73

of type nominal, 73

of type ordered (O), 73

of type ordinal, 73

of type ratio, 73

permuting, 74

positioning marks in, 74

qualitative (N), 73

quantitative (Q), 73

reordering, 74

short, 75

Data graphics

contribution to exploratory data

analysis, 6

creating with grammar-based

approaches, 147

in visual form design, 8

Data graphics, Protovis

creating, 151�163

creating through composition, 151�152

creating web-based, 147

Data overload, visualization and, 2

Data processing pipeline, 15

Data, Protovis

examples, 214

filtering, 211�12

handling, in plot specifications, 211�12

in JSON format, 212

normalizing, 212

reading from files or external sources,

212�214

Data, sources of raw, 15

Data tables

nomenclature for, 16

use in data pipelines, 15

Data variables, 73. See also Data components

Data visualization(s), 146. See also

Visualizations

contribution to exploratory data analysis, 6.

See also Visualization

Data-analysis process of microarray data, 110

Data-analysis tools for generating charts, 146

Data-driven processes in perception, 53

Data-intensive science

emergence of, 7

examples of, 1

transformed methods in, 1

Data-intensive systems, ix, 106

analysis in, 104

collaboration in, 104

emergence of, 1

Dataset, nomenclature for, 16

Dataset training in Wickham pipeline, 98

Date formatting in Protovis, 273. See also

Protovis text

de Saussure, F., 66

Decision making, 112. See also Cognition

Decision processing, 4. See also Visual

perception

during perception, 4

Declarative memory, 61. See also Memory

def Protovis method, 266. See also Protovis

Dendrites, function of, in brain, 25

Depth edges, 39. See also Edges

Depth perception

heuristics used to solve, 38

location on retinal image as visual

cue for, 5

occlusion as visual cue for, 5

problems of, 38

relative object sizes as visual cue for, 5

stereopsis as visual cue for, 5

Design of user interfaces, 10

Design, interaction, process of, 11�15

Design process

abstract steps in, 109

analysis, 110�114

analysis of users and work

environment, 109

conceptual model design, 109

concrete steps in, 109

critical activities of, 107

interface architecture design, 109

outline for, 109

prototype design, 114

prototype development, 109

prototyping, 109

simplest description of, 108

task analysis, 109

usability evaluation, 109

visual interaction design, 109

Designs, developing alternative, 13

Desktop as example of conceptual model, 13

Diagrams as semiotic systems, 69. See also

Semiotics

Dialog box, 123. See also Interaction spaces

Dichromats, 48. See also Color blindness

Direct manipulation as visualization

technique, 7

Direct manipulation interaction style, 14

Direct manipulation interfaces in exploratory

data analysis, 6

Direct observation as method for observing

work, 111. See also Work, methods for

observing

Disassociative visual variables, 80. See also

Visual variables

bindex 19 August 2011; 9:33:42

368 INDEX

Display space as medium for rendering

graphics, 88

Distances, spatial, 65

Distributed attention, 56. See also Visual

attention

Domain experts

designing for, 12

interviewing, 114

learning about, 114

Dorsal pathway, 35. See also Visual pathways

Dots, Protovis, see Protovis dots

Drag interaction, 267, 271. See also Protovis

framework, types of interactions

Drug discovery as data-intensive science, 1

Dual-process theory of color, 49. See also Color

perception theories

Dynamic queries as interactive visualization

technique, 7. See also Visualizations,

interactive

EDA, 6. See also Exploratory data analysis

Edge 2-D, 3. See also 2-D features

Edges

contrast of light between, 51

detection of, 39

in surface analysis, 38. See also Information

processing

types of, 39

depth, analysis of, 39

illumination, analysis of, 39

luminance, 52

reflectance, 52

reflectance, analysis of, 39

Eichenbaum, H., 59

Electrical impulses, recording, in brain, 27

Electromagnetic spectrum, 46

Element connectedness, Gestalt principle of, 41.

See also Gestalt principles; Palmer

principles

ELEMENT statement in Wilkinson graphics

specification, 89

Emitted light, 30

Emotional memory, 61. See also Memory

Emotions

importance of, in design, 122

negative, effect on the mind, 13

positive, effect on the mind, 13

Environment, representations of, 21

EPA Fuel Economy Guide Dataset, 70

Ethnographic interviews, 111. See also Work,

methods for observing

Evaluation

of prototypes, 15

stages of, 113. See also Action theory

of prototypes vs. usability assessments, 15

Excitation, synaptic, in neuron cells, 26

Execution, stages of, in action theory, 113.

See also Action theory

Experts, interviewing, 111. See also Work,

methods for observing

Exploratory interaction style, 14

Exploratory data analysis

contribution of visualization to, 6

nature of data-intensive, 106

short history of, 6�9

External representations, 21�24

as aid to problem solving, 23

as making abstract concepts visible, 22

as memory aid, 22

as visual forms, 24

for clarifying or sharpening thinking, 24

for decision making, 24

for modeling, 24

roles played by, 22�24

External world, visual perception and, 28

Eye

anatomy of, 32�36

cross section of, 33

mechanisms in, for encoding light, 31

mechanisms in, for focusing light, 31

Eye color receptors’ role in color perception, 47

Eye, compound, of housefly, 28. See also Vision

Eye, function of, 28. See also Vision

Eye movements

graphics design and, 85

in graphics, 82

tremors in, 54

attention and, 5

characterization of, 54�55

saccadic, 4�5, 54�55

scan paths of, 55

smooth pursuit, 54�55

types of, 54�55

visual interface design and, 126

role of rapid, in forming retinal image, 33

Eye photoreceptors in, 31

Facet construction in Wickham pipeline, 98

Facets defined, 96

Fekete, J. D., 145

FGED (Functional Genomics Data Society), 8

Field of view seen by right and left

eyes, 33, 54

Figure/ground organization in vision, 42

Fired state in neuron cell, 26

Firing rate of neuron cell, 26

Fixation, eye movements and, 54. See also Eye

movements

bindex 19 August 2011; 9:33:42

INDEX 369

Flat surface, effect on reflection of, 39. See also

Surface orientation

Flow models in contextual design, 113. See also

Work models

Flow of thought

importance to design of, 9

in visual interfaces, 124

Focal points, creating, 126

Focus groups, 111. See also Work, methods for

observing

Focus of attention

covert, 4

example of, 4�5

overt, 4

Focused attention, 56. See also Visual attention

Forward connections in neural networks, 36.

See also Neural networks

Fourth paradigm and data-intensive science, 1

Fovea, 54

Foveal region of retina, 31

Frame in mathematical space, 94

Framework, Protovis, see Protovis framework

Frequency histogram plots, 223.

See also Plots

Frontal lobe, 34. See also Brain, regions of

Functions, Protovis, see Protovis functions

Ganglion cells, 34

Genes, 7

Geometric objects, 101

Geometric objects, adjusting position of, 93

Geometric objects in grammar-based

systems, 93

Geometric space

use of, in graphics, 65

visual representation and, 20

Geometry

in Wickham’s graphic pipeline, 93. See also

Graphical grammar components

in Wilkinson’s graphic pipeline, 87. See also

Graphic pipeline

Geoms as geometric objects in Wickham’s

graphic pipeline, 101. See also Geometric

objects

Gestalt principles, 41. See also Palmer

principles

closure, 41

common fate, 41

continuity, 41

of perceptual grouping, 40�42

proximity, 41

similarity, 41

Gestalt school of psychology, 40

ggplot2, 96�101, 137

ggplot2, getting started with, 103

Gibson, J.J., 31

Global reflectance ratio across edges, 52

Goals in action theory, 53, 112. See also Action

theory; cognitive processes

Google Earth, 7

Google Maps, 7

Google Spreadsheets, 146

Grammar of graphics, see Graphical

grammars

Graph

as topological space, 88

defined, 88, 93

vs. graphic, 88

Graphic

marks in, 72

planar variables of, 72

retinal variables of, 72

visual properties of marks in, 72

visual variables of, 72

Graphic pipeline

aesthetics, 87, 97

coordinates, 87, 97

elements of, 87

geometry, 87, 97

renderer, 87, 97

scales, 87, 97

statistics, 87, 97

variables, 87, 97

Wilkinson’s, 87

Graphic pipeline, Wickham’s layered, 97

Graphic representations

as memory, 66

as tool, 66

mathematical notations and, 68

Graphic specifications, 87

for faceting, 96

ggplot2, 96

Wickham’s, 98�102

Wilkinson’s, 89

Graphical components in visual interface and

interaction design, 118

Graphical diagrams

preferred use of space in, 85

Graphical elements

in graphics, 65

in visual interface design, 118

Graphical grammar

components of, 91�96

description of, 86

elements of, 87

Wilkinson’s, 86�87

Graphical grammar components

aesthetic attributes, 99

bindex 19 August 2011; 9:33:42

370 INDEX

axes, 92

coordinate systems, 94, 101

data variables, 99

facets, 101

geometry and, 93

guides, 92

labels, 92

layers, 100

legends, 92

marks, 101

scales, 92

statistical methods, 100

Wickham’s, 98�102

Graphical image design

coordinate system and, 85

eye movement and, 85

mappings of visual variables in, 85

perceptual issues in, 86

standard schemas used in, 85

use of space in, 85

Graphical images, 82�84

cost of perceiving, 78

defined, 78

elementary reading level of, 84

eye movement and, 85

foundation for design of, 84�86

global reading level of, 84

intermediate reading level of, 84

reading, 84

visually perceiving, 78

Graphical layers, composition of, 98

Graphical representations, spatial plane of, 78

Graphics

aesthetics of, 141�142

animation in, 65

as design elements for visual forms, 10

as graphical representations, 123

as representation of abstract concepts, 65

automatic perception of, 84

axes, 139

central role for visual perception in, 69

classification of, 85

constructing efficient, 82�84

data-ink in, 138

data-ink ratio of, 138

defined, 65

definition of efficient, 84

design of, 137�142

displaying data using, 138�139

efficient, 78

exploratory questions asked through, 140

eye movements in, 82

information analysis for, 72

integrity of, 141

keys in, 139

legends in, 139

nondata-ink in, 138

perception of, 140�141

preferred coordinate systems in, 85

properties of efficient, 69

properties/structure of information in, 69,

71�74

quantitative, 137

redundant data-ink in, 138

role in Intelligence Amplified system, 9

rules for constructing efficient, 69

tables and, 142

Graphics diagrams, standard schemas

for, 85

Graphics scales

guidelines on use of, 139�140

minimum and maximum limits and, 139

nice numbers of tick marks for, 139

use of logarithmic, 140

use of multiple, 140

use of scale breaks in, 140

use of zeros in, 140

Graphics systems

reading, 75

as “text”, 75

identifying mappings in, 75

identifying what is external to, 75

image theory of, 77

perceiving marks in, 76

properties of, 69, 75�82

Graphics visualization as

two phase process, 69

Graphs, geometric, 93

classification of, 93�94

Gray, Jim, 18

Green, M., 78

Grid layouts, Protovis, 253

Grouping, perceptual organization and, 42

GUIDE statement in Wilkinson graphics

specification, 89

Guides, 118. See also Graphical components

use of, in graphics, 90

Gulf of evaluation in action theory, 113. See

also Action theory

Gulf of execution in action theory, 113. See also

Action theory

Gutter in bar charts, 165

HCI (Human Computer Interaction), 6

Hearing, internal representations and, 22

Heatmap as external representation, 23

Heer, J., 96, 101, 147, 276

Henderson, A., 115

bindex 19 August 2011; 9:33:42

INDEX 371

Hering, E., 49

Hey, T., 1, 18

High-fidelity prototypes, 11, 120, 121. See also

Prototypes, high-fidelity

exploring designs with, 15

High-throughput data exploration, designing

for, 9

Hippocampus in brain, 61

Histogram plots, 223. See also Plots

Holtzblatt, K., 111, 118, 144, 145

Homeland Security, 1

Horizon line, use in depth perception of, 38.

See also Depth perception

HSL color in protovis, 273. See also Protovis

colors

HTML in Protovis, 149

Hue as dimension in color space, 46, 47

Human-computer interaction

exploratory data analysis and, 6

visualization and, ix

IA system, 2, 9. See also Intelligence Amplified

system

ID, see Interaction design

Illumination, interaction with surfaces, 30

Illuminated environments, perception of, 30

Illumination edges, 39. See also Edges

Illumination spectrum, 51

Image, see Graphical images

Image analysis for microarray experiments, 8

Image, retinal, see Retinal image

Image theory of graphics systems, 77. See also

Graphic systems

Image-based processing, 3. See also

Information theory

as stage in information theory, 3

Image-based representations, visual perception

and, 30

Image-based stage, 37. See also Information

processing

in visual perception, 30

of perception, 3

Images, Protovis, see Protovis images

Implantations in Bertin’s theory, 76. See also

Graphical elements

Implementation level of explanations,

30�31

Inattentiveness, 57. See also Visual attention

Informatics, visualization and, ix

Information abstract, 131

Information analysis

biological, 27

for graphics, 72

length of data components, 72

number of data components, 72

2-D features, see 2-D features

2.5-D sketch, 40

category-based stage of, 42, 44�45

image-based stage of, 37

key modules in, 28

object-based stage of, 40

pathways, 28

perceptual organization and, 40

shape recognition and, 40

stages of, in visual perception, 37�44

surface-based stage of, 38

visual constancy and, 40

visual interpolation and, 40

Information theory of visual perception, 3

Information visualization, ix. See also

Visualization

exploratory data analysis and, 7

in visual form design, 8

techniques, 7

Inhibition, synaptic, in neuron cell, 26

Integral dimensions, selective attention and, 57

Integral visual variables, 57

Intelligence Amplified system,

conceptualization of, 9

Intention in action theory, 113. See also Action

theory

Interaction, role of, in Intelligence Amplified

system, 9

Interaction time, thresholds for types

of, 142

Interaction design

for high-throughput data exploration, 9

process of, 11�15

responsiveness and, 142

Interaction spaces

navigational, 124�126

physical, 123

Interaction styles

conceptual models and, 14

conversing, 129

direct manipulation, 129

exploring, 129

instructing, 129

types of, 129

Interactions

user, design of, 118�120

Interactive graphics, see also Data graphics

analysis of, 6

Interface architectures

as specifications, 119

design of, 117, 118

bindex 19 August 2011; 9:33:42

372 INDEX

interaction spaces in, 118

organizing objects and actions in, 118

supporting action sequences in, 118

supporting tasks in, 118

Interface types, conceptual models and, 14

Internal representations, 28�29

3-D, 44

as patterns of neural data, 27

categorization and, 45

defined, 22

neural patterns and, 24

primal sketch, 38

sensory input and, 22

Interview questions for users, 111�112

Invariant of diagram in graphics, 71

Jakob Nielsen on usability, 144

Java 2D, 146

JavaScript use in Protovis, 102, 149

JavaScript library, 147

JMP, 146

Johnson, J., 15, 107, 115, 142

JSON format, 212�213, 276

Judgment, 3. See also Cognitive processes

Keys in graphics, 139. See also Graphics

Knight Digital Media Center, 276

Kosslyn, S. M., 138, 145

Kuniavsky, M., 145

Labels, 92. See also Graphical grammar

components

in Protovis, see Protovis labels

Land, E. H., 52

Lateral geniculate body in visual pathways, 35.

See also Visual pathways

Layered grammar in ggplot2, 96

Layering in visualizations, 133

Learning, 3, 112. See also Cognition; cognitive

processes

Legends, 92, 139. See also Graphical grammar

components

Length of data component, 72. See also

Information analysis

Lens of eye, 31

Level of organization in graphics, 72

Levels of explanation for information-

processing systems, 30�31

LGN (lateral geniculate body), 35. See also

Visual pathways

Light, physics of, 45

Light, absorbed, solving perception problem

of, 38

Light intensity encoding in retinal image, 31

Light intensity representation, processing

of, 37

Light, monochromatic, 46

Light, polychromatic, 46

Light, reflected, solving perception problem

of, 38

Lightness

as dimension in color space, 46

as reflected light, 47

Lightness constancy, 51

calculation of, 52

Line segments, 3. See also 2-D features

Linear scales, 90. See also Scales

Lines

as graphical elements, 65. See also Graphical

elements

as marks, 76, 78. See also Marks

in surface analysis, 38. See also Information

processing

Protovis, see Protovis lines

Listening, 112. See also Cognition

Lobes of brain, 34

Locating objects in perception, 5. See also

Depth perception

Lockwood, L. A. D., 113, 118, 145

Long-term memory, 62. See also Memory

Long-wavelength cones in eye, 50

Low-fidelity prototypes, 11 120. See also

Prototypes, low-fidelity

exploring designs with, 14

Luck, S. J., 59

Luminance channel, 50

as mechanism for color perception, 49

Luminance edges, 52

Luminance ratios between edges, 52

Luminance spectrum, 51

Mack, A., 64

Malacara, D., 64

maps, 65

as navigational aids, 125

as semiotic systems, 69. See also Semiotics

visual representation and, 20

Mark classes, Protovis, see Protovis mark

classes

Mark properties, Protovis, see Protovis mark

properties

Marks, 5 118. See also Graphical components

control over, in software libraries, 147

generating, in graphic pipeline, 88

in graphics, 72. See also Graphic

perceiving in graphics systems, 76. See also

Graphics systems

Protovis, see Protovis marks

bindex 19 August 2011; 9:33:42

INDEX 373

Marr’s 2.5-D sketch, 40

Marr, D., 28, 29, 37, 38

Maxwell, J. C., 47

McCann, J., 52

Measurement theory, 92

Medium-wavelength cones, 50

Memorability, 13

Memory, 112. See also Cognition

and vision, 59�62

attributes of, 60�61

capacity, 61

content, 60

declarative, 61

duration of, 60

emotional, 61

external representations and, 62

long-term, 62

loss in, 60

maintenance of, 61

new, 61

patterns of neural activation and, 62

perceptual, 61

priming, 61, 62

procedural, 61, 62

semantic, 61, 62

sensory information stores, 61

short-term, 62

types of, 61�62

visual, 62

working, 61

Mental models

benefits of well designed, 106

defined, 105

formation of, 11

use of, 105

Mental processes, 28�29

Mental representations, 3

Metamers, 47

Metaphors, designing conceptual models from,

13

MIAME (Minimum Information About a

Microarray Experiment), 8

Micro/macro visualizations, 132. See also

Visualizations

Microarray use in experiments, 8

Microarray data, 106

Microarray data-analysis process, 110

Microarray technology, 110

Microsoft Excel, 146

Microsoft Visio, 146

Monochromatic light, 46

Monochromats, 48. See also Color blindness

Motivations, 53. See also Cognitive processes

Mullet, K., 145

Multidimensional data, visualization of, 132

Multiple windows, 123

Munsell, A., 47

Myatt, G. J., 15

Named colors, 273. See also Protovis colors

National Institutes of Health, xiii, 7

National Visualization and Analytics Center

(NVAC), 1

Navigation

cognitive constraints on, 124

cognitive cost of, 124

complexity of, 124

cost of switching contexts in, 125

designing for, 125

global maps for, 125

in interaction spaces, 124�126

local maps for, 125

organization of interaction spaces

for, 124

perceptual constraints on, 124

signage for, 125

Navigational aids, 124�125

Negative feelings, effect on mental state, 122

Network diagrams as semiotic systems, 69. See

also Semiotics

Neural connections, function of,

in brain, 25, 27

Neural network of pigeon’s brain, 26�27

Neural networks, 26

as mental modules, 27

backward connections in, 36

forward connections in, 36

Neuron cell

function of, in brain, 25

model of, 26

Neurons

memory and, 59

role in visual perception, 3

New memories, 61. See also Memory

Newton, I., 45 47

Nice numbers in graphics, 139

Nice scales in graphics, 139

Nielsen Norman Group, 144

Nielsen, J., 145

NIH (National Institutes of Health), xiii, 7.

Nonspatial attributes in graphical grammars, 88

Nonspatial selection of object properties, 57

Norman, D., 112, 121

Notation for designing graphics, 79

Number of data components, 72�73. See also

Information analysis

Numbers formatting, 273. See also Protovis

numbers

bindex 19 August 2011; 9:33:42

374 INDEX

NVAC, 1. See also National Visualization and

Analytics Center

Oberlander, K., 63

Object categorization in visual

perception, 44

Object identification in visual perception, 44

Object sizes and depth perception, 39. See also

Depth perception

Object-action models, conceptual models

and, 14

Object-based processing, 3. See also

Information theory

as stage in information theory, 3, 4

Object-based stage

in visual perception, 30

of information processing, 40

Object/action analysis, 116�117

containment relationship, 116

identifying attributes in, 116

results of, 117

super/subtype relationship, 116

whole/part relationship, 116

Objects, 116. See also Object/action analysis

as defined by Bertin, 17

Observations as defined in datasets, 17

Occipital lobe, 34. See also Brain regions of

Occlusion problem with, 42

Off state of neuron cell, 26

On state of neuron cell, 26

Operational simplicity, 104.

See also Simplicity

Opponent process theory, 49. See also Color

perception theories

mechanism for, 49

of color, 49

explanation of color representation in visual

perception, 50

Optic array in vision, 45

Optic chiasma in visual pathways, 35. See also

Visual pathways

Optic nerve, 31, 34. See also Brain

Optic nerve fibers, 34

Optical flow in vision, 3, 4

Orientation

as design element for visual forms, 10

as feature, 3. See also Properties of 2-D

features

as property of mark, 77

Overt acts for focusing attention, 53

Page, 123. See also Interaction space

Page design

focal points and, 126

perception and, 126

visual search strategies and, 126

Palmer principles

common region, 41

element connectedness, 41

Palmer, 27, 64

Palmer, S. E., 19, 31, 37, 58

Pan interaction, see Protovis framework, types

of interactions

Pan-STARRS array of celestial telescopes, 1

Panels, Protovis, see Protovis panels

Panning as visualization technique, 7

Paper prototypes, 120.

See also Prototypes

Paper prototypes, generating storyboards

for, 117

Paradox of intelligent selection, 56. See also

Visual attention

Parallel coordinates, 6

Parallel lines, 38. See also Depth perception

Parietal lobe, 34. See also Brain, regions of

Parsing, perceptual organization and, 42

Peirce, C., 66

Perceived simplicity, 104. See also Simplicity

Perception, 112. See also Cognition

of scenes, 3

of depth, 38. See also Depth perception

Perceptual classification

measurements of, 45

priming and, 45

speed and accuracy in, 45

Perceptual color space, 47

Perceptual constancy, 43�44

Perceptual memory, 61. See also Memory

Perceptual organization

figure/ground organization, 42

implications for design, 40

region analysis and, 42

Perceptual, Gestalt principles of, 40�42

Perceptual processes, theories of, 3

Performance in tasks, 13

Photons, 30, 45, 46

Photons, processing of color and, 51

Photoreceptors in retina, 31

Pinker, S., 25, 39, 64

Plaisant, C., 12, 136, 145

Planar variables, 76, 79

comparing marks using, 79

of graphic, 72. See also Graphic

Plane

in graphical representations, 78

signifying space of, 78

Planning, 3, 112. See also Cognition; cognitive

processes

bindex 19 August 2011; 9:33:42

INDEX 375

Plot

illustration of complex, using Protovis, 152

construction in Wickham pipeline, 98

Plot specifications, Protovis syntax issues when

writing, 211

Plots

creating basic, with Protovis, 211�222

heatmap, implementing with Protovis, 253

specifying, with ggplot2, 96

Plots, box-and-whisker

calculating upper/lower quantiles, 229�230

implementing with Protovis, 228�232

Plots, frequency histogram

implementing with Protovis, 223�28

Protovis functions for generating, 223

Protovis functions for generating bins of, 223

Plots, grouped

implementing with Protovis, 237�38

Plots, histogram

bins of, 223

Plots, matrix

implementing with Protovis, 242�53

Plots, scatterplot, 232�237

Point

as design element for visual forms, 10

as graphical element, 65. See also Graphical

elements

as type of mark, 76, 78

Point method, 267. See also Protovis

framework

Polar coordinate systems, see Coordinate

systems, polar

Polychromatic light, 46

Position scales, 90. See also Scales

Positional attributes of Protovis marks, 155.

See also Protovis marks

Positive feelings, effect on mental state, 122

Prefrontal cortex in brain, 61

PRIM-9, 6

Primal sketch, 38. See also Internal

representations

Primary visual cortex in brain, 35. See also

Visual pathways

Problem solving, 112. See also Cognition

Procedural memory, 61. See also Memory

Process of design, 107. See also Design process

Product design

behavioral level of reaction to, 122

user reactions to, 121�122

reflective level of reaction to, 122

visceral level of reaction to, 121

Proof-of-concept system, 15. See also

Prototypes

Properties of 2-D features

extraction during perception, 3

generation and use in perception, 4

Properties of information, 71. See also

Graphics

Protocols in scientific experiments, 7

Prototype, 107. See also Design process

Prototype in Protovis, 253. See also Protovis

marks

Prototypes

as communication medium with users, 120

design evaluation of, 121

development of, 120�121

high-fidelity, 11

implementing, 14�15

low-fidelity, 11

media for creating, 121

paper, 120

proof-of-concept, 121

qualities of low-fidelity, 120

throw-away, 121

use of for simulating actions, 120

Prototypes, high-fidelity, 120

as product specification, 121

Prototypes, high-fidelity

as proof-of-concept, 121

characteristics of, 121

exploring designs with, 15

measuring performance of, 121

Prototypes, low-fidelity, 120

exploring designs with, 14

Prototyping, evolutionary, 121

Prototyping as contextual inquiry, 121

Protovis, 14, 96, 101�102, 107, 137

Protovis

def method, 266

accessor functions, 225

basic mathematical and statistical operations

in, 232

browsers compatible with, 147

defined, 150

getting started with, 147�150

HTML template code required by, 149�150

implementing nested panels with, 237

inheritance in, 238�40

installing, 147

off-screen inheritance in, 239

off-screen marks in, 239

property chaining in, 240�41

selected data handling functions in, 275

selected mathematical operations in, 275

subjects covered about, 150�151

use of data array index in, 157

bindex 19 August 2011; 9:33:43

376 INDEX

use of for plots, 150

using extended expressions with off-screen

marks, 239�40

Protovis anchors, 194�98

adding labels using, 195

annotating boundaries of areas using, 196

defined, 194

positioning, 194

positioning, in center of mark, 196

Protovis areas, 177�181, 273, 274

alignment of, 178

customizing appearance of, 179

defined, 177

examples, 178�181

positioning, 177

positioning, with multiple polylines,

177�180

setting interpolation parameter

of, 180�181

uses of, 177

Protovis axes, 274

generating “nice” numbers for, 233

Protovis bar charts, spacing bars in, 165

Protovis bars, 273, 274

examples, 164�166

positioning in plots, 164�165

properties of, 164

properties specific to, 166

spatial properties of, 164

use of, in visualizations, 163�164

Protovis canvas, 152

Protovis colors, 187�191

HSL format, 273

named, 273

RGB format, 273

specifying named, 187�189

specifying HSL parameters for, 190�91

specifying RGB parameters for, 189�190

Protovis dots, 171�173, 273, 274

customizing appearance of, 172

defined, 171

examples, 171�173

positioning, 171�172

positional properties of, 171

setting shape of, 172

setting size of, 172

Protovis framework

annotating plots with tooltips, 263

binding event interactions to

handlers, 267

default handlers for all events, 267

defining local variables, 266

examples of events, 268�271

handling events, 267

hyperlinks, 264�65

interactive plots, 263

layout management, 253�54

local variables for events, 266

types of interactions, 267

Protovis framework layouts, 253�260

grid, 253

hierarchical, 257�260

network, 254�56

Protovis framework sparklines

visualization, 260

Protovis functions, 150, 157�159

as mappings from data to aesthetic

space, 157

basic logical operations for, 158

basic mathematical operations for, 158

defined, 157

programming conventions for writing, 159

source code for defining, 157

use of in properties, 155

applying data to anonymous, 157

Protovis grid cell properties, 253

Protovis images, 184�186, 273

defined, 184

displaying, from file or data

source, 185�86

positioning, 184�185

Protovis labels, 166�171, 273�274

adding static to plots, 168

annotating marks with, 169�170

controlling decimal places in numbers for,

193�94

creating titles with, 168

customizing appearance of, 170

examples, 167�171

format specification for generating, 192

formatting, 191�94

formatting numbers, times, and dates

for, 191

formatting time with short/long formats

for, 193

parsing text for, 192

placement of, 166

positional properties of, 166

strftime (C language) format for, 192

uses for, 166

using inheritance with, 169

Protovis lines, 174�177, 273�274

customizing appearance of, 175

customizing appearance of ends of, 176

defined, 174

positioning, 174

bindex 19 August 2011; 9:33:43

INDEX 377

Protovis lines (continued)

setting interpolation parameter

of, 176�177

setting type of segments in, 175

use of, in plots, 174

Protovis mark concrete classes, 156

Protovis mark properties

bottom, 273

data, 273

fillStyle, 273

height, 273

left, 273

lineWidth, 273

right, 273

strokeStyle, 273

title, 273

top, 273

visible, 273

width, 273

Protovis marks, 150, 152, 154�157

adding to panels, 154

associating data with, 154

bars, 152

basic properties of, 155�156

class of, 154

data field for, 154

data property of, 157

default values of, 155

defined, 152, 154

dots, 152

index property of, 157

inheriting basic properties of, 154, 156

mapping data values to visual

attributes of, 155

parent class of, 157

positioning in panels, 155

prototype, 253

setting color properties in, 175�176

setting cursors of, 264�65

source code for displaying, 153

summary of basic properties of, 273

types of cursors, 265

uses of, 155

using title property for tooltips of, 263

visibility of, 155

visual attributes, 155

Protovis panels, 150

adding panels to, 153

defined, 152

Protovis panels root

basic properties of, 153

defined, 151

generating, 153

Protovis rule, 198�200, 274

creating axes with, 198�99

creating grid lines with, 199�200

customizing appearance of, 200

defined, 198

positioning, 198

Protovis scale as abstract class, 201

Protovis scales

defined, 200

displaying data with log, 206�207

displaying data with nth root, 207�08

functions provided by, 201

generating grid lines with, 204�205

generating tick marks with, 203�204

linear, 274

mapping categorical data to aesthetic space

with, 201 208�210

mapping categorical data to colors with,

209�10

mapping continuous data to aesthetic space

with, 201

mapping data to aesthetic variables using,

202�203

mapping discrete data to aesthetic space

with, 201

ordinal, 201, 274

presenting evenly spaced categorical data

and, 210

quantile, 201, 274

quantitative, linear, 201

quantitative, log, 201

quantitative, nth root, 201

subdividing domains or

ranges of, 203

summary of common functions, 274

Protovis specification language, 149

Protovis specifications, embedding, in HTML

web pages, 214

Protovis text

formatting dates, 273

formatting numbers, 273

formatting time, 273

Protovis this.index, 157

Protovis toolkit, 147. See also Protovis

framework

Protovis variables, 150

Protovis variables

examples, 160�162

referencing objects with, 161

representing objects with, 161�162

reusing objects with, 160

role in writing plot specifications, 160

Protovis web site, 276

bindex 19 August 2011; 9:33:43

378 INDEX

Protovis wedges, 181�184, 273, 274

calculating angles of, for pie

charts, 182�183

constructing slices using, 181�182

creating pie charts with, 182

customizing appearance of, 183�84

defined, 181

normalizing, for use in pie charts, 182

positioning, 181

specifying inner/outer radius of, 182

use of, 182

Proximity, Gestalt principle of, 41. See also

Gestalt principles; Palmer principles

PubChem, 223

Pupil of eye, 31

pv.Mark, 154

pv.Mark.class, 154

pv.panel(), 153

Pylyshyn, Z. W., 44

Questionnaires, 111. See also Work, methods

for observing

R language/system, getting started with, 103

R system and language for statistics, 96

Rapid eye movements, 33. See also Eye

movements

raw data, 15. See also Data

reading

as defined in semiotics, 66. See also Semiotics

as cognitive process, 112. See also Cognition

visual interfaces, 122

Real-time constraints in visual interface design,

142�143

Reasoning, 3 112. See also Cognition; cognitive

processes

Recall, 3. See also Cognitive processes

Recall of objects, speed of, 124

Receptors retinal, 31

Recognition, 112. See also Cognition

Recognition of objects, speed of, 124

Red/green, 48. See also Color balance

Reflectance edges, 39, 52. See also Edges

Reflectance spectrum, 51

Reflected light, 30

Region analysis, perceptual organization and,

42

Reisberg, D., 63

Relational table, nomenclature for, 16

Relationships in action theory, 116. See also

Object/action analysis

Relative object sizes, 5. See also Depth

perception

Renderer, 87. See also Graphic pipeline

Representations

defined, 21

of color, 50

Representing world, defined, 21

Requirements, establishing initial, 12

Resize interaction, 267. See also Protovis

framework types of interactions

Responsiveness in visual interfaces, 142

Resting state of neuron cell, 26

Retinal image

as internal representation, 30�31

encoding of light in, 30

formation of, 50�53

role in perceptual processing, 3

Retinal receptors, 31

Retinal variables, 76

comparing marks using, 79, 80

of graphics, 72. See also Graphics

perceiving order in, 79

Retinex theory of color, 52

Retrieval of objects, speed of, 124

RGB colors, 273. See also Protovis colors

Ribbons tool as methods for organizing actions,

131

Rock, I., 64

Rules, Protovis, see Protovis rules

S language, 103

Saccades, 4, 5, 54. See also Eye movements

Sano, D., 145

SAS, 146

Satisfaction, 13

Saturation as dimension in color space, 46 47

Scale breaks, 140. See also Graphics

SCALE statement in Wilkinson graphics

specification, 89

Scale transformations, 93

in Wickham pipeline, 98

Scale, Protovis, as abstract class, 201

Scales

as functions, 88

categorical, 88

in graphic pipeline, 87. See also Graphic

pipeline

in graphical components, 118. See also

Graphical components

in graphics, 139. See also Graphics

linear, 90, 93

log, 93

mathematical space and, 92

positional, 90

power, 93

bindex 19 August 2011; 9:33:43

INDEX 379

Scales (continued)

quantitative, 88

time, 93

types of, 93

Scales, Protovis, see Protovis scales

Scan paths, 55. See also Eye movements

Scatterplots, 232. See also Plots

Scatterplot matrix, 242. See also Plots, matrix

Scene recognition

determining constitution of objects in, 29

object identification in, 29

object recognition in, 29

problem of, 29 36

reconstructing third dimension in, 29

Scene reconstruction, 37

Scenes, perception of, 3

SeeNet, 6

Select interaction, 267. See also Protovis

framework types of interactions

Semantic memory, 61. See also Memory

Semiotic systems

decoding messages in, 68

encoding messages in, 68

monosemic, 68

pansemic, 68

polysemic, 68

structure in, 67

types of, 68

Semiotics, 66�71

icon/iconic relationship of signifier/signified

in, 67

index/indexical relationship of

signifier/signified in, 67

pragmatics and, 67

relationship of signifier to

signified in, 66�67

semantics and, 67

symbols/symbolic relationship of signifier/

signified in, 66

syntax and, 67

Separable visual variables, 57�58

Separation in visualizations, 133

Sequence models, 113. See also Work models

Shape recognition, implications for design, 40

Shapes

as 2-D features, 3. See also Properties of 2-D

features

as design elements for visual forms, 10

as retinal variables, 77

recognizing, in perception, 4

Sharp, H., 14

Shneiderman, B., 12, 136

Short-term memory, 62. See also Memory

Short-wavelength cones, 50

Sight, internal representations and, 22

Signage as navigational aids, 125

Signified, 66. See also Semiotics

Signifiers in visual interfaces, 122

Signs, 66. See also Semiotics

Similarity, Gestalt principle of, 41. See also

Gestalt principles; Palmer principles

Simplicity

operational, 104

perceived, 104

Simulation in data processing pipelines, 15

Single-paged windows, 123

Size

as 2-D feature, 3. See also Properties of 2-D

features

as design elements for visual forms, 10

as retinal variable, 76

SKA, 1

Slanting surface, 39. See also Surface

orientation

Sliders as visualization technique, 7

Small multiples, 134. See also Visualizations

visualization, 96

Smell, internal representations and, 22

Smooth pursuit, 54. See also Eye movements

Space, geometric, visual representation and, 20

Sparklines in Protovis, 260. See also Protovis

framework

Spatial attributes in graphical grammars, 88

Spatial distance in external representations, 23

Spatial layout of objects in perception, 4

Speaking, 112. See also Cognition

Spence, R., 5

Square Kilometre Array, 1

Stages of evaluation in action theory, 113. See

also Action theory

Stages of execution in action theory, 113. See

also Action theory

Stat in Wickham’s pipeline, 100

Statistical calculations in graphic pipeline, 88

Statistical graphics, ix

Statistical transformations in Wickham

pipeline, 98

Statistical variables as defined in datasets, 17

Statistics, controlling, in graphic pipeline, 93

Statistics in graphical grammars, 93

Stenning, K., 63

Stereopsis, 5. See also Depth perception

Stereoscopic information, 38. See also

Information processing surface-based

stage

Striatum, 61

bindex 19 August 2011; 9:33:43

380 INDEX

Structure of information, 71. See also Graphics

Structured interviews, 111. See also Work,

methods for observing

Style guides, organizing actions and, 130

Subject matter of experts, 12. See also Domain

experts

learning, for design, 12

Super/subtype relationship, 116. See also

Object/action analysis

Surface analysis, 39

Surface orientation

effect of, on reflection, 39

analysis of, 39

Surface properties, object

determination of, 51

identifying during perception, 4

Surface-based processing stage in information

theory, 3, 4. See also Information theory

Surface-based representations, visual

perception and, 30

Surface-based stage in visual perception, 30

Surfaces, characterization of, 39

Surfaces, object

generating representations of, 38

perceiving, 38. See also information

processing

Symbols, 66. See also semiotics

in representations, 21

Symbols/symbolic, 66. See also Semiotics

Synapse, function of, 25

Synaptic connections, memory and, 59

Tables

graphics and, 142

nomenclature for, 16

Task analysis, 108. See also Design process

conceptual models and, 13

iterative nature of, 114

Task descriptions, 114

concepts identified in, 116

example of, 115

list of concepts from, 116

Tasks, 53. See also Cognitive processes

data analysis, 106

designing for frequently performed, 126

Taste, internal representations and, 22

Temporal lobe, 34. See also Brain regions of

Text, Protovis, see Protovis text

Texts as defined in semiotics, 66. See also

Semiotics

Texture

as design elements for visual forms, 10

as retinal variable, 77

Theus, M., 145

this.index, Protovis, 157

Thomas, J. J., 2

Threshold(s)

for neural activation, 26. See alsoNeuron cell

time, for interaction design, 142

Tidwell, J., 145

Tiled windows, 123

Tilting surface, 39. See also Surface orientation

Time formatting, 273. See also Protovis text

Time to learn task, 13

Tog’s first principles of interaction design, 144

Toolbars as methods for organizing actions, 131

Top-down processing in perception, 53

Touch, internal representations and, 22

Tracking, eye movements and, 54. See also Eye

movements

Tremors, 54. See also Eye movements

Trichromatic representation of color for visual

perception, 50

Trichromatic theory, 48. See also Color

perception theories

Trichromats, 48

Tufte, E. R., 131, 145

Tukey, J., 6

Tversky, B., 63

Two-streams hypothesis, 35. See also Visual

pathways

Unstructured interviews, 111. See also Work,

methods for observing

Unwin, A., 145

Urbanek, S., 145

Usability defined, 12

Usability evaluation, 107 121. See also Design

process

Usability goals, 12

accuracy, 13

memorability, 13

performance, 13

satisfaction, 13

time to learn task, 13

Usability testing vs. design evaluation, 121

Use cases, essential, 114

User interface(s), see Visual interfaces

Users, 111�112

general questions for, 111

identifying roles of, 12

interview questions for, 111�112

identifying needs of, 12

roles of, 112, 114

task-related questions for, 112, 114

work environment questions for, 112

bindex 19 August 2011; 9:33:43

INDEX 381

V1, 35. See also Visual pathways

Value as retinal variable, 77

Variables, 87. See also Graphic pipeline

as defined in datasets, 17

Protovis, see Protovis variables

Ventral pathway, 35. See also Visual

pathways

Visible objects used in design, 129

Vision

as process of stages, 37

defined, 28

Vision science, 2

Visual analytics, 106

defined, 2

emergence of, ix

exploration in, 132

in homeland security, 2

Visual attention, 53

capacity of, 56

distributed, 58�59

effect of learning on, 56

focused, 56�57

paradox of intelligent selection, 56

pop-out, 59

preattentive features and, 59

search strategy and, 56

selective, 57

selectivity of, 56

Visual attributes of Protovis marks, 155. See

also Protovis marks

Visual centers of brain, 31

Visual constancy,

implications for design, 40

visual perception and, 44

Visual cortex, 34. See also Brain, regions of

Visual cues, example of, 5

Visual field, 4

Visual flow

defined, 128

effect of focal points on, 128

of visual interfaces, 126

organization of graphical elements and, 128

use of visual properties to achieve, 128

visual grouping and, 128

Visual forms, 5

composition of, 10

defined, 6

digital storage of, 10

example of, 10

in data processing pipelines, 15

Visual grouping

Gestalt principles and, 128. See also Gestalt

principles; Palmer principles

visual flow and, 128

Visual hierarchical organization, perception

of, 11

Visual hierarchies

alignment, 127

contrasting colors and, 127

fonts/colors and, 127

Gestalt principles and, 128�129

indentation and, 127

positioning and, 127

scan paths in, 126

white space in, 127

of visual interfaces, 126

Visual inattentiveness

attentional blink, 57

change blindness, 57

inattentional blindness, 57

types of, 57

Visual interaction design, 121

Visual interactions, designing, 106�107

Visual interface design, real-time constraints

and, 142�143

Visual interface(s), ix, 123�131

as organization of content and tools, 123

as organizational system, 122

as semiotic system, 107

as visual form, 8

characteristics and style of, 122

complexity of, 105

components as design elements for, 10

controls as design elements for, 10

creating visual hierarchies in, 126�127

design of, 108, 118�120

interaction in exploratory data analysis, 6

mental model of, 11

perceptual limitations affecting, 123

role in Intelligence Amplifed system, 9

types of interaction spaces in, 123

understanding complexity of, 105

visual flow in, 126

visual hierarchies in, 126

Visual interpolation, 42

implications for design, 40

Visual language, 122

Visual memory buffer in human visual system, 5

Visual pathways, 32�36

lateral geniculate body, 35

optic chiasma, 35

primary visual cortex, 35

two-stream hypothesis of, 35

Visual perception

category-based stage in, 30

early-stage processes of, 36

focusing attention in, 53

image-based stage in, 30

bindex 19 August 2011; 9:33:43

382 INDEX

in semiotics, 68

information processing theory and, 3

introduction to, 2�5

later-stage processes in, 36

object-based stage in, 30

representations and, ix

role in Intelligence Amplifed system, 9

stages of, 30

surface-based stage in, 30

Visual pop-out, 59

Visual properties, 122

of mark in graphic, 72. See also Graphic

Visual queries

types of, 80

example of, 4�5

Visual representations, ix, 10. See also Visual

forms

of statistical data, 123

Visual selection, 53�54

Visual system, cueing of, by tasks, 124

Visual system, human

compared with other species, 28

role in Intelligence Amplifed system, 9

Visual systems

defined, 3

emergence of, ix

human intelligence and, 2

in data processing pipelines, 15

key role of, 28

of housefly, 28

role of, in visual perception, 28

Visual tasks

boundary detection, 59

counting, 59

estimation, 59

target detection, 59

Visual tools as semiotic systems, 122

Visual variables

differences between planar and retinal, 85

disassociative, 80

effects of ordered organization in, 81

length of, 78

levels of organization, 79

of graphic, 72. See also Graphic

perceptual organization of, 79

steps in, 78

summary of perceptual organization of, 80

with associative level of organization, 80

with ordered level of organization, 81

with quantitive level of organization, 82

with selective level of organization, 81

Visualization, 5�9

contribution to exploratory data analysis

of, 6

defined, 5

disciplines involved in, ix

drawing packages for, 146

emergence of, ix

importance of, 2

layering and separation, 133

role in Intelligence Amplified system, 9

Visualization, information, 131

Visualization design

abstract stages of, 135�136

goals of, 132

problems of multidimensional data in, 132

Visualization systems

defined, 10

questions to ask when designing, 6

Visualization tools, 6. See also Visualization

systems

Visualizations, 131�136

as graphical representations, 123

methods for managing complexity in,

132�136

micro/macro, 132

small multiples, 134

Visualizations, data

methods for generating, 146

software libraries for creating, 146

Visualizations, interactive

creating subsets of data in, 135

displaying relationships between items in, 135

filtering irrelevant information in, 135

focus+context and, 136

interaction schemas for, 136

managing complexity in, 134�135

multiple levels of detail and, 134

overview+detail and, 136

rearranging data in, 135

sorting data in, 135

zooming in, 136

Volumes, 65. See also Graphical elements

von Helmholtz, H., 47

von Neumann, J., 27

Wainer, H., 145

Ware, C., 64

Wavelengths of light, 45�46

Wedges, Protovis, see Protovis wedges

Wertheimer, M., 40

What pathway, 35. See also Visual pathways

Where pathway, 35. See also Visual pathways

Whole/part relationship, 116. See also Object/

action analysis

Wickham, H., 96

Wilkinson L., 86, 123, 139, 145

Wilks, A., 103

bindex 19 August 2011; 9:33:43

INDEX 383

Windows, 123. See also Interaction spaces

Work, methods for observing, 111

Work environment, 111�112

Work models

artifact models, 113

as specifications, 119

flow models, 113

sequence models, 113

Working memory, 61. See also Memory

Xerox Star, 13

Yaffa, J., 145

Yarbus, A. L., 55

Young, T., 47

Zhang, J., 63

Zooming as visualization technique, 7

bindex 19 August 2011; 9:33:43

384 INDEX

	Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations
	Contents
	Preface
	Acknowledgments
	1: Introduction
	1.1: Overview
	1.2: Visual Perception
	1.3: Visualization
	1.4: Designing for High-Throughput Data Exploration
	1.4.1: The IA (Intelligence Amplified) System
	1.4.2: Design
	1.4.3: Data

	1.5: Summary
	1.6: Further Reading

	2: The Cognitive and Visual Systems
	2.1: External Representations
	2.2: The Cognitive System
	2.2.1: The Matter of Thought
	2.2.2: Mental Processes and Internal Representations

	2.3: Visual Perception
	2.3.1: The Problem of Scene Recognition
	2.3.2: Levels of Explanation
	2.3.3: Illuminating the Environment
	2.3.4: The Eye and Visual Pathways
	2.3.5: Processing the Retinal Image
	2.3.6: Color

	2.4: Influencing Visual Perception
	2.4.1: Eye Movements
	2.4.2: Attention
	2.4.3: Memory

	2.5: Summary
	2.6: Further Reading

	3: Graphic Representations
	3.1: Jacques Bertin: Semiology of Graphics
	3.1.1: The Essence of Semiotics
	3.1.2: The Properties and Structure of the Information
	3.1.3: The Properties of the Graphics System
	3.1.4: Constructing Efficient Graphics

	3.2: Wilkinson: Grammar of Graphics
	3.2.1: The Graphic Pipeline
	3.2.2: The Graphic Specification
	3.2.3: Components of the Grammar

	3.3: Wickham: ggplot2
	3.3.1: The Graphic Pipeline
	3.3.2: The Graphic Specification and Components

	3.4: Bostock and Heer: Protovis
	3.5: Summary
	3.6: Further Reading

	4: Designing Visual Interactions
	4.1: Designing for Complexity
	4.2: The Process of Design
	4.2.1: Analyze
	4.2.2: Design
	4.2.3: Prototype
	4.2.4: Evaluate

	4.3: Visual Interaction Design
	4.3.1: Visual Interfaces
	4.3.2: Visualizations
	4.3.3: Graphics
	4.3.4: Real-Time Constraints

	4.4: Summary
	4.5: Further Reading

	5: Hands-On: Creating Interactive Visualizations with Protovis
	5.1: Using Protovis
	5.1.1: Overview
	5.1.2: Getting Started
	5.1.3: Chapter Overview
	5.1.4: Exercise

	5.2: Creating Code Using the Protovis Graphical Framework
	5.2.1: Overview
	5.2.2: Panels
	5.2.3: Marks
	5.2.4: Using Functions
	5.2.5: Variables
	5.2.6: Exercises

	5.3: Basic Protovis Marks
	5.3.1: Bar
	5.3.2: Label
	5.3.3: Dot
	5.3.4: Line
	5.3.5: Area
	5.3.6: Wedge
	5.3.7: Images
	5.3.8: Exercises

	5.4: Creating Customized Plots
	5.4.1: Colors
	5.4.2: Formatting
	5.4.3: Anchors
	5.4.4: Rule
	5.4.5: Scales
	5.4.6: Exercises

	5.5: Creating Basic Plots
	5.5.1: Overview
	5.5.2: Handling Arrays and Data
	5.5.3: Reading Data from Files
	5.5.4: Worked Examples
	5.5.5: Exercises

	5.6: Data Graphics
	5.6.1: Frequency Histograms
	5.6.2: Box-and-Whisker Plots
	5.6.3: Scatterplots
	5.6.4: Exercises

	5.7: Composite Plots
	5.7.1: Creating Grouped Plots Using Multiple Panels
	5.7.2: Inheritance
	5.7.3: Property Chaining
	5.7.4: Creating Plot Matrices Using Multiple Panels
	5.7.5: Layout Management
	5.7.6: Networks
	5.7.7: Hierarchies
	5.7.8: Sparklines
	5.7.9: Exercises

	5.8: Interactive Plots
	5.8.1: Overview
	5.8.2: Tooltips
	5.8.3: Hyperlinks
	5.8.4: Local Variables and Events
	5.8.5: Behavior
	5.8.6: Exercises

	5.9: Protovis Summary
	5.10: Further Reading

	Appendix A Exercise Code Examples
	Bibliography
	Index

