
CARLOS HERNÁNDEZ MIRELES

Marketing Modeling
for New ProductsC

A
R

LO
S

 H
E

R
N

Á
N

D
E

Z
 M

IR
E

LE
S

-  M
a

rk
e

tin
g

 M
o

d
e

lin
g

 fo
r N

e
w

 P
ro

d
u

cts

ERIM PhD Series
Research in Management

E
ra

sm
u

s 
R

e
se

a
rc

h
 I

n
st

it
u

te
 o

f 
M

a
n

a
g

e
m

e
n

t
-

E
R

IM

202

E
R

IM

D
e

si
g

n
 &

 l
a

yo
u

t:
 B

&
T

 O
n

tw
e

rp
 e

n
 a

d
vi

e
s 

 (
w

w
w

.b
-e

n
-t

.n
l)

  
  

P
ri

n
t:

 H
a

ve
k

a
  

 (
w

w
w

.h
a

ve
k

a
.n

l)MARKETING MODELING FOR NEW PRODUCTS

This thesis addresses the analysis of new or very recent marketing data and the intro -
duction of new marketing models. We present a collection of models that are useful to
analyze (1) the optimal launch time of new and dominant technologies, (2) the triggers,
speed and timing of new products’ price landings, (3) the consumer heterogeneity that
drives substitution patterns present in aggregate data, and (4) the influential locations that
drive the diffusion of new technologies. The econometric approaches that we apply are
diverse but they are predominantly Bayesian methods. We use Bayesian mixture modelling,
Bayesian variable selection techniques, Bayesian spatial models and we put forward a new
Bayesian approach for the random coefficient logit model. The data that we analyze
consist of unique and large datasets of video-game prices, video-game consoles’ sales,
aggregate sales data for consumer products and Google’s online search data. 
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Doctoral Committee

Promotor: Prof.dr. P.H. Franses

Other members: Prof.dr. B.J. Bronnenberg

Prof.dr. P.K. Chintagunta

Prof.dr. R. Paap

Co-promotor: Dr. D. Fok

Erasmus Research Institute of Management - ERIM

Rotterdam School of Management (RSM)

Erasmus School of Economics (ESE)

Erasmus University Rotterdam

Internet: http://www.erim.eur.nl

ERIM Electronic Series Portal: http://hdl.handle.net/1765/1

ERIM PhD Series in Research in Management, 202

Reference number ERIM: EPS-2010-202-MKT

ISBN 978-90-5892-237-3

c©2010, Carlos Hernández Mireles

Cover design: B&T Ontwerp en advies www.b-en-t.nl

Print: Haveka www.haveka.nl

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any

means electronic or mechanical, including photocopying, recording, or by any information storage and

retrieval system, without permission in writing from the author.



To My Family

Carlos, Leticia, Tanhia and Ileana





Acknowledgements

I started my Ph.D. in November 2006 and this thesis represents the result of three and a half

years of joint work with my Ph.D. advisors Philip Hans Franses and Dennis Fok. I thank Philip

Hans and Dennis both for their personal support and for the great learning experience that

they provided me during this time. Just a couple of minutes of discussion with Philip Hans are

enough to gain vital research insights and these minutes will translate into many weeks of work.

I am the first Ph.D. student that Dennis supervises and I must say that he did an excellent job

and I benefited enormously from our frequent discussions concerning marketing and Bayesian

methods. I thank Richard Paap because he was, although unofficially, my third advisor and my

thesis benefited from his comments and modeling insights. I also thank Bart Bronnenberg and

Pradeep Chintagunta for evaluating this thesis as members of my inner committee.

I am grateful to many people who contributed to my learning experience during my Ph.D.

and M.Phil. studies at the Erasmus Research Institute of Management (ERIM). My M.Phil.

was sponsored by Cemex and I specially thank Juan Carlos Delrieu and Luis Hernández whose

support was key to make the sponsorship possible. I also thank Mauricio Mora and Jorge

Mart́ınez who encouraged me to continue my studies. ERIM proved to be the right place to

purse my own interests in econometrics and at the same time to gain advanced management and

marketing knowledge. I specially enjoyed the courses of Ale Smidts, Alex Koning, Bauke Visser,

Daan van Knippenberg, Frans van den Bosch, Patrick Groenen, Philip Hans Franses, Richard

Paap, Stefan Stremersch and Stijn van Osselaer. I also enjoyed the summer course of Alan

Gelfand and Bradley Carlin that was organized by the Erasmus Medical Center. In addition, I

thank the ERIM and Econometric Institute staff who facilitated my research in many different

ways. Erasmus University and ERIM host a truly diverse and inspirational research environment.



viii Acknowledgements

There are many friends and colleagues who have made my doctoral studies an enjoyable

experience. Alice, Antonio, Betty, Cecy, Chuy, Erick, Hans, Mariana, Ordener and Roberto

always kept me informed and optimistic about Mexico. Agatha, Anna and Hendrik, Annie,

Fritz and Anna Margriet, Bettina, Claudio, Esther, Gao, Liz and Karol, Margreet, Nadji, Paula,

Roel, Ron, Wessel and Yang will always be in my good memories of Holland. I specially thank

Nicolás Gutiérrez who always set some time apart to meet with me during his yearly visits to

RSM. I thank Jose and Morteza for their help organizing this day and for being my paranymphs.

Finally, I thank my fellow Ph.D. candidates Amir, Andrey, Bram, Cerag, Diana, Ezgi, Francesca,

Georgi, Hendrik, Joao, Joost, Kar Yin, Lanah, Merel, Milan, Nima, Nuno, Rene, Ron and Wei.

They offered me understanding and we shared all what comes with Ph.D. life.

I completed my Ph.D. largely thanks to the inspiration and unconditional loving support of

my family. Carlos, Leticia, Ileana, Tanhia and David are my mentors in all sorts of matters that

range from molecular biology and its applications in biotechnology up to much deeper subjects

such as hard work, friendship and love.

Carlos Hernández Mireles

Rotterdam, June 29th 2010



Contents

Acknowledgements vii

1 Introduction 1

2 The Launch Timing of New and Dominant Multi-Generation Technologies 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A Multi-Product Diffusion Model with Competition . . . . . . . . . . . . . . . . 13

2.4 The Video Game Hardware Market . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Estimation and Parameter Assumptions . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Duopoly Case Study: The Portable System Race . . . . . . . . . . . . . . . . . . 30

2.8 Triopoly Case Study: The Video Game Console Race . . . . . . . . . . . . . . . . 34

2.9 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.A Strategy Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 The Timing and Speed of New Product Price Landings 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Video Game Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Price Landing: Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



x Contents

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.A Estimation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Random Coefficient Logit Models for Large Datasets 117

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Augmented Bayesian BLP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Simulation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7 Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Finding the Influentials that Drive the Diffusion of New Technologies 159

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Data and Modeling Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.7 Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.A Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Nederlandse Samenvatting (Summary in Dutch) 221
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Chapter 1

Introduction

Thesis Road-map

In this thesis we address the marketing of new products using mathematical and econometric

models. We present a collection of models that are useful to study the following topics: (1) The

optimal launch time of new and dominant technologies, (2) The triggers, speed and timing of

new products’ price landings, (3) The consumer heterogeneity that drives substitutions patterns.

And, (4) the influential locations that drive the diffusion of new technologies.

These topics are explored in depth in the next four chapters and the topics of the chapters

follow the order introduced above. Each chapter is self-contained and can be read independently

from the others. However, the four chapters share a similar structure. That is, each chapter

consists of an executive summary, a literature review, the modeling and econometric approach

and its own conclusions or discussion.

The econometric approaches that we apply are diverse but they are mainly Bayesian. The

exception is the second chapter where we apply non-linear least squares and simulation methods.

The third chapter involves Bayesian mixture modeling. In the fourth chapter we present a new

Bayesian approach for the random coefficient logit model. Finally, the study in the fifth chapter

is based on Bayesian variable selection techniques and Bayesian spatial models.

In the next section we introduce the topics that we will explore in the next four chapters and

we aim to give an impression and short overview of some of the important aspects related to the

marketing of new products. The overview is based on Apple because the marketing techniques

of this company offer a great setting related to the topics covered in this thesis. Note, however,



2 Introduction

that this thesis’ research is not applied to Apple’s products. After the overview, we conclude

this introductory chapter with a summary of the academic contributions of this thesis.

The perfect marketing for new products?

When will Steve Jobs launch the next generation of the iPhone, the iPhone 4G? Hopefully for

those working in marketing, Steve Jobs will prefer to launch the iPhone 4G at the time indicated

by Apple’s Vice-President (VP) of Marketing and at a time after the engineers and designers

at Apple finished its technological development. But what will be the timing suggested by

Apple’s Marketing VP? Is it likely that the Marketing VP will strive to find the launch date

that could result in the greatest consumer demand possible at all dates after the iPhone 4G

launch? The question now seems to be when consumers, both current owners and non-owners of

the iPhone, will purchase the iPhone 4G. Will they be anxiously waiting to purchase it as soon

as it is available online or at their local Apple shop? Or will consumers wait some time after its

introduction or will they even wait to leap-forward to a superior iPhone a couple of generations

ahead, say, to the iPhone XG?

Currently, the iPhone is the leading and dominant technology in the smart-phone segment.

One of the closest competitors of the iPhone is the BlackBerry produced by Research in Motion

(RIM). How much do we know about the BlackBerry’s “generations”? RIM managers decided

to manage their products in a very complex generational series. Consumers have the option

to buy the BlackBerry Bold 9700, the BlackBerry Storm2 9550, the Storm2 9530, the Black-

Berry Curve 8900, the Curve 8500, the Curve 8300, the Bold 9000, the Tour 9630 and so on.

Surprisingly, a similar generational marketing strategy is used by Nokia, Samsung and other

phone manufacturers. That is, the current iPhone is competing against dozens of products. Is

the communications market the only market where the iPhone is competing? The answer is no.

The iPhone is the top ranking camera in Flickr and hence it may be the most popular device

to make photos worldwide. The next most popular device in Flickr is the Canon EOS Digital

Rebel, that is a Canon digital SLR!1 Moreover, the iPhone is becoming a popular gaming plat-

1See http://www.flickr.com/cameras/ for the Flick rankings and http://na.blackberry.com/

eng/devices/ for the latest list of RIM devices.
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form and it is competing also against the Nintendo DS and the PlayStation Portable. Each new

market expands the market potential of the iPhone while at the same time each new market may

be a call for tougher competition and retaliation. Later, we will refer to technologies that fight

for dominance as alpha technologies because these markets resemble the struggle for dominance

between, for example, alpha chimpanzees. The iPhone faces a market where it may be classified

as the dominant and only alpha technology in the smart phone segment. However, a common

setting consists of several alpha technologies all of which have the potential to become the mar-

ket leader. That is the setting that we study in the second chapter. In the second chapter of this

thesis we present a multi-generation model for new and dominant technologies. We specifically

focus on the topic of the launch timing of alpha technologies and its optimality.

In all ways, Apple is doing a great effort to increase the desirability of its products much

before their market launch and in fact, during all their life-cycles. If the marketing strategy

is effective then the VP of Marketing could pick a launch date, for example, and then do her

best to set an introductory price and launch Apple’s product at a good timing relative to its

marketing and advertising campaigns. The launch of the iPad has brought attention to Apple’s

pricing strategy. Not surprisingly, Apple aims to convince its consumers that the iPad is “a

magical and revolutionary product at an unbelievable price”. That is exactly the current main

welcome message at www.apple.com. Of course, prices play an important marketing role and

Apple has tried to manage the timing and depth of price cuts carefully. In general, prices of

high-tech products show sudden transitions from initial high levels to permanent much lower

levels. There may be many different reasons behind a price cut, like demand, competition,

products release schedule or seasons, and Apple is adapting each of its products´pricing to

their specific competitive and demand settings. Later, we will refer to these transitions as price

landings. In the third chapter of this thesis we present an empirical study of price landings and

their potential triggers. More specifically, we study the heterogeneity of price landings and our

modeling approach uncovers the relative importance of different landing triggers.

The focus of Apple’s marketing efforts varies per product. Recently, the advertising of Mac

computers was focused on its product features, the technology. The “Hello, I’m a Mac” ads

made special emphasis on the superiority of Mac computers relative to PC’s. In contrast, the
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marketing for the iPhone was based on its applications (“Apps”) while the Apps were not really

an Apple’s product. However, the flexibility, diversity and immense capabilities of these Apps

was featured as the main product to advertise in the marketing campaign “There is an App for

That”. That is, the Marketing VP might have realized that network effects and the demand for

software could increase the demand for the iPhone. The third example is the recent marketing

campaign for the iPod and this time the focus were its users. The “dancing silhouettes” campaign

featured only color silhouettes of iPod users dancing different types of music or it featured

bands and their music, like U2 playing Vertigo. In summary, Apple is addressing consumer

heterogeneity with brand-specific campaigns. In the fourth chapter we present a methodology

that is useful to capture consumer heterogeneity and preference evolution based on aggregate

sales data. Specifically, we present an approach that augments previous Bayesian analysis of the

random coefficient logit model. We present a modeling approach that is new because it adds

market-specific and global priors, time varying preferences and finally we model heterogeneity

with a novel structure.

Overall, Apple’s is known as a firm aiming to provide the best consumer experience and it

is usually mentioned as a company with great customer service. There are, however, groups of

customers that receive greater attention and these are Apple’s fans. Steve Jobs manages and

talks to this influential and selected group of consumers at different moments. The last time that

Steve Jobs appeared on stage as key-note speaker was on January 27th of 2010 and he devoted a

complete event to describe the features of the iPad to Apple fans and to the press. In addition,

he announced the pricing for the iPad and its launch date. The iPad will be available at Apple

stores on April 3rd 2010 and it can be pre-ordered since March 12th 2010. Influentials are people

who have a significant effect on the behavior of others and they might be the engine of diffusion

at different moments and locations. Hence, it is key to manage influentials and convince them

about the marvels of products much before everyone else. Steve Jobs key-notes are always based

in San Francisco but Apple fans are everywhere. Are these fans always influential? Do they

play different roles during the life-cycle of new technologies? In the fifth chapter of this thesis

we present an approach to find the influential locations that drive the diffusion of technologies
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in aggregate sales data and in location-specific online search data. We further provide insights

on how the influential locations distribute in space and how they evolve in time.

Summary and Academic Contributions

The novelty of this thesis consists of the analysis of new or very recent data and the introduction

of new marketing models.

The second chapter introduces a new diffusion model that is useful to analyze the optimal

introduction timing of multi-generational technologies. Special focus is given to firms’ alpha,

that is the ability of a firm to transfer users of its old technologies to their new generations,

and the effects of the firms’ alpha on the introduction dates of potential dominant technologies.

This same chapter’s analyses are based on recent weekly data of game consoles and video-games

and we provide new insights about the optimality of the launch timing of the Nintendo Wii and

the PlayStation 3. Chapter 2 is joint work with Philip Hans Franses.

Next, in the third chapter, we present a new mathematical model for sudden price transitions.

Surprisingly, we are the first to empirically model specifically these transitions, what we call

price landings, and their triggers, timing and speed. Furthermore, our analysis is based in a new

dataset containing almost 1200 recently introduced products. Our contribution offer insights

into the heterogeneity of price landings and the untangling of the most likely triggers of price

landings based on Bayesian mixture modeling. Chapter 3 is joint work with Dennis Fok and

Philip Hans Franses.

The contribution in the fourth chapter is mainly the introduction of an augmented version

of recent Bayesian analysis of the random coefficient logit model. The practical application of

the Bayesian random coefficient model, specifically to large datasets, requires novel approaches

and model formulations. We apply our new approach to both simulated data and to a unique

and very large dataset of aggregate sales and our approach proves to be promising. Chapter 4

is joint work with Dennis Fok.

Finally, in the fifth chapter of the thesis we analyze new data collected from Google Insight

and we apply recent Bayesian econometric approaches to identify influentials. We focus our

analysis on the identification of the influential locations that drive the aggregate sales of new
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technologies. The specific techniques that we apply in this chapter, Bayesian variable selection

and multivariate spatial models, are new to the marketing literature. Hence, our contribution

consists of the illustration of how these techniques can be applied to study marketing problems

while at the same time we provide insights about the time variation and spatial clustering of

influentials.



Chapter 2

The Launch Timing of New and

Dominant Multi-Generation

Technologies

In this chaper we introduce a model that is suitable to study the diffusion of new and domi-

nant multi-generation technologies. Examples are computer operating systems, mobile phone

standards, video game consoles. Our model incorporates three main features. First, we add the

ability of a firm to transfer users of its old technologies to the new generations, what we call

firms’ alpha. Second, we add competitive relations between market technologies. Third, the

launch strategies diagnosed by our model cover, as special cases, the now or never strategies

and hence it is suitable to study intermediate launch strategies.

We state the relationship of our model to previous research both in terms of the model for-

mulation and in terms of some of its analytical solutions. Specifically, the model may reduce to

the Bass or the Norton and Bass models. Regarding the analytical solutions, we find that the

launch never strategy arises when there are late product introductions by competitors, when a

firm’s alpha is very low, or when the competition is intense while the launch now strategy arises

only when a firm’s alpha is zero.

In addition, we evaluate different launch strategies and the optimality of launch timings in

two detailed case studies on the video game systems market. We study the portable systems

(PS) and the video game consoles (VGC) industry. We present several insights from our analysis

and we find interesting explanations for the pacing strategy in this market, for which we also

provide a historical perspective.

We find that the appropriate timing of a new technology depends heavily on both the firms’

alphas and on the competitive positioning of their products. In the VGC case we find that the

Nintendo Wii was launched at an appropriate moment while the Sony PS3 perhaps should have

never been launched.
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2.1 Introduction

In a well-known study on the behavior of chimpanzees Jane Goodall writes:

“In 1963 Goliath, a powerful and aggressive male in his prime (perhaps about 25 years

of age) was the alpha male. He had a spectacular charging display during which he covered

the ground very fast indeed, dragging and occasionally hurling branches. Early in 1964,

however, Goliath was displaced from his top-ranking position in the community by an older

and much less robust male, Mike... Unlike Goliath, who had maintained a very high ranking

position for several years after losing his alpha rank, Mike dropped rapidly to a low position

in the hierarchy... In chimpanzee society, dominance is something of a conundrum. The

usual interpretation of the phenomenon is that it enables a high-ranking individual to have

prior access to desirable foods, females, or resting places.” (van Lawick-Goodall, 1973)

We believe that Goodall’s description of dominance in the chimpanzee society directly applies

to new technologies and their markets. Specifically, markets of new technologies formed by a

few firms and products and by a single or a few dominant alpha technologies are analogous to

the few chimpanzee males that fight for the alpha rank. Examples of products in this type of

industries are operating systems, mobile phone standards, video game consoles, smart phones,

and so on.

Many technology firms, like Apple or Microsoft, launch several versions of their products,

what we know as product generations. Each time a new generation product is introduced to the

market some or many of the users of the old generations switch to the new one, at the same time

new users may adopt the new generation product while other users may switch from one firm´s

products to another firm´s products after a new introduction. That is, each product generation

cannibalizes its previous generation and each firm has a different capacity of transferring the

users of the old technology to the new one. For example, we know that Apple has been very

successful transferring the users of its old technologies to the new ones. Linux, even though it is

a smaller player, is a second example of a technology with a high alpha. In contrast, it was widely

documented how Microsoft users were hesitant to switch from Windows XP to Windows Vista.

Some Windows users stickied to Windows XP while others switched to alternative operating

systems. In this chapter we will refer to the firms capacity of cannibalizing and transferring
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users of old technologies to new ones as the firm’s alpha. In our example, Apple would be the

player with a high alpha.

In this chapter we extend the Norton and Bass (1987) model by incorporating three new

elements that have not been addressed simultaneously in previous literature. These are the firm’s

ability of transferring its users to new technologies (the firm’s alpha), the competitive interaction

between firms in the market, and a new solution to the timing of new technologies. Our model is

suitable to study the timing of new generation products in industries that are characterized by

a relatively slow pace of introductions and a few firms launching new technologies. In addition,

we test our model empirically under different settings and based on the new model we provide

insights into the launch-timing strategies and into the optimality of launch timings.

Previous empirical literature has addressed the diffusion of new multi-generation technolo-

gies, like Norton and Bass (1987), Kim and Lee (2005), Danaher et al. (2001) and Kim et al.

(2000), but they do not cover the topic of introduction timing. Two exceptions are Norton and

Bass (1987) and Mahajan and Muller (1996). These last authors introduce the timing of new

products into their models and tested them empirically. However, both the Norton and Bass

(1987) and the Mahajan and Muller (1996) models suggest to launch new technology either now

or never. Other analytical studies have addressed specifically the timing of new technologies,

like Wilson and Norton (1989), Joshi et al. (2009), Bayus et al. (1997), Souza et al. (2004) and

Morgan et al. (2001), but these later authors models have not been tested empirically and in

most cases their models are suitable for industries with a fast pace of technology introductions,

an exception being Joshi et al. (2009). More importantly, these studies do not incorporate the

three new elements we address simultaneously.

The plan of the chapter is as follows. In Section 2.2 we present our literature review. In

Section 2.3 we present our model for the duopoly and triopoly case (sections 2.3.1 and 2.3.2,

respectively), we discuss its relationship to previous models (section 2.3.3) and the analytical

properties that distinguish it from previous models (section 2.3.4). In Section 2.4 we introduce

the market context and our data. In Section 2.5 we motivate the model assumptions and the

estimation procedure. In Section 3.5 we discuss the estimation results. In the next two sections

we use our model to study the industry. In Section 2.7 we study the portable system market and
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we give insights about different launch strategies. Next, in Section 2.8, we study the main video

game console market, composed of Microsoft, Sony and Nintendo, and we focus our analysis in

the latest console race. We further provide insights into how different introduction timings may

be optimal. Finally, in Section 3.6 we present our discussion and conclusions.

2.2 Literature Review

To our knowledge, Wilson and Norton (1989) and Mahajan and Muller (1996) are the two

key studies concerned with the question of when it is optimal for a monopoly to launch multi-

generation products. According to Wilson and Norton (1989) there are three critical issues

which affect the optimal introduction time of a new generation. These are the interrelationship

of sales of the two products, their profit margins and the planning horizon. Surprisingly, their

model provides two optimal solutions regardless of the relevance of these factors. They conclude

that different generations of a product should be introduced either all at the same time or se-

quentially and not overlapping. In a similar vein, Mahajan and Muller (1996) conclude that a

new generation should be introduced as soon as it is available (if its market potential is larger

than the preceding one) or it should be delayed to a much later stage, that is, to the maturity of

the previous generation. Their findings seem special cases of the solutions proposed by Kamien

and Schwartz (1972). Kamien and Schwartz (1972) suggest to never launch a technology only

under extreme competition and to launch now only if the firm needs to take advantage of a

profit stream that would otherwise be smaller once competitors come in.

More recently, Joshi et al. (2009) study the problem of product launch timings across different

markets. They characterize situations, depending on social influence, where it is optimal to

launch before maturity or after the maturity of the first generation product. However, Joshi

et al. (2009) do not incorporate competition and their model is only useful to study the in-

teraction of products across markets (same product in two geographies, for example). Souza

et al. (2004) study the new product introduction strategy and its relation to industry clock

speed. They provide analytical evidence that a time-pacing strategy (launching products every

n time periods) performs relatively well compared to the optimal strategy. Their model applies
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to settings with a high frequency of product introductions. The studies of Morgan et al. (2001)

and Bayus et al. (1997) analyze how the trade-offs between quality or product performance

(measured by development costs) interact with the introduction timing decision. In contrast, we

study the relationship between cannibalization and competition with the introduction timing

decisions.

The literature on multi-generation products is very extensive. Padmanabhan and Bass

(1993a) and Bayus (1992) propose models to price successive generations of products, Danaher

et al. (2001) analyze the relation between the marketing mix and diffusion of multi-generation

products, Bucklin and Sengupta (1993) examine the diffusion of complementary innovations,

Kim et al. (2001), Chatterjee and Eliashberg (1990), Kim and Srinivasan (2001), Jun and Park

(1999), Vakratsas and Bass (2002) and Bayus (1991) study how and when consumers decide to

upgrade to improved products’ versions. Islam and Meade (2000), Islam and Meade (1997) and

Olson and Joi (1985) propose models for diffusion and replacement of products, while Purohit

(1994), Robertson et al. (1995) and Prasad et al. (2004) analyze the introduction strategies of

multi-generations products or the release of single products in multiple channels. Finally, Kim

et al. (2000), Kim and Lee (2005), Peterson and Mahajan (1978) and Islam and Meade (1997)

present alternative diffusion models for successive generations of products.

Our contributions to this literature are as follows. First, we propose a model that incor-

porates competition and cannibalization (firm’s alpha) based on a duopolistic and triopolistic

market. Second, our model parameters are simple to estimate or to calibrate with secondary

quantitative or qualitative information and it is possible to find intermediate solutions to the

introduction timing problem. Third, we provide two detailed case studies about the timing

of game systems that are not documented in the literature. Finally, we present new insights

regarding different launch strategies and the optimality of timing decisions.

Next we briefly discuss the Norton and Bass Model (NBM) as it is our departing point and

it is essential in our model development.
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2.2.1 The Norton and Bass Model

In this chapter we overcome three limitations of the NBM model that have not been jointly

addressed in previous research. Denote S1(τ1, τ2) as the first generation sales, S2(τ1, τ2) as

the second generation sales and denote τ1 and τ2 as the launch moment of these generations,

respectively. The first limitation is that ∂(S1(τ1, τ2) + S2(τ1, τ2))/∂τ2 = 0 is obtained when

τ2 = 0 or when τ2 = ∞. Sg(τ1, τ2) are the sales of generation g given the introduction timings of

the first and second generation products, τ1 and τ2, respectively. Therefore, the basic Norton

and Bass (1987) model is not helpful to derive an intermediate optimal introduction timing

apart of these two solutions. The second limitation is that it assumes that all the sales of the

previous generation are captured by the second generation. Finally, the NBM does not consider

the diffusion of competing products.

In the NBM cumulative sales are proportional to the cumulative distribution function of

the adoption rate F (t) and the market potential m. When a second generation is introduced,

substitution and adoption effects should be added to the previous equation. For the case of two

generations, Norton and Bass posit that the first generation cumulative sales follow

S1(τ1, τ2) = m1F1(τ1)[1 − F2(τ2)], for t > 0, (2.1)

and that the second generation follows

S2(τ1, τ2) = F2(τ2)[m2 + F1(τ1)m1], for t > τ2 (2.2)

where we use Sg(τ1, τ2) to refer to the vector [Sg(τ1, τ2; t = 0), . . . , Sg(τ1, τ2; t = Tp)] and

S1(τ1, τ2; t) is equal to m1F1(τ1; t)[1 − F2(τ2; t)] while S2(τ1, τ2; t) is equal to F2(τ2; t)[m2 +

F1(τ1; t)m1]. The introduction date of the first generation (g = 1) is τ1 and the introduction

date of the second generation (g = 2) is τ2. Tp is the planning horizon, which is set as ∞ in

Norton and Bass (1987). Fi(τi; t) is the cumulative sales function of generation g defined as

Fg(τg; t) = [1 − e−bi(t−τg)/1 + aie
−bg(t−τg)] for t > τg and ag=qg/pg and bg = pg + qg, g = 1, 2.

We use Fg(τg) to refer to the vector [Fg(τg; t = 0), . . . , Fg(τg; t = Tp)]. Slightly stricter notation
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would use Fg(τg; t, θ) where θ = (pg, qg,mg) but we use the former as we focus on the timing

parameters in this study. Note that in the Norton and Bass (1987) τ1 is assumed to be fixed at

some value (possibly at t = 0) and they do not focus on its value.

The equations of the NBM posit that after the second generation is introduced at time τ2,

the first generation’s cumulative sales S1(τ1, τ2) become proportional to its cumulative adoption

function F1(τ1), its market potential m1, and the sales not captured by the second generation

[1− F2(τ2)] after τ2. The sales of the second generation S2(τ1, τ2) are proportional to their own

market potential m2 and to the cumulative sales of the first generation F1(τ1)m1 after τ2.

If the NBM equation (2.1) would contain only the term m1F1(τ1), then the sales S1(τ1, τ2)

will be equivalent to the model of Bass (1969). However, in the Norton and Bass (1987) model

a fraction F2(τ2) of m1F1(τ1) is captured by the second generation. Consequently, there is a

moment in time when F2(τ2) will become 1 and all of the first generation sales are transferred to

the second generation and the last element of S1(τ1, τ2) becomes 0. At the same time S2(τ1, τ2) =

m2F2(τ2) + F2(τ2)F1(τ1)m1 and therefore, m1 + m2 is the last element of the vector S2(τ1, τ2),

given in equation (2.2).

In the next section we present a model that is a generalized version of the NBM and we

believe this new general model overcomes all the three limitations of the NBM.

2.3 A Multi-Product Diffusion Model with Compe-

tition

This section is divided in four subsections. In the first (subsection 2.3.1) we extend the NBM

to the duopoly case and in the second (subsection 2.3.2) we extend the model to the triopoly

case. Both extensions are based on the same assumptions and we present the duopoly case

first for ease of exposition. In the third section we present the relationship of our model to

previous models proposed in the literature (section 2.3.3). Finally, in the fourth (subsection

2.3.4) we present the intuition and the analytical properties that make our specification suitable

to optimize and study the launch timing of new dominant technologies.
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2.3.1 Duopoly Multi-Generation Model

In order to expand the Norton and Bass (1987) model and add a second firm or a second

competing product, we should make assumptions about the relationship between the firms’

products. Here we make the assumption that the relationship between the two generations

products of a firm are related in a very similar but more flexible way than in the NBM, and

that is where the alpha parameter comes in. Additionally, we will assume that the sales that go

from one product to a competitor’s version are proportional to the cumulative sales function of

the competitor’s products.

Formally, if the market is composed of two firms s and n, the cumulative sales of firm s are
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The cumulative sales of firm n are
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Finally we have that

F i
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i
g; t) = [1 − e−bi

g(t−τ i
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g)] × I(τ i

g ≥ t) for t > 0 (2.9)
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where Si
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2 ) represent the sales of generation g of firm i achieved by launching its

first and second generation products at τ i
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g and I(τ i
g > t) is an indicator function that

equals 1 when the introduction time of generation g of firm i, τ i
g, is larger than or equal to

t and zero otherwise. The term φij
gk refers to the substitution (or loyalty) parameter between

the generation g of firm i and the generation k of firm j. We use F i
g(τ

i
g) to represent the

vector [F i
g(τ

i
g; t = 0), . . . , F i

g(τ
i
g; t = Tp)]. Again, stricter notation would use F i

g(τ
i
g; t, θ) where

θ is a vector that collects all other parameters in the model. The parameters pi
g and qi

g are

the innovation and imitation parameters of generation g and firm i, respectively, g = 1, 2 and

i = n, s.

We may refer occasionally to φ as the vector (φ1, . . . , φN ) where N is the number of products

and to α as the vector (α1, . . . , αI) where I is the number of firms. Equations 2.3 to 2.9 allow for

a wide variety of relationships given the sign and size of what we call the loyalty parameters or

φ and the values of the the alpha cannibalization parameters (α). The role of the α parameter

is to relax the assumption of the NBM that all the sales of the first generation of a firm are

transferred to the second generation. Note that the last elements of the vector in
˜
Sj
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2 + αmi

1 and the last element of S̃i
1(τ

i
1, τ

i
2) is equal to mj

1 − αmj
1. Therefore α can

be interpreted as the proportion of sales that the first generation transfers to the next when

t = Tp and Tp is of course sufficiently long.

In Figure 2.1 we sketch the relationship between product generations in the duopoly model.

Basically, there is substitution between all products but substitution starts at different points

in time. The first generation is launched at t = 0 and it is the only product in the market up to

t = T1. At this moment the first generation of the second firm is launched and the substitution

between these two products (represented by the blank continuous line) starts too. The rest

of the products are launched at time t = T2 and t = T3 and the substitution between them

and the products launched before them start at these times. Note that the model allows for

the possibility of never launching a product if we set its launch date at t = Tp. This figure

represents a hypothetical case of launch dates but we can evaluate any launch-timing in the

model. For example, we could evaluate the result of launching the products in reverse order
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or in any order. In practice the second generation arrives after the first one, but any other

combination is allowed. Finally, note that there is only one single arrow between the products

in the figure. That is, we assume symmetric competitive parameters. If the relationship between

products is not symmetric then we would need two arrows connecting any pair of products in

Figure 2.1.

Next we present the triopoly model and at the end of next section we discuss how both the

duopoly and the triopoly models are related to previous research.

2.3.2 Triopoly Multi-Generation Model

In this section we extend the duopoly model and set the sales equations for firms s, n and x and

we hold the assumption that each firm sells two generations of the same product.

The cumulative sales equations for firm x are:
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The cumulative sales equations for firm s are:

Ss
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s
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x
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1(τ

s
1 , τ s
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11F

x
1 (τx

1 )]

× [1 − φsx
12F

x
2 (τx

2 )][1 + φsn
11Fn

1 (τn
1 )][1 + φsn

12Fn
2 (τn

2 )] (2.12)
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and

Ss
2(τ

s
1 , τ s

2 |τ
x
1 , τx

2 , τn
1 , τn

2 ) = S̃s
2(τ

s
1 , τ s

2 )[1 − φsx
21F

x
1 (τx

1 )]

× [1 − φsx
22F

x
2 (τx

2 )][1 + φsn
21Fn

1 (τn
1 )][1 + φsn

22Fn
2 (τn

2 )] (2.13)

And, the cumulative sales equations for firm n are:

Sn
1 (τn

1 , τn
2 |τ

x
1 , τx

2 , τ s
1 , τ s

2 ) = S̃n
1 (τn

1 , τn
2 )[1 − φnx

11 F x
1 (t − τx

1 )]

× [1 − φnx
12 F x

2 (τx
2 )][1 − φns

11F s
1 (τ s

1 )][1 − φns
12F s

2 (t − τ s
2 )] (2.14)

and

Sn
2 (τn

1 , τn
2 |τ

x
1 , τx

2 , τ s
1 , τ s

2 ) = S̃n
2 (τn

1 , τn
2 )[1 − φnx

21 F x
1 (τx

1 )]

× [1 − φnx
22 F x

2 (τx
2 )][1 − φns

21F s
1 (t − τ s

1 )][1 − φns
22F s

2 (t − τ s
2 )] (2.15)

where S̃i
1 and S̃i

2 are defined as

S̃i
1(τ

i
1, τ

i
2) = mi

1F
i
1(τ

i
1)[1 − αiF

i
2(τ

i
2)] for i = n or s or x (2.16)

and

S̃i
2((τ

i
1, τ

i
2) = F i

2(τ
i
2)[m

i
2 + αiF

i
1(t − τ i

1)m
i
1] for j = n or s or x (2.17)

and

F i
g(τ

i
g) = [1 − e−bi

g(t−τ i
g)/1 + ai

ge
−bi

g(t−τ i
g)] × I(τ i

g ≥ t) for t > 0 (2.18)

where ai
g = qi

g/p
i
g and bi

g = pi
g + qi

g and I(τ i
g > t) is an indicator function that equals 1 when the

introduction time of generation g of firm i, τ i
g, is larger than or equal to t and zero otherwise.

The term φij
gk is the competitive parameter that relates the generation g of firm i with the

generation k of firm j. The parameters pi
g and qi

g are the innovation and imitation parameters

of generation g, respectively, g = 1, 2.
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The specification of (2.10) to (2.18) is similar to the duopoly case but now we allow for

substitution between three market players x, s, and n and each of their products. The duopoly

model consists of four launch-timing parameters, eight φ parameters, two α parameters, four

p and q parameters and four m parameters. That is in total 26 parameters in four equations.

The triopoly model consists of 45 parameters (six τ , 24 φ, six p and q, three α and six m) in

six equations. In the estimation section 2.5 we describe how we calibrate both models and the

parameter restrictions and assumptions we use. Next we describe the relationship of our model

with previous models.

2.3.3 Links with Other Models

In Figure 2.2 we summarize the relationship of this general NBM with previous models based

on different parameter configurations. It is useful to see the nodes at the top of the figure as

possible cases for each firm in our model. We start with the left node. If the α parameter,

in one of the firm’s equations, is equal to zero then there exists no cannibalization between

a specific firm generations and the diffusion of each of its generations follows an independent

Bass Model. However, in this case if some of the φ parameters are different from zero then we

have independent Bass Models but we add inter-generation competition (or what is the same

as between firms competition); otherwise they follow independent Bass models. On the right

hand side of the figure we see the case when the α parameter is set to 1 and this means that the

relationship of generations within firms follows the NBM specification. As in the previous node

the φ parameters may add inter-generation competition between firms (note that is not within

the same firm). Finally, in the central node we have the case when α is different from both 0

and 1. In this last case, the model allows cannibalization within a firm’s generations but the

cannibalization is different from the NBM. Therefore we call this a second type of cannibalization.

As before, for this node the φ parameters may add inter-generation competition between firms.

At the bottom of Figure 2.2 we give three boxes representing firms and the arrows correspond

to two hypothetical specifications (case 1 and 2) for each firm. In the first case, firm 1 products

follow a NBM with second type of cannibalization, firm 2 products follow independent Bass

Models while firm 3 products follow the NBM. That is, in this case the only firm facing the
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effects of competition is firm 2. In the second case we set a different combination and our

intention is to illustrate that the model parameters allow a diverse set of diffusion patters

among firms and products. A similar specification for the NBM is possible when either the p

or q of any of the generations is equal to 0. Note that each firm launches two generations of

products within the planning horizon but the triopoly model may reduce to the duopoly model

in case a firm sets the launch date at the end of the planning horizon (what we refer as Tp) for

its two generations. A different specification happens when each firm launches a single product

by setting one of its generations launch-timing equal to Tp. Hence, our model is flexible enough

to allow different substitution patterns between firms’ products and within firm generations. At

the same time the triopoly case might reduce to different number of firms or products depending

on the parameter values.

2.3.4 Why Our Model Works

In this subsection we present the intuition of why our model is useful to find intermediates dates

rather than τ = 0 or τ = ∞ solutions of the NBM. The intermediate solutions are possible due to

the trade-off between competitive interaction between products and the cannibalization within

a firm’s generations. For example, if the firm n launches a product at time τc and this product

might enhance/deter the sales of one of the products of firm s after this time. Then the firm

s has the incentive to advance/postpone the launch of its product relative to the launch of the

competing product. In this way, firm s could maximize/minimize the positive/negative effects

of competition. That is, the timing decision depends on the sign and size of the effect of firm’s

n product on the sales of firm’s s products. In addition, there is a trade-off between maximizing

or minimizing the effect of competition and the effects on firm s previous generation product.

Therefore, by launching the second generation sooner the previous generation might lose sales

to the second generation earlier in time. In summary, the optimization of the competitive effects

and the own cannibalization effects is possible in our specification while it is not possible to

optimize them in the NBM.

Here we present a simplified version of the duopoly model and assume that one of the

competing firms launches only one product at τc while the second firm s sells two products and
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these are launched at τ1 and τ2. We further assume that the competitive effects are measured

by the coefficients φ1 and φ2. Formally, the equations of firm s are

Ss
1(τ1, τ2|τc) = m1F

s
1 (τ1)[1 − αsF

s
2 (τ2)][1 − φ1F

c
1 (τc)], for t > 0, (2.19)

and

Ss
2(τ1, τ2|τc) = F s

2 (τ2)[m2 + αsF
s
1 (τ1)m1][1 − φ2F

c
1 (τc)], for t > τ2 (2.20)

That is, the first and second generation sales of firm s, Ss
1(τ1, τ2|τc) and Ss

2(τ1, τ2|τc), are now

related to the competing product by the loyalty parameters φ1 and φ2. It is easy to show that

the sales gained or lost by adding competition to the NBM (with cannibalization of type 2) are

Δs =
[
αs(φ2 − φ1)m1F

s
1 (τ1)F

s
2 (τ2)+

φ1m1F
s
1 (τ1) + φ2m2F

s
2 (τ2)

]
F c

1 (τc), for t ≥ τc (2.21)

Δs is the sales change due to the introduction of a competing product and it depends on

the parameters αs, φ1 and φ2 and on the introduction timings τ1 and τ2 relative to τc. The

terms φ1m1F
s
1 (τ1) and φ2m2F

s
2 (τ2) measure the share of each product of firm s that might be

transferred/received to/from a competing product and the shares are φ1 and φ2. The term

αs(φ2−φ1)m1F
s
1 (τ1)F

s
2 (τ2) reflects the share of the cannibalized sales that might be transferred

to a competing product and this share is αs × (φ2 − φ1). Note that αs is the share transferred

between generations of the firm s while αs × (φ2 − φ1) is the share that might be transfer to

a competing product. If αs = 0 this implies no cannibalization and we are back to the NBM

specification with competition. Finally, all terms belonging to firm s interact with the diffusion

of the competing product F c
1 (τc) after τc. This last term exists only after t > τc and hence firm

s decision should take into account that after time τc their products will gain or lose some share

to the competing product. Note that equation (2.21) uses a simplified version of the duopoly

model and that in our application below we use the complete duopoly and triopoly model.
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The following lemmas cover a few interesting optimal timing scenarios. We include them

because they illustrate some extreme cases where the launch now or never strategy may be valid

and they illustrate the flexibility of our model specification.

Lemma 1 The optimal introduction timing of both the first and second generation products is

equal to zero when there is no cannibalization (αs = 0), when the φ1 < 0 and φ2 < 0 and there

is one competitive introduction at τc.

From (2.21) it follows that if αs = 0, one has Δs = −(φ1m1F
s
1 (τ1) + φ2m2F

s
2 (τ2))F

c
1 (τc). It is

clear that both products should be introduced at t = 0 given that they face competition after τc,

that is, the earlier they are both introduced, the better. Hence, in the case of no cannibalization

with competition the option of launch now is the optimal solution. If there is no competition

and cannibalization we are back to the solutions of the Norton and Bass model. This lemma is

in line with Kamien and Schwartz (1972).

Lemma 2 The optimal introduction timing of the first and second generation products (τ1 and

τ2) are equal to τc when there is no cannibalization (αs = 0), when the φ1 > 0 or the φ2 > 0,

respectively, and when a competitive introduction happens at τc.

Introducing at time τc produces a positive Δs and it is clear that a firm should choose a time

closer to τc. If both products are launched before τc the sales stream is smaller between τ1 and τc

for the first generation, and they are smaller between time τ2 and τc for the second generation.

On the other hand, if they are launched after τc they do not benefit from competition for τ1− τc

or τ2−τc periods, respectively. This lemma implies that imitation may be optimal under certain

conditions. As before, the strategy of launch never is discarded because there are positive returns

to launch at dates closer to competitors. This lemma may be modified easily to the situation

where imitation is optimal for only one generation, for example if φ1 = 0 and φ2 > 0. In our

application below we will conduct a numerical exercise (in section 2.7.2) where this lemma is at

work.

Lemma 3 It is optimal to never launch the second generation when Ss
2(τ1, τ2|τc) +Δs < 0.

When the returns on introducing the new product Δs outweigh the unit sales of Ss
2(τ1, τ2|τc)

then it is optimal not to introduce it. Hence, the launch never strategy arises when there is stiff
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competition as in Kamien and Schwartz (1972). In our case study (section 2.8.2) we evaluate

the parameter space that leads to this lemma.

There are other interesting possibilities of intermediate launch-timings when there is canni-

balization and competition either for the first or second generation given different values for the

φ1, φ2 and α parameters. In our case studies we explore numerically other possibilities for the α

parameter and the optimal timing of products and explore the parameter space that may lead

to any of these lemmas or to the launch now or never strategy.

2.4 The Video Game Hardware Market

The hardware market for video games can be split in two sub-markets: hardware for portable

systems (PS) and hardware for video game consoles (VGC). In this chapter we treat these

markets to be independent of each other. Indeed, most press articles indicate that the markets

of PS and VGC are independent. See for example The Herald (2005), Financial Times (2004),

The Economist (2004) and The Washington Post (2008). The reader may be familiar with

the video game console wars between Microsoft, Sony and Nintendo (BusinessWeek, 2008b;

The Washington Post, 2006). At the moment (September 2009) these three companies are the

main market players in the hardware market. Microsoft does not sell any PS while the three

companies sell competing video game consoles. Sega stopped producing game consoles in 2001

(San Francisco Chronicle, 2001) and Apple and Microsoft are seen as potential new competitors

of Sony and Nintendo in the PS market. (BusinessWeek, 2008a; Wall Street Journal, 2006).

2.4.1 Some Basic Figures

In Table 2.1 we report the release dates of the main PS hardware since 1998 for three main

markets: North America, Japan and Europe. The release dates for PS seem almost arbitrary

and they occur in months that range from February to December for all three regions. However,

when we look at the time between releases within companies we discover a different pattern.

Table 2.2 shows an average of two-year intervals between releases.
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In Table 2.3 we report the release dates on all major VGC since 1987. Clearly, the VGC

market is quite different from the PS market. The release dates in North America are mainly

chosen to be close to November while in Japan and Europe most releases occur also in other

months of the last quarter of the year. If we look at Table 2.4 we can see that there is an

additional regularity around the VGC releases. They occur approximately every five years.

Only the Sony PS3 took more than 6 years to be released and this was due to a delay in the

development of the blu-ray technology added to the PS3. See The New York Times (2006) for

more details on this story.

In Table 2.5 and Table 2.6 we report the estimates of single-generation Bass models for

PS and VGC. Portable systems have very similar innovation parameters (p) but quite different

imitation parameters (q). We computed simple statistics on the Bass models and in most cases

they fit the data quite well. We discuss more details on our data next.

2.4.2 Data and Data Cleaning

Our data for the duopoly and triopoly NBM models consists of weekly time series of sales at the

USA for the last two PS of Nintendo and Sony and the last two generations of consoles released

by Microsoft, Sony and Nintendo. The portable systems are the Nintendo DS, the Nintendo DS

Lite, the Sony PlayStation Portable (PSP) and the Sony PSP Slim. The video game consoles

are the Microsoft Xbox, Microsoft Xbox 360, Sony PS2, Sony PS3, Nintendo GameCube and

Nintendo Wii. In addition, we obtained the corresponding release dates for all products from

different news sources and for all cases the release dates matched the date of the first week that

we observed in our data. We used a script to download our data from www.vgchartz.com and

the site admins authorized us to use their data. Our data for all systems cover the period since

their release week up to January 2009. That is, our data covers a period of almost 9 years and

10 systems.

Before we plug our data into the estimation routines we control for indirect network effects,

seasonality and price. It has been documented that indirect network effects might play a role

in the video game market (see for example, Chintagunta et al. (2009), Clements and Ohashi

(2005) or Shankar and Bayus (2003)). Furthermore, Binken and Stremersch (2009) show that
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it is mainly super star software what drives indirect network effects in the video game systems

market. Therefore, in this chapter we use a simplified version of the model proposed by Binken

and Stremersch (2009) to clean our data from indirect network effects and price. We use the

following equation

Yt = αYt−1 +
∑

j=1...52

βjWDj +
∑

l=t...t−L

λlPCDl +
∑

k=t...t−K

δkSSIk + εt (2.22)

where Yt are the system sales at week t; WDj refers to the week j dummies; PCDl is the price

cut dummies with L total lags and it indicates the week when prices were cut; SSIk is the total

number of super star software introduced at week k. To create the independent variables in

equation (2.22) we collected release dates and quality ratings on the most popular video games

for the systems in our sample. For each system we found approximately 120 video games to

construct the SSI variable. In total we collected data for 1200 video games. These data come

from many different online sources. Furthermore, we use many different news services to find the

price cut timing for all consoles in our sample. We estimated equation (2.22) for each console

in our sample and then we subtracted the terms
∑

k=t...t−K δkSSIk and
∑

l=t...t−L λlPCDl from

the consoles sales Yt only if they are significant. We report in Table 2.7 the sales percentage that

indirect network effects represent for each console and the number of lags for the SSIk variable

that we used. We chose the number of lags in the same way as Binken and Stremersch (2009).

Interestingly, despite our model is a much simpler version of that of Binken and Stremersch

(2009) we find that indirect network effects represent on average a 13% of the consoles sales

while Binken and Stremersch (2009) found that percentage to be 14%. That is, our results

confirm their findings. In contrast, we use weekly data, they use monthly, and we find that on

average the number of lags correspond to approximately 7 weeks (that is less than 2 months)

while they report significant lags up to 5 months. In terms of weeks 5 months represent 20

weeks. We tested lag numbers up to 20 weeks but we did not find significant effects further than

14 weeks (see Table 2.7). Note that the number of lags in the Table should be read with caution

because not all lags were found significant and as Binken and Stremersch (2009) we include the

last non significant lag to avoid bias. An additional difference is that we estimate the equation
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(2.22) separately for each system while they use a panel approach and that their SSI variable

is monthly while we trace software introduction per week. Our guess is that they use a panel

approach because they consider much shorter time series and the panel approach helped them

to identify their model parameters. However, they warn about considerable heterogeneity of the

network effects and their result of 14% is therefore close to an average of network effects across

systems. Our long time series of weekly data allows us estimate the model for each system and

the fit we achieve is very good for all systems (R2 close to 0.80). A final difference in our approach

is that we use the 120 most popular video games per system while they use on average the 10

superstar software video games per system. We estimated a second version of the system models

by including only the highly rated video games (the superstars), as do Binken and Stremersch

(2009), in the SSI variable. Binken and Stremersch (2009) do not report the percentile they

use as a selection heuristic and we selected the video games with a quality rating in the top 25

percentile. In this case, the average network effects jumps up to 15%, while it is also close to

their reported number. That is, higher quality video games might have higher network effects

although the difference between 13% and 15% can hardly be considered as significant.

The resulting adjusted series without network and price effects still needs to be cleaned from

seasonality and for this latter purpose we use the TRAMO/SEATS methodology (Gomez and

Maravall, 2001, chap. 8). We further control for all major holidays in the USA and for Easter.

In sum, the series we plug in our estimation routine are the seasonally adjusted series without

indirect network and price effects. We use this series because the competitive parameters on our

model could pick up the correlation caused by indirect network effects, price and seasonality if

we do not control for them.

Our data covers 10 gaming systems and therefore we estimated 20 models (10 for the network

effects and 10 for the seasonal adjustment). We do not report these results but they are available

from the authors upon request. In addition, we estimate both the duopoly and triopoly models

with the original data and the parameter estimates remain very similar. However, the fit is

better when we use the clean data.
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2.5 Estimation and Parameter Assumptions

We use the systems NLS estimator described in Cameron and Trivedi (2005, Chap. 6, page

217) to estimate the parameters.

The duopoly multi-generation model consists of 26 parameters and in our estimation routine

we use 16 free parameters. This number reflects the assumptions that the innovation and

imitation coefficient, p and q, vary across firms and products and that the loyalty effects are

symmetric. That is, we assume that φij
gk is equal to −φji

kg. The τ i
g parameters are the introduction

date of each product and we keep the real launch dates in our estimation routine.

The triopoly model consists of 45 parameters and in the estimation routine we have 21 free

parameters. This number reflects the assumptions that the p and q parameters vary across firms,

that the loyalty parameters are symmetric, and that αi for i = x, s, n are fixed at some value.

The main reduction comes from the assumption that φij
gk = −φji

kg as it reduces the number of

free parameters by 12. Note this is the symmetry assumption we described earlier when we

discussed Figure 2.1. Finally, we use the real introduction dates as values for the τ i
g (g = 1, 2

and i = x, s, n) parameters.

An important assumption in the estimation routine is the value of the α parameters and we

need an assumption on them. As we mentioned earlier, the α parameter is simply the share of

the sales that the first generation transfers to the second generation. The reason why we need

to make an assumption regarding α is that there is a direct relationship between the α and the

m parameters with the realized cumulative sales. We know that the realized cumulative market

sales are fixed at some value, call it M , and it depends on both α and m. Of course, the realized

M depends on all other parameters but specially the α and the m are very closely related to

it. If we increase α then we need a lower m to keep the realized sales at M or if we lower

α we need a higher m. This means that we can not simultaneously identify both parameters.

This is a limitation and at the same time an advantage of our model because we can obtain

the α parameter easily from experts opinions, managers, store sales data, or surveys. All we

need to know is what percentage of the first generation sales (of an specific firm) is transferred

to its second generation and that is α. However, in case the α is not available then we could

make assumptions on the market potentials and estimate the α together with all other free
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parameters in the model. We know that market potential assumptions are quite common in the

new products diffusion literature and they are straightforward to construct.

In the estimation routine first we assume the α = 1 for all firms in both the duopoly and

triopoly model. Then, as an illustration, we ask an expert opinion on the size of α for each firm

in our triopoly model. We contacted a local store manager and asked him about the α parameter

of Microsoft, Sony and Nintendo according to his experience. His information is that the α of

Microsoft is 0.3, the α of Sony is 0.1 and the α of Nintendo is 1.1. These numbers imply that

Nintendo is able to get 1.1 sold unit of Wii for each sold unit of the GameCube, Sony achieves

the lowest with a 0.1 of PS2 unit sales going into the PS3, while Microsoft is in between with

an α of 0.3.

To estimate both models we use the systems NLS estimator but due to the large number of

parameters we split estimation in three steps. First we estimate the six innovation and imitation

coefficients p and q given all other parameters fixed. Next we estimate the loyalty coefficients

φ given all other parameters are fixed at their most recent estimated values. We iterate these

two steps until convergence and at the end of the routine we estimate the six market potentials

given all other parameters. Chintagunta et al. (2009) apply a similar estimation approach. In

the estimation routine we constrained the φ coefficients setting their lower and upper limits at

−4 and +4, respectively. However, all parameter estimates are within these limits as we report

in Section 3.5. All our routines are programmed in R (R Development Core Team, 2005).

2.6 Estimation Results

We report the parameter estimates for the duopoly model in Table 2.8. In this model we

consider two companies, Nintendo and Sony, and their portable gaming systems. The systems

are the Nintendo DS and DS Lite and the Sony PlayStation Portable (PSP) and PSP Slim. We

notice that the parameter estimates for the innovation and imitation parameters, p and q, are

lower in the multi-generation model than in the independent Bass model reported in Table 2.5.

In addition, the market potentials are remarkably lower in the multi-generation model. Two

factors explain the lower estimates. First, the multi-generation model allows the first generation
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to transfer a percentage α of its sales to the second generation. Hence, the second generation

market potential has a lower m estimate but note that the realized market potential in the

multi-generation model may be higher than the m estimate after adding the competition and

cannibalization effects. These results are in line with the findings of Norton and Bass (1987)

regarding the size of the market potentials of the second generation products; see (Norton and

Bass, 1987, footnote 2, page 1074). Finally, we find significant φ parameters and this is evidence

supporting the idea that the portable systems compete against each other. For example, we see

that the Nintendo DS is losing share to the Sony PSP (see the −0.57 estimate) and it is losing

more to the second generation of Sony, the PSP Slim (see the −2.39 estimate). On the other

hand, the Nintendo DS Lite is receiving a share from the PSP Slim (see the 0.66 estimate). We

report the model fit in Figure 2.3 and we can see the fit is reasonably good.

In Table 2.9 we report the triopoly model parameter estimates with the assumption that all

firm’s α = 1. In Table 2.10 we present the parameter estimates when we use 0.3, 0.1 and 1.1

as the α parameters for Microsoft, Sony and Nintendo, respectively. Finally, in Table 2.11 we

present the φ and α parameters reported in Table 2.9 in a easy to read format.

For the triopoly case it is the q parameter estimates that are much lower than in the Bass

model reported in Table 2.6 while the p parameters remain very similar. An interesting result is

that the Microsoft Xbox market potential is around 19 million units while the Xbox 360 market

potential is a much lower value of 813 thousand units. A similar drop in market potential occurs

from the Sony PS2 to the Sony PS3. The exception is Nintendo. The market potentials for

both the Nintendo GameCube and the Nintendo Wii stay around the same level (17 million

units). This finding is in line with the results of Shankar and Bayus (2003). Shankar and

Bayus (2003) analyze the video game market between 1993 and 1995 and the two main players

at that time where Nintendo and Sega. Note that in Table 2.3 we report the history of console

releases since 1985 and that they analyzed the last three years of the 4th generation systems.

They argue that Nintendo had a higher network strength than Sega and consequently Nintendo

sales overtook those of Sega. Recently, the Nintendo Wii is overtaking the sales of the largest

player, Sony, and our parameter estimates seem to capture this overtake.
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In Table 2.10 we report the model with our expert’s values on the α parameters. As we antic-

ipated, the parameter estimates of the market potential m are higher for the second generation

of Microsoft and Sony because we assumed a much lower α for them (0.1 and 0.3, respectively).

The market potential for the Xbox360 goes from 813 thousand units in the first model up to

2, 685 thousand units in the second, that is 3.3 times higher. The PS3 m in the second model is

2.14 times higher than in the first. Finally, the market potential of Nintendo’s second generation,

the Wii, is 1.161 million units lower in the second model relative to the first because of the higher

α. Surprisingly, the market potential of both generations of Nintendo are still high relative to

each other despite the fact that Nintendo can transfer more consumers from the GameCube to

the Wii (it has the highest α among the three companies). The rest of the parameters in Table

2.10, with very few exceptions, remain very close to the model parameters of Table 2.9. We are

certain that there are other ways to retrieve the α parameters from experts, surveys or data we

stress that this estimation exercise is just an illustration.

In Table 2.11 we arrange the φ and α parameters in two six by six tables. We numbered

the estimated φ parameters in the top table and in the bottom we report their estimates using

bold face for parameters with t-values higher than 1. We can see that the Wii is getting some

share from the Xbox console (see the 2.39 parameter of the phi[4]) and that is is not competing

against the PS3 (see the −0.02 of the phi[12]). This confirms what has been argued in the press

that these two consoles are not substitutes for each other. A surprising result is that the Wii

has a positive influence on PS2 (see the −0.60 estimate of the phi[8]). The PS3 is losing some

share to the Xbox 360 and the GameCube (see the phi[6] and phi[11] estimates) according to

the sign of the parameters but they are not significant. At the same time, the PS2 received

share from the Xbox 360 and the GameCube. Most parameter estimates are in line with our

anecdotal evidence and what we read in the press.

Finally, we plot the observed and fitted values of the triopoly model in Figure 2.4 and again

the model fits the data reasonably well. Note that the real cumulative sales of the first gener-

ation products, the graphs in the left of Figure 2.4, stabilize after they reach their maximum.

However, our model forecasts a decline in their number of cumulative units after reaching the

maximum and this is a consequence of the substitution that takes place after new generations
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are introduced. Hence, the fit after the maximum is not really the same as the fit before the

maximum of the cumulative sales given that we do not have data on substitution or un-adoption

of these products. An interesting feature of the left-hand graphs is that the foreseen decline is

faster for the Xbox and the GameCube while it is very slow for the PS2.

2.7 Duopoly Case Study: The Portable System Race

In this section we use our model to analyze the portable system market. We take the duopoly

model and its parameter estimates and with them we simulate four different strategies for both

Nintendo and Sony. We use a planning horizon Tp = 90 months and this number is long enough

relative to the average pace of two years we report in Table 2.2. Next we describe the strategies

we simulate and afterwards we present the insights gained by our numerical exercises. At the

end of the section we present the sensitivity analysis to different parameter estimates.

2.7.1 Simulating Plausible Strategies

A strategy is a complete contingent plan for all market players. (Watson, 2002, pg. 26).

That is, we define the actions of Nintendo as a response to any of Sony’s actions and viceversa.

In all of the strategies, except the first, we let Nintendo be the leader and Sony the follower.

We reversed their roles in our numerical exercises and our insights remain without significant

changes. Furthermore, the leader-follower assumption is common in the literature, see for

example Bayus et al. (1997, p. 56). Finally, we assume that the order of entry does not modify

the competitive relationship between products, just as in Kamien and Schwartz (1972), but

note that we will provide sensitivity analysis to different parameter values in the next section.

The four strategies we consider are:

1. Random Date Selection: In this strategy both Nintendo and Sony randomly select a

launch date for their two product generations at the beginning of the planning horizon.

That is, both firms ignore each other’s actions and the interaction among their competing

products.
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2. Imitation: In this strategy Nintendo selects the launch-timing for its two generation

products and Sony imitates Nintendo. That is, Sony launches its PS2 console at the same

time as the GameCube and it launches the PS3 at the same time as the Nintendo Wii.

3. Pre-commitment and Optimization: In this strategy Nintendo pre-commits to the

launch date of their two generation products while Sony, with perfect foresight, optimizes

the launch dates of its two generation products based on Nintendo pre-commitment dates.

4. Uncertain Dates and Stochastic Optimization: In this strategy Nintendo does not

pre-commit to a launch date for its two generation products. However, Sony assigns a

probability to each of the possible launch-timings of the GameCube and the Wii and based

on this information it optimizes the launch-timing of the PS2 and the PS3.

We give the details of each strategy in the Appendix 2.A. We simulate these four strategies and

we compute the outcome in terms of the maximum cumulative sales of Sony, Nintendo and the

sum of both firms’ maximum cumulative sales. We repeat the simulation of each strategy until

we cover all the combinations possible of the launch-timing selected by Sony and Nintendo that

each strategy implies. In this way we recover the distribution of the sales that both players may

achieve by following each of the four strategies. We summarize these distributions in Table 2.12

and Figure 2.5.

In Table 2.12 we report six quantiles of the distribution of the sales for Sony, Nintendo and

their sum and for each of the four strategies while in Figure 2.5 we plot their percentiles. The

purpose of Table 2.12 and Figure 2.5 is to help us rank the strategies in terms of the likelihood

of their sales outcomes. For example, in Table 2.12 we see that for Sony the sales achieved by

imitating are lower than the sales achieved by randomly selecting its dates, see the second and

fourth lines in the table.

In the right-hand side of Figure 2.5 we see that the strategy that results in higher sales

for Sony is the third and that is the strategy in which Sony knows the exact launch dates of

Nintendo’s products. Only at the very first percentiles (from 0 to around 20%) the stochastic

optimization strategy is better. In the graph it is clear that the second best strategy results

when Sony applies stochastic optimization. As we can notice, this strategy puts a lower and
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upper limit to the sales of Sony, see the flat areas of the uncertain dates line at the first and

last percentiles. Surprisingly, imitation is the worst strategy Sony could follow and it performs

slightly worse than when Sony randomly selects its dates.

In the left-hand side of Figure 2.5 we see the quantiles of the distribution of sales achieved by

Nintendo. Note that Nintendo is the leader and the outcomes are therefore not a mirror of the

results obtained by Sony. For Nintendo the results are mixed. We see that before the percentile

50 the best outcome is achieved when Sony is imitating (interestingly this is not a good option

for Sony) and that after the 50 percentile the best outcome is achieved by not announcing its

launch dates and by not precommiting to them (see the uncertain dates line). On the other hand,

before the 50 percentile the lowest sales are achieved when Sony uses stochastic optimization

and above the 50% the lowest sales are either random selection of dates or pre-commitment.

Note that Nintendo does not behave strategically in our simulations. That is, Nintendo does

not know that Sony is following one of the four strategies. Given that Nintendo knows which

strategy Sony is playing then it is straightforward for Nintendo to strategically select its launch

dates and achieve high sales. This implies that if Nintendo strategically chooses its launch dates

then playing the uncertain dates strategy can result in high sales while if Nintendo acts not

strategically then pre-commitment is a reasonable strategy. Of course, we are not using very

strict criteria to rank Nintendo’s strategies but it is straightforward to rank the strategies using

different criteria given we know their corresponding outcomes in terms of sales distributions.

2.7.2 Sensitivity Analysis of the Launch Strategies

The above results are sensitive to the parameter values we plug in the duopoly model. In all

previous exercises we used the values we obtained from our estimation routine. To know how the

sales outcome may change we compute the expected value of the sales achieved by playing the

second strategy (imitation) and the third strategy (optimization) when we plug in a different

set of parameter values in the model. First we evaluate the strategy by simulating different

combinations for the phi[1] and phi[2] parameters, the phi[3] and phi[4] parameters and finally

for the phi[1] and the alpha parameter of Nintendo. The phi[1] and phi[2] are the φ parameters
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between the Nintendo DS and the PSP and the PSP Slim, respectively. The phi[3] and phi[4] are

the φ parameters between the Nintendo DS Lite and the PSP and the PSP Slim, respectively.

In Figure 2.6 we report the log of the ratio of the expected sales of Nintendo and Sony

given all possible combinations of these parameters, take two at a time, for the imitation and

pre-commitment strategies. In the ratio Nintendo’s expected sales is the numerator. This is a

numerical intensive exercise in the sense that for each parameter combination we compute all

possible combinations of launch-timings implied by each strategy and based on the outcome (in

terms of their maximum cumulative sales) we compute the expected value for the sales of both

players. In the graphs we report the log of the ratio of the expected maximum cumulative sales

between the two firms. Note that we apply the log transformation to the final values because

the log of the expected value is not the same as the expected value of the logs.

The graphs in Figure 2.6 provide a unifying message. Both strategies might yield high sales

if a firm’s products are superior (in terms of the φ) parameters or if a firm’s ability to transfer

users of old technologies to new ones is high (that is equivalent to a high alpha). If both φ

parameters tend to be positive the ratio goes up and therefore Nintendo sells more relative to

Sony. The ratio increases in a similar way when the alpha of Nintendo is higher. Earlier we

concluded that the imitation strategy is the worst among the four strategies we evaluated for

Sony. However, if Sony had superior products the imitation strategy may yield high sales, see

how the log ratio goes up to -3 and -2 in the left-most and center upper panel graphs. This is

evidence supporting Lemma 2. However, we can easily notice that despite the unifying message

the surfaces have different slopes. That is, achieving higher sales by raising or decreasing each

of the φ parameters does not yield the same increase/decrease in expected sales. We conducted

the same sensitivity analysis for the random dates and the stochastic optimization strategies

and the results are very similar.

The main lesson of this sensitivity analysis is that the outcome of any launch-timing strategy

varies radically and it depends heavily on the competitive positioning of the firms’ products and

on the firms’ ability to transfer users of their old technologies to the new ones.
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2.8 Triopoly Case Study: The Video Game Console

Race

In this section we present a different set of numerical sensitivity analyses and we will focus on

the launch-timing of the Sony PlayStation 3 and the Nintendo Wii relative to their previous

generations and relative to their competitors. In this section we focus on answering what if

questions rather than studying the strategic interaction of firms, like in the previous subsection.

We use the parameters estimates we obtained from our estimation routine to answer the what

if questions and we assume a planning horizon Tp = 150 months. That is we assume 12.5 years

as planning horizon and this is in line with a recent interview statement of the President of

Sony Computer Entertainment in America, see Fast Company Blog (2009). In addition, we

illustrate the sensitivity of the optimal launch-timing to different competitive and cannibalization

parameters.

In Table 2.3 we reported the release dates of all major video game systems. It easy to

notice that historically the phenomena of a launch race in a single year is relatively a recent

experience for system manufacturers. This is interesting given that the number of systems

manufacturers has stayed relatively constant since the early nineties. We observed for example

that the Nintendo Wii was launched at the same time as the PlayStation 3 in North America

three years ago. The GameCube and the Xbox were launched simultaneously in 2001. The other

close to simultaneous launch cases occurred between the Wii and PS3 in Japan and between the

Xbox and GameCube in Europe in 2006 and 2002, respectively. The average timing between

releases is approximately five years (5.09 years), and the standard deviation of this average is

almost one year (0.90 years), see Table 2.4. Hence, we believe that there is a need for insights

about whether these launch-timing were chosen optimally or what could make them optimal.

The optimization situations that we consider next are much simpler than the optimization

situations that we encounter in practice. They are simpler because of mainly two reasons. First,

we do not consider the strategic interaction between firms as in previous section. Second, we

do not consider price as part of the optimization problem because we focus on analyzing the

launch-timing decision relative to different cannibalization and competitive settings. However,
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the timing decision can be considered as a sub-game of the price and timing game. That is, our

analysis has no assumption regarding the price of the consoles and we focus on the effects of

timing dates on the unit sales of the systems. This assumption is in line with similar studies to

ours, see for example Joshi et al. (2009) and the work cited by (Souza et al., 2004, p. 538)

regarding pricing assumptions. However, we do not consider this a very strong assumption in

terms of our model estimation because of the cleaning procedure of our data. Nonetheless, if

we had a reasonable assumption about the price for all six systems in our triopoly or duopoly

model, and how the prices of all systems are strategically related to each other, then it is

straightforward to introduce it in the optimization problem. Still, our results will be valid as

price would possibly work as a discounting factor in the optimization problem. Of course, the

effect of price on demand is not a straightforward introduction into our diffusion model and we

consider this an area of further research.

2.8.1 Simulating What If Questions

The first what if question we answer is: What would be the maximum cumulative sales of the

Nintendo and Sony if they would have launched their consoles at different dates and leaving

everything else constant? That is, we answer how either the sum of the maximum of equation

(2.12) and (2.13) for Sony and the sum of the maximum of equation (2.14) and (2.15) for

Nintendo are maximized. In Figure 2.7 we plot the total sales of Nintendo (summing up the

maximum cumulative sales of the Wii and the GameCube) achieved by launching at different

dates. The maximum cumulative sales are reached when the Wii is launched at the month 64

(that is April 2005) and the GameCube at month 1 (January 2000). That is 5.33 years between

their releases. The real release time between these two consoles was 5.01 years in North America,

5.22 years in Japan and 4.60 in Europe. The real launch dates happened at November 2006

(month 83 in the graph) and November 2001 (month 23 in the graph). Surprisingly, Nintendo

is not launching that far from the optimal dates and according to this surface the difference of

sales between real and optimal dates is 3, 858.62 thousand units (66, 431.66 thousand units at

the optimal and 62, 573.04 at their real launch dates). The story is different for Sony. In Figure

2.8 the maximum is reached when the PS2 is launched at month 1 (January 2000) and with
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the PS3 not launched. Note that setting the month of launch equal to the end of the planning

horizon is equivalent to not launching. This is a radical scenario but it is explained by the fact

that the PS2 is receiving sales from both the Xbox 360 and the Nintendo Wii according to our

model estimates while the PS3 competitive parameters are not very favorable, see Table 2.11.

The real launch dates of the PS2 and PS3 are the months 10 (October, 2000) and 84 (December,

2006), respectively. The total sales of Sony at these last pair of dates is 59.988 million units, in

Figure 2.8 all the sales surface is graphed for all possible launch dates. We know that up to the

first week of August 2009 the PS2 has sold 50.767 million units (source vgchartz.com). Hence

according to our model the realized sales of PS3 will be around 9.22 (±2.14) million units while

up to date the Sony PS3 has sold 9.018 million units. The 2.14 million units is the average

derivative of the surface at the real launch dates, the point (10, 84) in Figure 2.8. Therefore,

our model is not very optimistic about the PS3.

The next questions we answer are: what is the optimal launch time of the Nintendo Wii

given the launch times of the Sony PS3? and what is the optimal time of the Sony PS3 given

the launch times of the Wii? We can answer these questions by looking at Figure 2.9. In this

figure we present two contour graphs (or heat maps). The lighter (yellow) areas represent higher

total sales and the darker (red) areas represent lower sales. We call these graphs sales reaction

surfaces because we can derive the best reaction function of either Nintendo or Sony given each

other introduction timings. A reaction function maps any launch-timing of a firm to the best

launch-timing of a second firm. We use the same definition of reaction functions as in Section

2.7. For example, in the left-hand graph we see that the maximum of Nintendo’s sales is on

month 73 given Sony launched its PS3 in month 1. From Table 2.11 we know that the PS3

and the Wii are not close competitors and not surprisingly the optimal launch date of the Wii

given any introduction date of the PS3 remains close to the month 73 (January 2006) for any

introduction timing of the PS3. What is surprising is that Nintendo launched 11 months later

than its optimal timing. In the right-hand graph we see that the optimal launch dates of Sony

are not very sensitive to those of the Nintendo Wii. For example, if the Wii were launched from

month 1 up to the month 60 (that is from January 2000 up to December 2004) then the optimal

month for the PS3 remains very close to the month 126 (June 2010). However, if the Wii is
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launched after the month 80 then the optimal action for Sony is to set the introduction date of

the PS3 at month 150, the end of the planning horizon. Hence, the best strategy for Sony if the

Wii is launched after month 80, is not to launch the PS3.

2.8.2 Sensitivity Analysis of the Optimal Launch-Timing

In the previous subsection we answered what if questions assuming our model parameter values

are the ones resulting from the estimation routine. However, the optimal timing is sensitive to

the parameter values and in this subsection we present how sensitive it is to different competitive

and cannibalization settings.

First we present the sensitivity of the optimal launch date of the Sony PS3 to the compet-

itive parameters that relate this console to the Xbox 360 and the Wii, the phi[6] and phi[12]

respectively, for six different scenarios. In each of these scenarios we assume an early, a late,

and an intermediate introduction timing of the Xbox 360 and the Wii. That is, we present three

scenarios for each last generation console that competes against the PS3. Second, we present

the sensitivity of the optimal launch date of the Sony PS3 given different cannibalization and

competitive parameters using these same six possible scenarios. We present these results in

Figure 2.10 and Figure 2.11 respectively.

In Figure 2.10 we present the scenarios for early (month 40), intermediate (month 84) and

late (month 120) introduction timings of the Microsoft Xbox 360 at the upper graphs. In the

graphs at the bottom we present the scenarios with the Nintendo Wii launched at the same set of

introduction timings. For all six scenarios we leave all other introduction timings and parameters

at their real or estimated values, respectively. Note that we only use the φ parameters that relate

the three systems in our scenarios and set the others at their estimated values.

The first lesson we derive from Figure 2.10 is that the optimal timing of the PS3 depends on

how it is competitively related to its two main competitors and not to only one of them. The

second insight is that there is a parameter space for which it is better not to launch the PS3

(that is the flat top area in all graphs). Therefore, we can visualize the parameter space where

Lemma 3 holds, these are the flat top don’t launch areas in Figure 2.10. Hence, the launch

never might be optimal depending on the competitive positioning of the PS3. Similarly, there
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is a parameter space for which there are earlier optimal introduction timings for the PS3. The

third insight is that, the parameter space that is suitable for an earlier introduction gets reduced

when the competing consoles are launched at later stages. See how the flat surface (the don’t

launch area) is larger for the center and right graphs relative to the left most graph. The fourth

insight is that even when the competitive parameters are very favorable for the Sony PS3, its

earliest optimal introduction timing happens at the month 60 (December 2004) and that would

imply a 4.16 years difference between the PS2 and the PS3. That is, the launch now solution

is not part of a very favorable set of parameter values. Note that this time difference between

consoles is on the low side of the time between actual releases for all the major video game

systems reported in Table 2.4.

This last result may point that the 4 year time between releases could be a good introduction

pacing strategy when the product is superior relative to its competitors. Interestingly, the time

between releases are in the low side for third and fourth generation consoles and they are in

the high side for the the six and seventh generation systems. We do not have data on the

earlier systems but our intuition is that the fourth generation consoles were superior to the

third generation consoles and they were better positioned relative to its competitors. This may

be the case, for example, of the Sega Genesis and the Sega Dreamcast launched 4.33 and 3.25

years after their previous generation, respectively. According to our discussions with some hard-

core gamers that seems to have been the case indeed. In contrast, we have read in the press

that the relative positioning of the Sony PS3 and the Xbox 360, for example, is not very strong

relative to each other and this coincides both with longer time between releases diagnosed by

our model and with the longer time between releases we document in Table 2.4 for the latest

product generations.

In Figure 2.11 we present the sensitivity analysis of the optimal launch-timing of the PS3 to

different cannibalization and competitive parameters, that is concerning the α and φ parameters.

The upper graphs show the optimal timing of the PS3 for three scenarios of the launch-timing

of the Xbox 360, similar as previous graphs. In the bottom graphs we present the scenarios

with different introduction timings of the Nintendo Wii. The main difference between this and

the previous figure is that one of the axis is now replaced by Sony’s alpha. In the upper graphs
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we consider the cannibalization parameter of Sony and the φ parameter (phi[6]) that relates the

Xbox 360 and the PS3. In the bottom graphs we use the same cannibalization parameter of

Sony and the φ parameter that relates the Wii and the PS3, the phi[12]. The range we use for

the α cannibalization goes from 0 up to 3. A higher number than 1 would imply that Sony is

able to get more than one unit sale of the PS3 for each PS2 sold.

The first insight we derive from Figure 2.11 is that the optimal introduction timing of the

PS3 depends on both the relative positioning to its competitors and to the cannibalization

between Sony’s generations. The second insight is that, as before, there is a parameter space for

which it is optimal not to launch the PS3 (the top flat don’t launch areas) and this space seems

larger when competitors launch their consoles at late introduction dates. The third new insight

is that the larger Sony’s α is, the sooner it is optimal to introduce the PS3. If there is little

cannibalization, for example for α values between 0 and 0.5, then it is optimal for Sony to set the

launch-timing of the PS3 closer to the end of the planning horizon. For example, in the leftmost

bottom graph the optimal timing for a low α values ranges between the month 100 (April 2008)

and 129 (January 2010), when the phi[12] value is equal to 2. However, if the α value is larger

(near 3 in the same graph) the optimal timing stabilizes at 81 (September 2006). The middle

bottom graph corresponds to the scenario that considers the real introduction date for the Wii

and in this graph the optimal timing stabilizes at month 65 (May 2005) when both the phi[12]

and the α parameter are very favorable to Sony. The optimal timing stabilizes in all graphs

around the month 64 (April 2005) and this month implies 4.5 years between releases. Therefore,

the launch now strategy is not a result of very favorable competitive and alpha parameters.

The real launch of the PS3 occurred in month 84 and this month is optimal only when the α

is much larger than 1 and with a phi[12] approximately near 1. This may indicate that Sony’s

management might have been very optimistic about the PS3 when they chose that month, at

least according to our model.

Finally, the last insight is that when there is no cannibalization the optimal timing of the

PS3 is at time 0, that is the launch now strategy is covered only as a special case when there is

no cannibalization between generations, (Lemma 1). In all the graphs of Figure 2.11 we can see

that the don’t launch area does not reach the α = 0 and at this parameter value the optimal
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timing drops rapidly to the very start of the planning horizon. See the little empty space between

the don’t launch area and the back wall in all graphs. Visually, it is easier to detect how the

surface drops to zero in the upper graphs.

To summarize, the launch now strategy results only when there is no cannibalization between

a firm’s product while the launch never strategy results when there are late product introductions

by competitors, when a firm’s alpha is very low, or when the competition is intense in terms of

the φ parameters. In addition, we find that very favorable competitive and alpha parameters

do not imply the launch now strategy as we discovered that the optimal launch-timing seems

to reach a limit of 4 years between generations. Finally, we find that the higher a firm’s ability

to transfer its old technologies users to the new ones, the earlier it is optimal for it to introduce

new generation products.

2.9 Conclusions and Discussion

In this chapter we presented a new model that is helpful to analyze different launch-timing

strategies and optimal introduction timings. It is straightforward to estimate the model param-

eters and to analyze different interesting competitive and firms’ alpha scenarios. Our model is

suitable to study settings where there are just a few market players or products and when there

are some dominant alpha technologies in the market.

The insights we gained is that the launch now or never strategies may arise depending on

the competitive parameters and the relationship between the products in the market. Specif-

ically, the launch now or never strategies arise when there are late product introductions by

competitors, when a firm’s alpha is very low, or when competition is intense.

For the first time in the academic literature we provide some insights into the introduction

strategy of the main players in the studied industry and we document their introductions since

the late eighties. We find that the launch strategy of each 4 years seems appropriate when there

is a better product positioning or very high alphas. That seemed to be the case at the early

stages of the game systems industry while it is not any more so now.
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According to our model, Nintendo launched the Wii at an appropriate moment while the

Sony PS3 perhaps should have never been launched. Moreover, we find that different strategic

interactions between firms lead to different sales levels and we argue that the strategy should

be chosen relative to the firms’ alpha and relative to the competitive setting that its products

face. For example, the imitation strategy returns are higher for certain competitive parameters,

specifically when the product is superior.

The managerial implications are clear. According to our insights the managers in industries

with alpha technologies should pay not only attention to the competition but also to the ability

of their firms to transfer users of old technologies to new ones. In our case study we pointed out

that the outlook for PS3 is not very promising, it may reach maximum a 12 million unit sales

according to our estimates. However, if Sony’s managers work in new ways to increase Sony’s

alpha or its competitive positioning the outlook for the PS3 could improve.

The higher a firm’s ability to transfer its old technologies users to the new ones, the earlier

it is optimal for it to introduce new generation products. Think of the situation where the first

generation product of a firm may face stiff competition after a point in time while its second

generation is better equipped to fight against the new entrant. In this scenario, the best and

perhaps the only surviving strategy would be to transfer its users of old technologies to the new

ones as soon as possible and before competitive entry. We speculate then that the ability to

survive in such market depends partially but heavily on the firm’s alphas.

In our view, the technology markets mimic some of the competitive behavior of the alpha

chimpanzees. The alpha rank for a chimpanzee means access to desirable foods, females or resting

places while for companies the alpha rank means access to the users of their own old technologies.

However, note that in the chapter we assumed non-cooperative behavior between firms while it

has been documented that alpha males in the chimpanzee society may form temporal alliances

to overcome the current dominant alpha male (Nishida, 1983). This is a situation we do not

study and that we may encounter in the future of the game systems markets. For example, the

recent search alliance between Yahoo and Microsoft and the alliance between Toshiba and Sony

regarding the blu-ray standard seem to be in line with the cooperative behavior of chimpanzees

reported by Nishida (1983). On the other hand, the potential entrance of Apple and Microsoft
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in the portable gaming systems market points towards the arrival of more alpha technologies

and hence perhaps more competition. Finally, we left out other aspects of the marketing mix

that may prove important in the timing of new dominant technologies. We consider all these

extensions interesting avenues for further research.
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2.10 Tables and Figures

Firm Portable System North America Japan Europe
Nintendo DS Lite June 11, 2006 March 2, 2006 June 23, 2006

DS November 21, 2004 December 2, 2004 March 11, 2005
GameBoy Advance SP February 15, 2003 February 14, 2003 March 28, 2003
GameBoy Advance June 11, 2001 March 21, 2001 June 22, 2001
GameBoy Color November 19, 1998 October 21, 1998 November 23, 1998
GameBoy August 15, 1989 April 21, 1989 1990

Sony PSP Slim Lite September 5, 2007 September 13, 2007 September 5, 2007
PSP March 24, 2005 December 12, 2004 September 1, 2005

Source: VGchartz, Wikipedia & online press articles. Notes: We report the year of introduction when the exact date is not available.

Table 2.1: Release Dates of Portable Systems
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Firm Transition to/from North America Japan Europe
Nintendo DS - DSLite 1.55 1.25 1.28

GBA SP - DS 1.77 1.80 1.96
GBA - GBA SP 1.68 1.90 1.76
GBC - GBA 2.56 2.42 2.58
GB - GBC 9.27 9.51 –

Sony PSP Slim - PSP 2.45 2.75 2.01

Table 2.2: Release Time Between Portable Systems (in Years)
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Generation Firm Console North America Japan Europe
7th generation Nintendo Wii November 19, 2006 December 2, 2006 December 8, 2006

Sony PlayStation 3 November 17, 2006 November 11, 2006 March 23, 2007
Microsoft Xbox 360 November 22, 2005 December 10, 2005 December 2, 2005

6th generation Nintendo GameCube November 18, 2001 September 14, 2001 May 3, 2002
Sony PlayStation 2 October 26, 2000 March 4, 2000 November 24, 2000
Microsoft Xbox November 15, 2001 February 22, 2002 March 14, 2002
Sega Dreamcast September 9, 1999 November 27, 1998 October 14, 1999

5th generation Nintendo N64 September 29, 1996 June 29, 1996 March 1, 1997
Sony PlayStation September 9, 1995 December 3, 1994 September 29, 1995
Sega Saturn May 11, 1995 November 22, 1994 July 8, 1995
Atari Jaguar November 18, 1993 – –

4th generation Nintendo Super Nintendo August 13, 1991 November 21, 1990 April 11, 1992
Sega Genesis September 15, 1989 October 29, 1988 November 30, 1990

3rd generation Nintendo Nintendo October 18, 1985 July 15, 1983 –
Sega Master System June 15, 1986 1985 1987

Source: VGChartz, Wikipedia & online press articles. Notes: We report the year of introduction when the exact date is not available.

Table 2.3: Release Dates of Major Video Game Consoles
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Firm Transition to/from North America Japan Europe
Nintendo Wii - GameCube 5.01 5.22 4.60

GameCube -N64 5.14 5.21 5.18
N64 - SNES 5.13 5.61 4.89
SNES - Nintendo 5.82 7.36 –

Sony PS3 - PS2 6.06 6.69 6.33
PS2 - PS1 5.13 5.25 5.16

Microsoft Xbox 360 - Xbox 4.02 3.80 3.72
Sega Dreamcast - Saturn 4.33 4.02 4.27

Saturn - Genesis 5.65 6.07 4.61
Genesis - Master Sys 3.25 – –

Table 2.4: Time Between Major VGC Releases (in years).
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Video Game Console m (thousand units) p q Sample
Nintendo DS 6799.3447** 0.0140** 0.1789** Nov 2004 - June 08

(1975.3660) (0.0056) (0.0543)
Nintendo DS Lite 27972.9479** 0.0403** 1.9922** June 2006 - Jan 2009

(1130.8544) (0.0146) (0.2999)
PSP 9717.9772** 0.0109** 0.1500** Mar 2005 - Sep 2007

(1525.7210) (0.0026) (0.0389)
PSP Slim Lite 7068.5424** 0.0184* 0.2449* Sep 2007 - Jan 2009

(2579.1973) (0.0091) (0.1168)

Note: standard error in parentheses; *,** mean that the coefficient is significant with 95% and 99% confidence respectively

Table 2.5: Bass Model Estimates for Portable Systems
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Video Game Console m p q Sample
Xbox 16157.4500** 0.0058** 0.0993** Nov 2001 - Aug 2007

(699.5485) (0.0009) (0.0132)
Xbox 360 16312.2600** 0.0054** 0.1272** Nov 2005 - Jan 2009

(2826.5520) (0.0012) (0.0304)
PlayStation2 47847.1300** 0.0037** 0.0619** Oct 2000 - Jan 2009

(4520.1510) (0.0007) (0.0149)
PlayStation3 8190.0120** 0.0075** 0.1789** Nov 2006 - Jan 2009

(1173.5730) (0.0014) (0.0333)
GameCube 12716.7600** 0.0058** 0.0959** Nov 2001 - Apr 2008

(527.1293) (0.0009) (0.0142)
Wii 23353.9300** 0.0063** 0.1672** Nov 2006 - Jan 2009

(4673.3370) (0.0014) (0.0340)
Note: standard error in parentheses; ** mean that coefficients are significant with 99% confidence.

Table 2.6: Bass Model Estimates for Video Game Consoles
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System Model Lags % Network Effects
Nintendo GameCube 4 15.77%
Nintendo Wii 11 23.33%
Sony PlayStation2 – –
Sony PlayStation3 5 2.28%
Microsoft Xbox 3 3.60%
Microsoft Xbox 360 7 6.69%
Nintendo DS 14 37.24%
Sony PSP 9 2.28%
All Systems 7.57 13.03%

Table 2.7: Video Game Effects on Game Systems
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Coefficient System Estimate s.e. t-value
p DS 0.01189 (0.0018) 6.56

DS Lite 0.03243 (0.0040) 8.12
PSP 0.05556 (0.0106) 5.25
PSP Slim 0.02843 (0.0076) 3.74

q DS 0.07897 (0.0406) 1.94
DS Lite 0.08174 (0.0353) 2.31
PSP -0.08717 (0.0918) -0.95
PSP Slim 0.12453 (0.0358) 3.48

phis (1) -0.57882 (0.6478) -0.89
(2) -2.39516 (1.9112) -1.25
(3) -0.41831 (0.2109) -1.98
(4) 0.66457 (0.2196) 3.03

m DS 15991.8 (530.0378) 30.17
DS Lite 10980.7 (486.4696) 22.57
PSP 10498.0 (169.4519) 61.95
PSP Slim 1012.0 (205.1027) 4.93

Note: phis (1) is the substitution coefficient between DS and PSP,
phi(2) between DS and PSP Slim, phi(3) between DS Lite and PSP,
and phi(4) between DS Lite and PSP Slim; s.e. stands for standard
error.

Table 2.8: Multi-Generation Model for Portable Systems
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Coefficient Console Estimate s.e. t-value
p Microsoft 0.00943 (0.0025) 3.79

Sony 0.00980 (0.0011) 8.56
Nintendo 0.01156 (0.0021) 5.63

q Microsoft 0.06115 (0.0143) 4.27
Sony 0.03881 (0.0051) 7.55
Nintendo 0.05381 (0.0144) 3.74

phis [1] -0.00512 (0.2087) -0.02
[2] -0.07195 (0.8990) -0.08
[3] 0.02003 (0.2270) 0.09
[4] -2.39045 (1.0587) -2.26
[5] -0.28843 (0.1261) -2.29
[6] 0.31218 (0.8135) 0.38
[7] 0.62241 (0.2734) 2.28
[8] -0.20223 (0.6419) -0.32
[9] 0.11293 (0.2238) 0.50
[10] 0.60116 (0.1576) 3.81
[11] -0.42376 (0.5037) -0.84
[12] 0.02402 (0.9240) 0.03

m Xbox 19135.29 (1132.2) 16.90
Xbox 360 813.10 (1884.7) 0.43
PS2 41135.91 (848.8) 48.46
PS3 987.54 (6416.3) 0.15
GameCube 16382.92 (1194.1) 13.72
Wii 17385.63 (2029.2) 8.57

Notes: m is in thousand units

Table 2.9: Multi-Generation Model for Video Game Consoles (Microsoft α = 1, Sony
α = 1, Nintendo α = 1)
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Coefficient Console Estimate s.e. t-value
p Microsoft 0.01220 (0.0043) 2.82

Sony 0.01142 (0.0021) 5.49
Nintendo 0.00809 (0.0016) 5.06

q Microsoft 0.05423 (0.0201) 2.69
Sony 0.03216 (0.0078) 4.13
Nintendo 0.06670 (0.0151) 4.43

phis [1] -0.09294 (0.2166) -0.43
[2] -2.13156 (1.5318) -1.39
[3] 0.04654 (0.2377) 0.20
[4] -3.08154 (1.6084) -1.92
[5] 0.13089 (0.1357) 0.96
[6] 0.40535 (0.5606) 0.72
[7] 0.90676 (0.2681) 3.38
[8] 0.37551 (0.5191) 0.72
[9] 0.09675 (0.2246) 0.43
[10] 0.43943 (0.2651) 1.66
[11] 0.36342 (0.7003) 0.52
[12] 0.15694 (1.0118) 0.16

m Xbox 18908.97 (1346.3) 14.05
Xbox 360 2685.35 (874.9) 3.07
PS2 40409.41 (1002.8) 40.30
PS3 2117.23 (1142.5) 1.85
GameCube 17665.16 (1570.8) 11.25
Wii 16224.15 (2706.9) 5.99

Notes: m is in thousand units

Table 2.10: Multi-Generation Model for Video Game Consoles (Microsoft α = 0.3, Sony
α = 0.1, Nintendo α = 1.1)
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Xbox X360 PS2 PS3 GC Wii
Xbox x -1 [1] [2] [3] [4]
X360 1 x [5] [6] [7] [8]
PS2 -[1] -[5] x -1 [9] [10]
PS3 -[2] -[6] 1 x [11] [12]
GC -[3] -[7] -[9] -[11] x -1
Wii -[4] -[8] -[10] -[12] 1 x
Xbox x -1 -0.01 -0.07 0.02 -2.39
X360 1 x -0.29 0.31 0.62 -0.20
PS2 0.01 0.29 x -1 0.11 0.60
PS3 0.07 -0.31 1 x -0.42 0.02
GC -0.02 -0.62 -0.11 0.42 x -1
Wii 2.39 0.20 -0.60 -0.02 1 x

Notes: the numbers between brackets represent the phi coef-
ficients of the multi-generation model reported in table 2.9.
The bold coefficients have t-values greater than 1.

Table 2.11: Competitive Parameters



54 The Launch Timing of New and Dominant Multi-Generation Technologies

S
tr

a
te

g
y

P
la

y
e
r

/
Q

u
a
n
ti

le
1
%

5
%

1
0
%

5
0
%

9
0
%

9
5
%

9
9
%

[1
]
R

a
n
d
o
m

S
e
le

c
ti

o
n

o
f
D

a
te

s
N

in
te

n
d
o

1
6
8
1
.4

6
5
3
8
.5

1
0
9
3
3
.5

2
6
3
6
9
.6

3
9
1
4
6
.8

4
2
9
4
1
.3

4
8
0
8
4
.3

S
o
n
y

1
5
5
0
.5

2
5
2
8
.4

3
8
9
0
.3

1
0
3
9
8
.8

1
9
9
6
2
.5

2
3
4
8
1
.8

2
9
2
8
4
.3

T
o
ta

l
1
3
8
3
3
.1

2
1
1
8
7
.1

2
6
6
2
1
.7

4
5
5
9
0
.7

5
7
6
5
3
.5

5
9
6
7
6
.6

6
2
5
4
5
.3

[2
]
P

r
e
-c

o
m

m
it

m
e
n
t

/
Im

it
a
ti

o
n

N
in

te
n
d
o

3
7
6
9
.5

9
9
9
8
.8

1
3
2
8
8
.1

2
8
5
5
3
.4

3
7
4
7
0
.9

3
9
5
0
9
.4

4
1
2
7
3
.4

S
o
n
y

7
2
4
.0

1
4
3
1
.3

2
3
8
3
.7

9
4
1
5
.3

1
8
3
7
2
.8

1
9
5
1
3
.3

2
0
3
6
2
.9

T
o
ta

l
7
3
2
4
.8

1
5
9
6
1
.7

1
9
1
7
4
.6

3
8
1
4
6
.2

5
4
3
1
6
.4

5
7
6
6
3
.5

6
0
4
1
5
.2

[3
]
P

r
e
-c

o
m

m
it

m
e
n
t

/
O

p
ti

m
iz

a
ti

o
n
*

N
in

te
n
d
o

1
5
4
3
.9

4
6
9
6
.4

8
5
4
0
.6

2
8
8
3
7
.4

3
5
8
0
5
.5

3
6
9
4
4
.6

3
8
8
4
2
.0

S
o
n
y

1
3
8
9
0
.7

1
5
3
8
7
.0

1
6
9
7
3
.4

2
1
9
0
8
.2

3
1
9
4
8
.0

3
3
1
0
8
.3

3
4
1
4
9
.6

T
o
ta

l
1
7
8
8
7
.0

2
5
2
5
3
.3

3
0
9
0
0
.2

5
2
1
3
2
.8

6
0
3
0
7
.6

6
2
7
8
5
.7

6
5
8
4
5
.1

[5
]
U

n
c
e
r
ta

in
L
a
u
n
c
h

D
a
te

s
/

O
p
ti

m
iz

a
ti

o
n
*
*

N
in

te
n
d
o

1
5
4
8
.9

3
8
3
4
.1

6
7
6
9
.8

2
8
6
1
5
.2

3
6
8
6
8
.9

3
8
2
1
5
.9

3
9
7
4
2
.1

S
o
n
y

1
3
2
8
5
.2

1
3
8
7
3
.2

1
4
4
4
1
.2

2
0
5
7
9
.3

3
0
9
6
1
.4

3
1
8
4
6
.6

3
2
6
9
5
.6

T
o
ta

l
1
7
3
3
5
.7

2
4
7
6
5
.2

3
0
4
3
4
.0

4
8
8
4
5
.5

5
9
9
6
8
.6

6
2
9
5
6
.7

6
6
0
8
1
.8

N
o
te

s:
*

N
in

te
n
d
o

p
re

-c
o
m

m
it

s
to

a
d
a
te

w
h
il
e

S
o
n
y

o
p
ti

m
iz

es
it
s

la
u
n
ch

d
a
te

s
g
iv

en
N

in
te

n
d
o

p
re

-c
o
m

m
it

m
en

t
d
a
te

s.
*
*

N
in

te
n
d
o

d
o
es

n
o
t

p
re

-c
o
m

m
it

s
to

a
n
y

d
a
te

a
n
d

S
o
n
y

o
p
ti

m
iz

e
g
iv

en
th

e
p
ro

b
a
b
il
it
y

th
a
t

N
in

te
n
d
o

la
u
n
ch

a
t

a
n
y

d
a
te

.

T
ab

le
2.

12
:

E
va

lu
at

io
n

of
F
ou

r
L
au

n
ch

S
tr

at
eg

ie
s



2.10 Tables and Figures 55

Figure 2.1: Interaction Between All Product Generations in Duopoly Model
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Figure 2.3: Multi-Generation Model Fit for Portable Systems
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Figure 2.4: Multi-Generation Model Fit for Video Game Consoles



2.10 Tables and Figures 59

0 20 40 60 80 100

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Evaluation of Launch Strategies for Nintendo

Percentage

S
al

es

Random Dates
Imitation
Pre−Commitment
Uncertain Dates

0 20 40 60 80 100

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Evaluation of Launch Strategies for Sony

Percentage

S
al

es

Random Dates
Imitation
Pre−Commitment
Uncertain Dates

Figure 2.5: Cumulative Distribution Function of Sales given Different Strategies



60 The Launch Timing of New and Dominant Multi-Generation Technologies

phi[1
]

−2

−1

0

1

2

ph
i[2

]

−2

−1

0

1

2

Log sales ratio Nintendo/Sony

−20

2

4

Im
ita

tio
n 

S
tr

at
eg

y

phi[3
]

−2

−1

0

1

2

ph
i[4

]

−2

−1

0

1

2

Log sales ratio Nintendo/Sony

−3

−2

−10

1

Im
ita

tio
n 

S
tr

at
eg

y

phi[1
]

−2

−1

0

1

2

al
ph

a 
(N

in
te

nd
o)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Log sales ratio Nintendo/Sony

1.
0

1.
5

2.
0

2.
5

Im
ita

tio
n 

S
tr

at
eg

y

phi[1
]

−2

−1

0

1

2

ph
i[2

]

−2

−1

0

1

2

Log sales ratio Nintendo/Sony

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

P
re
−C

om
m

itm
en

t O
pt

im
iz

at
io

n 
S

tr
at

eg
y

phi[3
]

−2

−1

0

1

2

ph
i[4

]

−2

−1

0

1

2

Log sales ratio Nintendo/Sony

−2

−10

1

2

P
re
−C

om
m

itm
en

t O
pt

im
iz

at
io

n 
S

tr
at

eg
y

phi[1
]

−2

−1

0

1

2

al
ph

a 
(N

in
te

nd
o)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Log sales ratio Nintendo/Sony

−0
.5

0.
0

0.
5

1.
0

1.
5

P
re
−C

om
m

itm
en

t O
pt

im
iz

at
io

n 
S

tr
at

eg
y

F
ig

u
re

2.
6:

S
tr

at
eg

y
S
al

es
S
en

si
ti

v
it
y

to
C

om
p
et

it
iv

e
P
ar

am
et

er
s



2.10 Tables and Figures 61

La
un

ch
 D

at
e 

of
 G

am
eC

ub
e 

(G
C

)

50

100
Launch Date of Nintendo Wii

50

100

Total S
ales G

C
 + W

ii

20000

40000

60000

Figure 2.7: What if Scenarios for the Consoles of Nintendo



62 The Launch Timing of New and Dominant Multi-Generation Technologies

La
un

ch
 D

at
e 

of
 P

S
2

50

100

Launch Date of PS3

50

100

Total S
ales P

S
2 + P

S
3

20000

40000

60000

80000

Figure 2.8: What If Scenarios for the Consoles of Sony



2.10 Tables and Figures 63

20
40

60
80

10
0

12
0

14
0

20406080100120140

N
in

te
n

d
o

: 
S

al
es

 R
ea

ct
io

n
 S

u
rf

ac
e

La
un

ch
 D

at
e 

of
 S

on
y 

P
S

3

Launch Date of Nintendo Wii

 1
30

00
 

 1
40

00
 

 1
50

00
 

 1
60

00
 

 1
70

00
 

 1
80

00
 

 1
90

00
 

 2
00

00
 

 2
10

00
 

 2
20

00
 

 2
30

00
 

 2
40

00
 

 2
50

00
 

 2
60

00
 

 2
70

00
 

 2
80

00
 

 2
90

00
 

 3
00

00
 

 3
10

00
 

 3
20

00
 

 3
30

00
 

 3
40

00
 

 3
50

00
 

 3
60

00
 

 3
70

00
 

 3
80

00
 

 3
90

00
 

 4
00

00
 

 4
10

00
 

 4
20

00
  

43
00

0 
 4

40
00

 
 4

50
00

 
 4

60
00

 
 4

70
00

 
 4

80
00

 
 4

90
00

 
 5

00
00

 

 5
10

00
 

 5
20

00
 

 5
30

00
 

 5
40

00
  5

50
00

 

 5
60

00
 

 5
60

00
 

 5
70

00
 

 5
70

00
 

 5
80

00
 

 5
80

00
 

 5
90

00
 

 5
90

00
 

 6
00

00
 

 6
00

00
 

 6
10

00
 

 6
10

00
 

 6
20

00
 

 6
20

00
 

 6
30

00
  6

30
00

 

 6
40

00
 

 6
40

00
 

 6
50

00
 

 6
60

00
 

 6
70

00
 

20
40

60
80

10
0

12
0

14
0

20406080100120140

S
o

ny
: 

S
al

es
 R

ea
ct

io
n

 S
u

rf
ac

e

La
un

ch
 D

at
e 

of
 S

on
y 

P
S

3

Launch Date of Nintendo Wii

 30000 

 32000 

 34000 

 36000 

 38000  40000 

 42000 
 44000 

 46000 

 48000 

 50000 

 52000 

 54000 

 56000 

 58000 

 60000 

 62000 

 6
20

00
 

 6
40

00
 

 6
60

00
 

 6
80

00
 

 7
00

00
 

 7
20

00
 

 7
40

00
 

 7
60

00
 

 7
80

00
 

 80
00

0 

 8
20

00
 

 84000 

 8
60

00
 

 8
80

00
 

 9
00

00
 

 9
20

00
 

 9
40

00
 

F
ig

u
re

2.
9:

S
en

si
ti

v
it
y

to
L
au

n
ch

-T
im

in
g

an
d

S
al

es
R

ea
ct

io
n

S
u
rf

ac
es



64 The Launch Timing of New and Dominant Multi-Generation Technologies

phi[6]

−2

−1

0

1

2

ph
i[1

2]

−2

−1

0

1

2

Optimal Launch Date of Sony PS3

60

80

10
0

12
0

14
0

S
ce

na
ri

o 
w

ith
 X

bo
x 

36
0 

La
un

ch
 a

t m
on

th
 4

0 
(A

pr
 2

00
3)

phi[6]

−2

−1

0

1

2

ph
i[1

2]

−2

−1

0

1

2

Optimal Launch Date of Sony PS3

60

80

10
0

12
0

14
0

S
ce

na
ri

o 
w

ith
 X

bo
x 

36
0 

La
un

ch
 a

t m
on

th
 8

4 
(D

ec
 2

00
6)

phi[6]

−2

−1

0

1

2

ph
i[1

2]

−2

−1

0

1

2

Optimal Launch Date of Sony PS3

80

10
0

12
0

14
0

S
ce

na
ri

o 
w

ith
 X

bo
x 

36
0 

La
un

ch
 a

t m
on

th
 1

20
 (D

ec
 2

00
9)

phi[6]

−2

−1

0

1

2

ph
i[1

2]

−2

−1

0

1

2

Optimal Launch Date of Sony PS3

80

10
0

12
0

14
0

S
ce

na
ri

o 
w

ith
 N

in
te

nd
o 

W
ii 

La
un

ch
 a

t m
on

th
 4

0 
(A

pr
 2

00
3)

phi[6]

−2

−1

0

1

2

ph
i[1

2]

−2

−1

0

1

2

Optimal Launch Date of Sony PS3

60

80

10
0

12
0

14
0

S
ce

na
ri

o 
w

ith
 N

in
te

nd
o 

W
ii 

La
un

ch
 a

t m
on

th
 8

4 
(D

ec
 2

00
6)

phi[6]

−2

−1

0

1

2

ph
i[1

2]

−2

−1

0

1

2

Optimal Launch Date of Sony PS3

60

80

10
0

12
0

14
0

S
ce

na
ri

o 
w

ith
 N

in
te

nd
o 

W
ii 

La
un

ch
 a

t m
on

th
 1

20
 (D

ec
 2

00
9)

F
ig

u
re

2.
10

:
S
on

y
P

S
3

O
p
ti

m
al

L
au

n
ch

-T
im

in
g

S
en

si
ti

v
it
y

to
C

om
p
et

it
iv

e
P
ar

am
et

er
s



2.10 Tables and Figures 65

ph
i[6

]

−2

−1

0

1

2

alpha (Sony)

0.
0 0.

5 1.
0 1.

5 2.
0 2.

5

3.
0

Optimal Launch Date of Sony PS350

10
0

15
0

S
ce

na
ri

o 
w

ith
 M

ic
ro

so
ft

 X
bo

x 
36

0 
at

 m
on

th
 4

0 
(A

pr
 2

00
3)

ph
i[6

]

−2

−1

0

1

2

alpha (Sony)

0.
0 0.

5 1.
0 1.

5 2.
0 2.

5

3.
0

Optimal Launch Date of Sony PS350

10
0

15
0

S
ce

na
ri

o 
w

ith
 M

ic
ro

so
ft

 X
bo

x 
36

0 
at

 m
on

th
 8

4 
(D

ec
 2

00
6)

ph
i[6

]

−2

−1

0

1

2

alpha (Sony)

0.
0 0.

5 1.
0 1.

5 2.
0 2.

5

3.
0

Optimal Launch Date of Sony PS350

10
0

15
0

S
ce

na
ri

o 
w

ith
 M

ic
ro

so
ft

 X
bo

x 
36

0 
La

un
ch

 a
t m

on
th

 1
20

 (D
ec

 2
00

9)

ph
i[1

2]

−2

−1

0

1

2

alpha (Sony)

0.
0 0.

5 1.
0 1.

5 2.
0 2.

5

3.
0

Optimal Launch Date of Sony PS350

10
0

15
0

S
ce

na
ri

o 
w

ith
 N

in
te

nd
o 

W
ii 

La
un

ch
 a

t m
on

th
 4

0 
(A

pr
 2

00
3)

ph
i[1

2]

−2

−1

0

1

2

alpha (Sony)

0.
0 0.

5 1.
0 1.

5 2.
0 2.

5

3.
0

Optimal Launch Date of Sony PS350

10
0

15
0

S
ce

na
ri

o 
w

ith
 N

in
te

nd
o 

W
ii 

La
un

ch
 a

t m
on

th
 8

4 
(D

ec
 2

00
6)

ph
i[1

2]

−2

−1

0

1

2

alpha (Sony)

0.
0 0.

5 1.
0 1.

5 2.
0 2.

5

3.
0

Optimal Launch Date of Sony PS350

10
0

15
0

S
ce

na
ri

o 
w

ith
 N

in
te

nd
o 

W
ii 

La
un

ch
 a

t m
on

th
 1

20
 (D

ec
 2

00
9)

F
ig

u
re

2.
11

:
S
on

y
P

S
3

O
p
ti

m
al

L
au

n
ch

-T
im

in
g

S
en

si
ti

v
it
y

to
C

an
n
ib

al
iz

at
io

n
an

d
C

om
p
et

it
iv

e
P
ar

am
et

er
s



66 The Launch Timing of New and Dominant Multi-Generation Technologies

2.A Strategy Simulation Methodology

In this section we provide the details of each of the four strategies we use in our application.

Random Date Selection

In this strategy firm 1 selects τ1
1 and τ1

2 randomly and firm 2 selects τ2
1 and τ2

2 in the same way.

We discretize the planning horizon in Tp periods. Hence the possible launch dates τ g
i (where i

stands for firm i while g stands for the system generation) might be at any t within t = 1, . . . , Tp;

we denote the length of the planning horizon p. We consider a 90 month planning horizon that

is 7.5 years. This time frame is long enough given the average life-cycle of the portable systems

is 2.5 years. With this planning horizon we evaluate the maximum of the cumulative sales for

each system of both firms given all the feasible launch dates τ g
i for i = 1, 2 and g = 1, 2. That is,

firm 1 might select one out of the p2 possible launch-timings but we restrict the combinations to

the set where τ2
i ≥ τ1

i . This means that we restrict that the second generation product for both

firms is launched at a date either at the same time or after the first generation. The feasible set

reduces from p2 to (p+1)×p/2 feasible combinations for each player. Note that we use Tp = 90

and we set p = 45. In the duopoly case i = 1 refers to Nintendo and i = 2 refers to Sony.

We evaluate equations (2.3) to (2.6) with the feasible set of launch-timing and we compute the

maximum cumulative sales achieved by each product generation for both firms. That is we com-

pute max(SSony
g (τSony

1 , τSony
2 |τNin

1 , τNin
2 )) for g = 1, 2 and max(SNin

g (τNin
1 , τNin

2 |τSony
1 , τSony

2 ))

for g = 1, 2. The g = 1 product of Sony is the Sony PSP and the g = 2 product of Sony is

PSP Slim; for Nintendo the g = 1 product is the DS and the g = 2 product is the DS Lite.

In table 2.12 we report the quantiles of the total sales of Sony achieved by this strategy, that

is
∑

g max(SSony
g (τSony

1 , τSony
2 |τNin

1 , τNin
2 )) and

∑
g max(SNin

g (τNin
1 , τNin

2 |τSony
1 , τSony

2 )) and the

total sales of both players (the sum of the last two terms).

Imitation

In this strategy firm 1 pre-commits to a launch-timing for its two product generations while

firm 2 imitates the launch-timing of firm 1. That is, both firms launch at the same time each of
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their product generations. In our application we set Nintendo the be the firm that pre-commits

to a certain launch date and Sony to be the firm that imitates. We assume that Nintendo

pre-commits to a randomly chosen pair of dates τNin
1 and τNin

2 and Sony sets τSony
1 = τNin

1 and

τSony
2 = τNin

2 . In this strategy we assume Nintendo ignores that Sony will imitate and we do

not assume Nintendo might pre-commit strategically to the best pair of dates. However, it is

straightforward to identify the best pre-commitment dates of Nintendo given Sony is imitating.

Pre-commitment and Optimization

In this strategy firm 1 pre-commits to a launch-timing for its two product generations while firm

2 optimizes its launch-timings given the launch dates of firm 1. As before, we set Nintendo the be

the firm that pre-commits to a certain launch date and Sony to be the firm that optimizes. We

assume that Nintendo pre-commits to a randomly chosen pair of dates τNin
1 and τNin

2 and Sony

sets τSony
1 and τSony

2 such that
∑

g max(SSony
g (τSony

1 , τSony
2 |τNin

1 , τNin
2 )) is maximized. In this

strategy we assume Nintendo ignores that Sony will optimize and we do not assume Nintendo

might pre-commit strategically to the best pair of dates. However, it is straightforward to

identify the equilibrium if both firms are optimizing. Finally, we note that pre-commitment and

perfect foresight are usual assumptions in the literature, for examples see Reinganum (1981)

and Bayus et al. (1997).

Uncertain Launch Dates and Stochastic Optimization

In this strategy firm 1 selects a pair of launch dates for its two generation products but does not

reveal these dates to firm 2. However, we assume firm 2 can derive the best response of firm 1

given any pair of dates assigned by firm 2 to its own products. That is, firm 2 has knowledge on

the reaction function of firm 1 however firm 2 does not know which date launch will be picked

for certain by firm 1. The reaction function is a function that maps any launch-timing of firm 2

to the best launch-timing of firm 1. In our application, the best reaction function of Nintendo

f(τSony
1 , τSony

2 ) = Ω

(
max

τNin
1 ,τNin

2

(
∑

g

SNin
g (τNin

1 , τNin
2 |τSony

1 , τSony
2 ))

)
(2.23)
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Ω() returns a pair of dates τNin
1 and τNin

2 that maximize the sales of Nintendo given the launch

dates of Sony (τSony
1 and τSony

2 ). We further assume that firm 2 assigns a probability that firm

1 will launch on dates τ1
1 and τ1

2 proportional to the sales achieved by selecting these two dates.

That is,

p(τNin
1 , τNin

2 ) =

∑
g max(SNin

g (τNin
1 , τNin

2 |τSony
1 , τSony

2 ))∑
(τNin

1 ,τNin
2 )∈f(τSony

1 ,τSony
2 )

∑
g max(SNin

g (τNin
1 , τNin

2 |τSony
1 , τSony

2 ))
(2.24)

Note that τ1
1 and τ1

2 should belong to the set of dates given by the reaction function of firm 1

and that is why they should be contained in the reaction function f(τSony
1 , τSony

2 ); otherwise the

strategy is not considered. Given these assumptions the strategy of firm 2 is to select the pair

of launch dates that maximize its expected sales. The best reaction function of Sony is

f(τNin
1 , τNin

2 ) = Ω

(
max

τSony
1 ,τSony

2

(
∑

g

SSony
g (τSony

1 , τSony
2 |τNin

1 , τNin
2 ))

)
(2.25)

and hence Sony selects τSony
1 and τSony

2 such that

p(τNin
1 , τNin

2 ) ×
∑

g

max(SSony
g (τSony

1 , τSony
2 |τNin

1 , τNin
2 ))

(τSony
1 ,τSony

2 )∈f(τNin
1 ,τNin

2 )
(2.26)

is maximized.



Chapter 3

The Timing and Speed of New

Product Price Landings

Many high-tech products and durable goods exhibit exactly one significant price cut some time

after their launch. We call this sudden transition from high to low prices the price landing. In

this chapter we present a new model that describes two important features of price landings:

their timing and their speed.

Prior literature suggests that prices might be driven by sales, product line pricing, competi-

tor’s sales or simply by time. We propose a model using mixture components that identifies

which of these explanations is the most likely trigger of price landings. We define triggers as

thresholds after which prices are significantly cut. In addition, price landings might differ across

products and therefore we model their heterogeneity with a hierarchical structure that depends

mainly on firm, product type and seasonal effects.

We estimate our model parameters applying Bayesian methodology and we use a rich dataset

containing the sales and prices of 1195 newly released video games (VG’s). In contrast with pre-

vious literature, we find that competition and time itself are the main triggers of price landings

while past sales and product line are less likely triggers. Moreover, we find substantial hetero-

geneity in the timing and speed of price landing across firms and product types.
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3.1 Introduction

“Don’t get us wrong – price cuts are a good thing”

Wired.com (2007)

It is well known that prices of new products exhibit one or several important price cuts

during their life-cycle. Nowadays, we are witnessing how many new high-technology products

are introduced at an initial high price and after a certain moment their prices are cut to a

permanent and much lower level. This practice is commonly followed by manufacturers of

products like video games, apparel, PCs, movies, and so on. Moreover, scholars have recognized

and studied this type of pricing strategy. For example, studies like Feng and Gallego (1995) and

Gupta et al. (2006) point that managers at apparel retailers in New York City report the timing

and depth of price cuts are important decision variables and the depth of the price cut in this

industry is typically between 25 and 50%. In this chapter, we will call this sudden transition

from an initially high price to a lower price level the price landing.

We are not aware of any empirical study of price landings. This is quite a surprise because the

timing of a permanent price cut for a new product is without a doubt an important managerial

decision. During the first half of 2007 thousands of American customers purchased Apple’s

iPhone and they witnessed a $200 price drop just 66 days after its release. Consumers were

outraged by the sudden price drop and Apple apologized and issued a $100 store credit to

everyone who purchased the iPhone before April 2007. More recently, the forthcoming market

launch of Apple’s iPad has brought attention to the pricing strategy that the Apple Store will

apply to e-books. According to journalists, Apple is pushing the industry to apply “variable

pricing which apparently is triggered by sales volume and not just pricing whim”, see Wired

Magazine (2010). In some instances Apple’s timing of price cuts have been judged too early

if they happened short time before the Christmas season and in other instances the price cuts

have been judged as occurring too late to stimulate further sales or to fight competition. See

BusinessWeek Online (2007) and BusinessWeek Online (2008) for more details on Apple’s story.

In this chapter we present a new model for price landings and the estimation approach

we present is particularly useful to describe the moment and speed at which the price landing
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occurs and to simultaneously find the triggers of these sudden price transitions. Our work

offers a complement to studies like those of Tellis et al. (2003) and Golder and Tellis (1997)

because we characterize and describe pricing patters of new products while these latter authors

have studied and characterized new products’ sales patterns. On the other hand, our modeling

approach goes further than a description of price patterns because it allows us to find what are

the most likely triggers of price landings. We apply our model to the market of video games

and to a rich data set that concerns 1195 newly released video games.

The plan of the chapter is as follows. In Section 3.2 we present our literature review. In

Section 3.3 we present our data and market context. Next in Section 3.4 we present our modeling

approach and in Section 3.5 we present our results. We present our conclusions in Section 3.6.

All figures and tables are presented in Appendix 3.7. We present the estimation approach in

Appendix 3.A.

3.2 Literature Review

In this section we review the studies concerned with the video-game industry in subsection 3.2.1

and next in subsection 3.2.2 we review the literature related to new products pricing.

3.2.1 Research on Video-Games

Three empirical studies closely related to our work are Clements and Ohashi (2005), Nair

(2007) and Chintagunta et al. (2009).

Clements and Ohashi (2005) study the indirect network effects between video game consoles

and video games and the effects of consoles’ prices on their own sales. Their findings suggest

that price elasticity is low at the beginning and high at the end of the life cycle of video game

consoles. Chintagunta et al. (2009) investigate the effects of software availability and prices

on the sales of video game consoles. They propose an econometric approach that accounts for

the endogeneity of price and sales and they find time varying price elasticities. In contrast with

Clements and Ohashi (2005), Chintagunta et al. (2009) find some evidence of both declining

and increasing elasticities. Other studies, like Parker (1992) and Simon (1979), report that



72 The Timing and Speed of New Product Price Landings

elasticities may show diverse time profiles across products, like U or inverted U shapes. See

Parker (1992, Table 4, page 365).

Nair (2007) studies the video-game software market and he proposes a model that takes into

account the interaction between publishers of video-games and two consumer segments formed

by high and low valuation gamers. His findings suggest that the optimal pricing by publishers

should exhibit declining prices. The price cut rate (that is the slope of the price function) in

Nair (2007) depends on the relative size of each of the consumer segments while the overall and

initial level of the optimal price depends on the utility discounting factor and the interaction of

consumers and firms.

Our study differs markedly from Clements and Ohashi (2005), Nair (2007) and Chintagunta

et al. (2009) because our objective is to introduce a model that is flexible enough to capture

many different and detailed theoretical features of prices that have been documented in the

literature or observed empirically. In this respect, our price model is a generalization based on

previous research. In addition, we offer the first empirical study that focuses on price landings

and their triggers, timing and speed.

Finally, the methods of Clements and Ohashi (2005), Chintagunta et al. (2009) and Nair

(2007) are considered structural while our model may be classified as a reduced form model.

A main advantage of our reduced form is that we do not need assumptions regarding supply

and demand side interactions or consumer behavior. A disadvantage of our approach is that we

can not draw inferences regarding consumer behavior or consumer-firm interactions and that we

need assumptions on the form of the price equation. However, the assumptions we will use for

the price equation are more flexible than the assumptions of Nair (2007) and Chintagunta et al.

(2009). Nair assumes that consumers form expectations based on an auto-regressive process of

order one while Chintagunta and colleagues assume that prices are stationary. In contrast, we

present a very flexible equation that can capture sudden breaks (non-stationarity) and it allows

us investigate what is triggering these breaks. Hence, we offer novel findings and we are the first

to measure quantitatively empirical features of prices that have not been documented before

in the literature. In addition, our econometric approach is computationally simple. Therefore,
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we can use our method to study relatively large databases of prices. This may be a technical

advantage over structural models that are usually much more computationally demanding.

3.2.2 Research on New Products Pricing

The literature dealing with pricing strategy is extensive and in this section we focus our attention

to a set of empirical and analytical studies concerned mainly with new product prices. We present

the studies we surveyed in Table 3.1.

In Table 3.1, we see that 24 out of 32 studies are analytical while 8 are empirical. Out of

these eight empirical studies only Clements and Ohashi (2005), Chintagunta et al. (2009) and

Nair (2007) were published recently and only the study of Nair (2007) is focused on pricing

policies for new products. To our knowledge, Nair (2007) and our work are the only empirical

studies concerned with price patterns. A likely reason of such lack of empirical studies on prices

is the scarcity of detailed price data.

We draw the following generalizations the literature in Table 3.1: 1. Prices show gradual

or sudden transition from high to low states. Both empirical and theoretical studies have doc-

umented such transitions. 2. Prices show transitions that rarely mimic the S-shape of sales

or that increase over time (8 studies). 3. Prices respond to competition, changes in consumer

valuations across time, consumer heterogeneity, new product releases, learning curves on costs

and market saturation.

The first generalization tell us that prices of new products rarely stay constant. We note

that some studies, like Schmalen (1982), Ferguson and Koenigsberg (2007) and Eliashberg

and Jeuland (1986), have shown when it is optimal to keep prices of new products constant. On

the other hand, we could hardly draw a consensus about how fast price transitions should be or

how they look empirically. Some studies explicitly report the optimal price decrease rate, like

in Dockner and Gaunersdorfer (1996), Raman and Chatterjee (1995) and Bayus (1994) while

many other studies give less attention specifically to the speed of price transitions. Much more

is known about the shape of price transitions. Many studies, like Robinson and Lakhani (1975),

Kalish (1983), Dolan and Jeuland (1981), Bayus (1992), show that the optimal policy is for

prices to decline over time. Other studies show the optimal mark-down (or optimal sudden price
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discount) based on the length of the season, the perishability of the product or drastic seasonal

changes in consumer valuations or demand. See for example Ferguson and Koenigsberg (2007),

Gupta et al. (2006), Rajan et al. (1992) and Feng and Gallego (1995). Finally, diffusion

studies, like Rao and Bass (1985), confirm that the declining pattern is an empirical regularity

and recent studies, following Bass et al. (1994), usually incorporate the declining price effect

on diffusion.

The literature suggests the generalization that prices should change (in most cases drop) once

an event modifies the market and that these price drops occur in synchrony with the movements

of price drivers. These events are usually related to the drivers listed in the last column of

Table 3.1. In general terms, previous empirical literature suggests that x drives y when x is an

important underlying variable causing the variance in y. In contrast, many analytical studies

integrate trigger variables into their models where x is defined as a trigger of y if it has an effect

on y only after a certain threshold, for example after x > xo becomes true where x > xo might

mean, for example, competitive entry, the end of a season or the limit of market potential. For

example, Feng and Gallego (1995) and Gupta et al. (2006) incorporate thresholds after which

prices should be marked down. We believe there is a disconnect between analytical studies that

allow non-linearities and sudden price breaks and empirical studies that assume in most cases

linear price functions without structural breaks.

The objective of this chapter is to fill the literature gaps between empirical and analytical

studies of new products’ prices. First, our model, together with the econometric approach

we use, will allow us describe the theoretical features of prices based on a large database of

prices. We focus specifically on the speed and timing of sudden price transitions, what we call

price landings. Second, we test the relative importance of different price triggers suggested by

theoretical and empirical studies simultaneously. We test whether saturation, market entry,

time (a products’ age) or the release schedule of firms trigger the price landing for each of the

1195 products in our data set. In this way, we put to an empirical test the theoretical properties

of prices discussed in analytical studies and we connect both streams of research.
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3.3 Video Game Prices

In this section we first describe our data and next we present a brief description of the video

game market.

3.3.1 Data

The database we analyze consists of monthly time series of unit sales and prices for 1195 PlaySta-

tion2 (PS2) video games released between September 1995 and February 2002 in the US. This

data was collected by NPD Group from retailers that account for 65% of the US market. We

used the first two years of data for each video game and left out VG’s with less than 12 monthly

observations. This time frame is justified by the fact that most VG’s stay on store shelves for

less than two years and their sales drop very rapidly to zero afterwards. Binken and Stremer-

sch (2009) use the same data and they assume that a video game is in a so-called dead regime

after its sales drop below 5000 units. Therefore, Binken and Stremersch (2009) do not use any

observation after this cut-off point which leaves out 32 % of their observations. In our case the

24 month cut-off point leaves out 38 % of the observations. We compared our results against a

30 and a 36 month cut-off point that leave out 28 and 20 % of the observations, respectively,

and our results are qualitatively the same. Our final sample consists of 1075 video games.

In Figure 3.1 we show the price landing of 50 randomly selected video games. This figure

clearly shows the great diversity of price patterns but it is easy to see of the common feature

across games: their price drops at a certain moment in time. The introductory prices range

from 40 to approximately 60 USD while their landing level is between 15 and 30 USD. Similarly,

there is great diversity in the timing of price landings. It is easy to notice that some VG’s prices

drop right after the second month while others land around the 10th, 12th or 15th month or

even later. Finally we notice that some prices drop very fast, see the lines almost parallel to the

vertical axis, while in many other cases they land at slower rates and with more noise around

them.

In Figure 3.2 we show the price landing of one of the most popular VG’s, the Spider-Man

game. We plot the price of the Spider-Man game on the vertical axis but in each of the panels we
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use a different scale on the horizontal axis. In the upper-left panel we use time on the horizontal

axis, in the upper right panel we use the cumulative sales of Spider-Man and in the lower panel

we use the cumulative number of VG’s launched to the market after the introduction of Spider-

Man. We choose these axes because later we will identify each of these variables as a potential

trigger of price landings. More details on this are given in Section 3.4.3. These graphs of course

show very similar price patterns. That is, we could say that the price cut of the Spider-Man

occurred approximately at the 10th month after its introduction (upper-left panel); or just after

reaching 600 thousand unit sales (upper-right panel); or after 250 VG’s were launched (lower

panel). The price landings in these figures are similar but the interpretation of the different

thresholds is very different. In all cases, these thresholds represent an event after which prices

drop, that is the timing of price landings. Finally, if we look closely at the different price landing

patterns we discover that the speed of landing varies across these panels. Prices seem to drop

much faster when we use cumulative sales than when we use time on the horizontal axis.

In the analysis that follows we show how we select one of these potential price landing

triggers for each of the products in our sample. Specifically, in Section 3.4.3 we present how

we use our mixture specification and the underlying distributions of price landings to select

among potentially correlated price landing triggers. Developing a joint model for prices, sales

and competitive entry is beyond the scope of this chapter and we consider it as an area for

future research. We explain more details on our modeling approach in Section 3.4 and in this

section we continue with a presentation of the market context of our application.

3.3.2 The Video Game Market

The video game market is highly competitive and there are 78 video game publishers who design

games for PS2. On average, they released 29 new video games per month between 1992 and

2005. The main publisher of these VG’s is Sony and it has a market share of 16%. Acclaim and

Electronic Arts follow Sony with market shares of 11% and 6%, respectively. In the upper left

panel of Figure 3.3 we present the distribution of the market shares across all publishers. We

notice that 20 publishers have about 80% of the market while the 58 remaining publishers cover

the next 20% of the market. In the upper right panel of Figure 3.3 we depict the monthly time
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series of the number of newly released video games. There is an upward trend in the number

of VG’s being released. In 1996 less than 11 VG’s were released per month while in 2002 this

volume has increased to 40 monthly releases.

The bottom left panel of Figure 3.3 shows the industry’s sales pattern. Total VG’s sales

are extremely seasonal and they peak every December when they may reach numbers like 14

million copies. This last number is especially high if we compare it against the 24.1 million

units of PS2 consoles sold between 1995 and 2002. Finally, in the lower right panel we show the

average number of video games released from 1995 to 2002 and the average sales per month.

An interesting fact is that most new VG’s are released during November and January but sales

peak in between these two months. From 1995 to 2002, December VG’s unit sales are on average

14 million and in January sales decrease to less than 3 million copies while on average 18 new

VG’s are released on December, 27 in November and 34 in January. In Figure 3.4 we can see

the distribution of the type of video games sold. For example, sports games account for 21.5 %,

Action 14 % while Strategy games account for 4 % of all VG’s in our data.

The consumers in this market concern 40 million US-based consumers who buy video games

each year. Figure 3.5 shows a histogram of the total sales across all VG’s. Preferences clearly

differ across VG’s as we observe substantial heterogeneity in the market potential across the

video games. We follow the tradition of diffusion research by labeling the cumulative sales

reached by a video game as the market potential. From Figure 3.5 we can learn that sales above

one million units for a single game seem to occur only rarely. The average market potential for

the video games in our sample is around 254.75 thousand units. However, approximately for

half of the VG’s in our sample (to be precise: for 504 video games) the market potential is less

than 66 thousand units.

3.4 Price Landing: Modeling

In this section we present our modeling approach. The model and econometric approach we

present allow us measure quantitatively the theoretical features of prices discussed in our lit-

erature review. Specifically, the equation we propose allows us describe the speed and timing
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of price transitions while we use mixture modeling to test the relative importance of different

price landing triggers. Finally, we apply a hierarchical structure to describe the empirical dis-

tributions of the timing and speed of price transitions and at the same time to identify the most

likely price triggers.

Our model consists of two parts. First we present an equation to describe the price landing,

that is the underlying price of product i at time t, which we call P ∗i (t). Next we specify an

equation that relates the pricing landing to the actually observed prices, what we call Pi(t). As

we observe in Figure 3.1, prices follow a general inverse S-shape but they do not follow it very

smoothly and in most cases the prices we observe are noisy. Hence, in the first equation we

capture the price landing and its main two features (timing and speed) and in the second we

capture deviations from it. In Section 3.4.1 we present these two equations. Each video-game is

allowed to have its own price landing speed, timing, initial price and landing price parameters.

In Section 3.4.2 we therefore specify how we model this heterogeneity. In Section 3.4.3 we briefly

discuss the mixture specification that allows us to identify the trigger of the price landing for

each video game. In Section 3.4.4 we discuss heterogeneity in mixture probabilities. In Section

3.4.5 we present details regarding the co-variates in the hierarchical structure of the model.

3.4.1 Price Landing Model

The price landing of game i is P ∗i (t) and we assume it depends on a trigger denoted by Di(t).

That is, prices change according to

dP ∗i (t)

dDi(t)
=

(P ∗i (t) − κi)(ρi − P ∗i (t))

(κi − ρi)νi
, (3.1)

where ρi is the starting price level, κi is the final pricing level, and νi a constant that moderates

the rate of change dP ∗i (t)/dDi(t). For ease of interpretation, Di(t) might be for example time

and then dP ∗i (t)/dDi(t) = dP ∗i (t)/dt. Di(t) can be set to be any trigger variable that we are

interested in, like sales or competition. From (3.1) we see that a smaller νi implies a faster

rate of change. Here, the time index t will in each case be relative to the launch date of the

particular product. In other words for each product t = 0 corresponds to the time of launch. In
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the numerator of (1) we have that the closer P ∗i (t) is to its initial or final levels, the slower prices

would change and that if P ∗i (t) < ρi, νi > 0, P ∗i (t) > κi, ρi > κi for all t then dP ∗i (t)/dDi(t) < 0.

These last conditions describe very closely the price patterns that are common among high-tech

products.

Equation (3.1) may be unusual in the sense that it models dP/dD instead of dD/dP . How-

ever, in our application we will use different trigger variables for D and hence dD/dP would

not have the common interpretation we find in the literature when D are sales; for example, D

could be competitive introductions. The former is the typical solution proposed by analytical

studies while the latter is the typical form assumed in empirical studies. One of the possible

reasons why empirical studies have assumed this latter form is that many of them focus on a

single firm, usually a monopolist that sets prices. In contrast, in our study we observe the
dP ∗i (t)
dDi(t)

for hundredths of products launched by 78 firms that are price setters. Hence, our objective is

to characterize the heterogeneity of
dP ∗i (t)
dDi(t)

across products and to capture two of its features,

the timing (λi) and speed (νi) of significant price cuts. In addition, the advantage of equation

(3.1) is that we can solve it analytically and test it empirically. In fact, it can be shown that

(3.1) is a separable differential equation and that its solution is

P ∗i (t) = κi + (ρi − κi)hi(t), (3.2)

with

hi(t) = 1 −
e

“
Di(t)−λi

νi

”

1 + e

“
Di(t)−λi

νi

” . (3.3)

That is, we propose that the price of product i is composed of two parts, a fixed landing price

(κi) plus a mark-up (ρi − κi) that evolves over time proportionally to hi(t). The function hi(t)

gives the percentage of the markup at time t and it is bounded between 0 and 1. The function

(3.3) for hi(t) follows a logistic shape and λi can be interpreted as the location of the price

landing for product i in terms of the trigger Di(t) while νi is the speed at which the landing

occurs. That is, we observe a price drop after Di(t) reaches its threshold λi and this is why we

call Di(t) the trigger variable.



80 The Timing and Speed of New Product Price Landings

The advantage of a logistic function for the pricing equation is that we can interpret its

parameters in a natural way in our application. We plot equation (3.1) for Di(t) = t and

different values of λi and νi in Figure 3.6. As can be noticed from the graph, the effect of an

increase (decrease) of λi is to shift the complete function to the right (left) and νi has the role of

smoothing the function or steepening the function. That is, νi is a parameter that determines

how fast prices are falling and λi captures the moment (event) when prices are dropping.

In principle, Di(t) can be any variable that increases monotonously. The simplest choice for

Di(t) is simply time (Di(t) = t). It is important to notice that the interpretation of λi and νi

depend on the choice of Di(t). If we set Di(t) to be the cumulative sales of product i then λi

is simply the number of items sold at high prices. We might interpret this limit as a proxy for

the size of the segment that buys at high prices; what some call the hard-core gamer segment.

This is a natural interpretation for λi but we do not claim that this model really identifies who

and how many are the real hard-core gamers. Furthermore, if we define Di(t) as the number

of products introduced after launch of product i then λi becomes a competitive threshold after

which prices are cut. In all cases νi is a scaling constant that marks the transition speed of prices

as we set in equation (3.1) and it of course depends on the scale of Di(t). Notice that Di(t)

might be a combination of different trigger variables. The interpretation of the λi parameters

then becomes troublesome with such specification.

As discussed above, P ∗i (t) aims to capture the underlying price pattern of product i, that

we call price landing. For actual data we observe this pattern plus noise. The observed prices

may therefore differ from P ∗i (t). Furthermore, we only observe the prices at regularly spaced

intervals. We adopt the convention that we observe the prices for product i at t = 0, 1, 2, . . . , Ti.

We denote the observed price at time t by Pi(t). We model the relation between the observed

prices and price landing pattern using a first order auto-regressive specification. In terms of the

observed price this gives

Pi(t) = P ∗i (t) + αi[Pi(t − 1) − P ∗i (t − 1)] + εi(t) t = 1, 2, 3, . . . , Ti, (3.4)
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where εi(t) denotes the source of the random deviation at time t from the underlying price

landing pattern, and αi determines the memory in the deviations from the underlying pattern.

We assume that εi(t) ∼ N(0, σ2
i ) for t = 0, 1, . . . , Ti. If αi = 0 there is no memory, and (3.4)

then states that the deviations are independent over time. If αi > 0, a positive deviation at

time t is likely to induce a positive deviation at time t + 1. For the first observation we set

Pi(0) = P ∗i (0) +

√
1

1 − α2
× εi(0). (3.5)

The variance factor is set such that the variance of the random term equals the unconditional

variance of Pi(t) in (3.4).

3.4.2 Heterogeneity in Main Parameters

In the above discussion of the model we have explicitly allowed for heterogeneity, that is, all

parameters and the price cut trigger Di(t) are product-specific. In this section we discuss how

we model the heterogeneity in all parameters.

In the model we will allow for K different triggers, which are denoted by D1i(t), D2i(t),

. . ., DKi(t). The relationship between the observed price and the price landing in (3.2) remains

unchanged. In addition, we define a different price landing equation P ∗ki(t) for each trigger

variable k, that is,

P ∗ki(t) = κi + (ρi − κi)hki(t)

hki(t) = 1 −
e

“
Dki(t)−λki

νki

”

1 + e

“
Dki(t)−λki

νki

” .

(3.6)

Note that this definition is very similar to that in (3.2) and (3.3). However, the parameters λki

and νki are now trigger (k) and product (i) specific. Note that the price starting and landing

level ρi and κi are the same across all k possible triggers.

The landing level (κi), the initial price level (ρi), the threshold value (λki) and the speed of

adjustment (νki) are defined to vary across products. For each of these parameters we specify a
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second-level model. For the price landing level and the launch prices we specify

κi = Z ′iγ
κ + ωκ

i

ρi = Z ′iγ
ρ + ωρ

i

with (ωκ
i , ωρ

i ) ∼ N(0,Σ), (3.7)

where Zi denotes a vector of dimension M of product specific characteristics, γκ and γρ are

coefficient vectors (dimension M × 1) common across all i products. The error terms ωκ
i and

ωρ
i are assumed to be normal with mean 0 and covariance matrix Σ. The Zi in our model will

include mainly product type, manufacturer variables and seasonal dummies. We define the Zi

variables with more detail in Section 3.4.5. We specify a similar form for the speed and timing

parameters. That is, for each trigger variable k we define

ln λki = Z ′iγ
λ
k + ηλ

ki

ln νki = Z ′iγ
ν
k + ην

ki

with (ηλ
ki, η

ν
ki)
′ ∼ N(0,Ωk). (3.8)

where ηλ
ki and ην

ki are the error terms and they are assumed to be normal with mean 0 and

covariance matrix Ωk. The γλ
k and γν

k are coefficients vectors (dimension M) and Zi are the

same group of group of covariates as in the equations for κi and ρi. The log transformation in

(3.8) is used to ensure that λki and νki are positive. If it is the case that the timing and the

speed of price landings are correlated we will capture this correlation with the matrix Ωk. For

example, it might be that when prices fall at a slower rate (νk
i ) they are cut at an earlier time

(λk
i ).

3.4.3 Choice of Trigger and Mixture Specification

The actual trigger of the price landing for each product is of course unobserved to the researcher.

We denote this (unobserved) variable as Si, that is, we denote Si = k if the trigger variable k

is selected for product i. We complete this part of the model by specifying probabilities for

each trigger, that is, the trigger k is selected with probability πk for k = 1, 2, . . . ,K. In our
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application k = 1 would mean that time is the trigger, k = 2 means that cumulative sales are

the trigger and k = 3 means that cumulative competitive introductions are the main trigger of

equation (3.2). In the four-trigger version of our model k = 4 means that the release schedule of

firms are the main trigger. We provide more details on how we measure each trigger variable in

subsection 3.4.5. The probabilities πk will reflect the overall likelihood of each of the different

triggers. However, note that conditionally on the observed prices, the probability of Si = k is

different across games.

In Figure 3.7 we describe the intuition about how triggers are selected and statistically identi-

fied. For this purpose we need two main elements. The first element consists of the distributions

of the threshold parameters for each of the different triggers. That is, the distribution of λki

and νki across all i and for each k. For example, if we collect the parameter λ1i for all i we

obtain the distribution of λ for the first trigger variable. As we defined in equation (3.8), the

distribution of λki and νki depend on co-variates Zi and hyper-parameters γk and the variance

term associated to them. The second element we need is the match between the price landing

of game i and the distributions of λki and νki for k = 1, . . . ,K.

In Figure 3.7 we plot again the price of the Spider-Man. In addition, we plot a hypothet-

ical distribution of the threshold parameters λki for each of the mixture components k. The

distribution of λ1i in the upper left panel, λ2i in the upper right panel and λ3i in the lower left

panel. Note that λ1i is the time (in months) after which the price drops (if Di(t) is time, that is

when k = 1). In the same way, if Di(t) is cumulative sales then λ2i is the cumulative number of

sales after which the price drops and λ3i is the cumulative number of competitive introductions

after which the price drops when Di(t) amounts to competitive introductions. We notice that

the λ̂1i ≈ 11 months, that λ̂2i ≈ 600 thousand units and that λ̂3i ≈ 250 units. Given the λki

thresholds we can now compare them against the corresponding distributions. In this case we

see that the λ̂2i is the closest to the mode of its corresponding distribution. Hence, the most

likely trigger of the Spider-Man price landing is sales. The least likely trigger is competition

and next is time. Of course, in our model we take into account the distribution of λki and νki

simultaneously when we draw the most likely trigger for each video game in our sample. All
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technical details about trigger selection are given in the Appendix 3.A. Next we describe how

we model heterogeneity in the mixture components.

3.4.4 Heterogeneity in Mixture Probabilities

We suspect that there also might be heterogeneity in the mixture probabilities across games.

For example, the games of some publishers may be more likely to belong to the time mixture.

Hence, as an extension to the model we allow the probabilities of Si = k to depend on a set of

product specific variables. To model this dependence we specify a Multinomial Probit Model

for Si. Hence, we introduce additional latent variables y∗i for i = 1, . . . , N and k = 1, . . . ,K.

These latent variables are related to Si by

Si = k if and only if y∗ki = max(y∗li
l=1...K

). (3.9)

We specify y∗ki as

y∗ki = Z ′iδk + ϑik with ϑi ∼ N(0, I), (3.10)

where ϑi = (ϑ1i,ϑ2i,, ..., ϑKi) and we set δ1 = 0 for identification. In principle the set of variables

used in this specification may differ from that in (6) and (7). The probability that the trigger k

is used for product i now becomes

πki = Pr[y∗ki = max(y∗li)
l=1...K

]. (3.11)

This concludes our model specification. For inference we will rely on MCMC and Bayesian

analysis and treat all product specific parameters as latent variables and we sample these together

with the parameters in (3.6), (3.7) and (3.8). A complete description of the sampling steps in

this Markov Chain can be found in the Appendix 3.A.

3.4.5 Model Specifics for Video Games Pricing Model

We consider two versions of our model. The first version uses three trigger variables and the

second uses four trigger variables. We define Dki(t), for k = 1, 2, 3, 4 where D1i(t) = Ai(t) ,
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D2i(t) = Ci(t) and D3i(t) = Ii(t) and D4i(t) = Ri(t) . Ai(t) is defined as the age of a video game

in months, that is, the time between launch and t. Ci(t) is the cumulative sales of video game i

between release date and t. Ii(t) is defined as the cumulative number of video games introduced

between the launch date of video game i and t. Ri(t) is defined as the release schedule of the

firm that released product i. We know the number of games a firm released at every point in

time. To create Ri(t), we use a time window that sums the introductions from the introduction

of game i up to the next three months after t.

The interpretation of λki and νki varies depending on the trigger k. Hence, λ1i can be

interpreted as the price landing time, λ2i as a competitive threshold, λ3i as the hard-core gamer

segment size and λ4i as a release limit after which we observe a price drop. For each of these

triggers, the parameter νki for k = 1, 2, 3, 4 can be interpreted as a scaling constant that changes

the speed at which the price landing occurs.

In all what follows in this section we focus on the model with three triggers, that is k = 1, 2, 3

and we leave out Ri(t). The reason for this is that Ri(t) is selected with a probability very close

to zero when we include it as the fourth trigger variable. We present the discussion regarding

the fourth trigger in our results in section 3.5.2.

The hierarchical structure of the corresponding threshold λki, speed νki and ρi and κi pa-

rameters for each mixture component will depend on a set of Zi variables that contain game

type, publisher and seasonal effects plus the launch price and the time to the introduction of

a new game consoles as co-variates. Seasonal dummies are defined by the month of launch of

each video game i. The launch price is the observed price of video game i at launch time, that

is at t = 0. We include this variable in order to test if our co-variates remain significant after

including past prices in the equation for the timing and speed of launch. It might be that the

price at launch of a VG might contain information regarding the timing of the price landing and

its speed. In addition, we believe it is reasonable to include the launch price because of the very

likely uni-directional relationship between launch price and timing of price landing. That is, it

is very hard to argue that a firm decides how to price a VG’s based on its decision on when to

permanently cut its price; on the other hand, it might be that firms decide to cut prices based

on the launch price. For example, firms might cut the price of expensive games after longer time
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than the time they wait to cut the price of cheaper VG’s. Moreover, the launch price is a proxy

for quality and hence we test if our covariates remain significant after we control for them.

The time to console launch measures the time (in months) between a video game release

and the launch of the VG’s console that is being released after the video game introduction. For

example, the PlayStation2 with DS controllers was introduced in June 1998 and other versions

of the PS2 console were released in February 1999 and January 2002. This means that a video

game released in January 1998 will face a console introduction after 6 months; a video game

released in January 1997 will face a release in 18 months, and so on. For each video game we

calculate the time between its release and the forthcoming console at the video game release

date. We include this variable to test whether the price landing pattern varies relative to the

release date of video game consoles. Our results do not significantly change if we leave both

time to console launch and launch price out of the Zi covariates.

From the seasonal fixed effects we excluded January, from the game types we excluded

Adventure games. The remaining game type categories are: Action, Arcade, Children, Driving,

Family, Fighting, Role playing, Shooter, Sports, Strategy and Compilations. The remaining

publisher dummies are Electronic Arts, Acclaim, Infogames, Konami, Activision, Midway, Eidos

Interactive, THQ, Capcom, Namco, Agetec, Interplay, Hasbro, 2nd group, 3rd group and 4th

group. The 2nd group is composed by six publishers that each have at least 1% market share,

the 3nd group is composed by 14 publishers that account for the next 10% market share and

the 4th group is composed by 43 publishers that account for less than 1% of the market share

in total. In all our tables we sorted publishers by their market share and in descending order.

The main publishers (EA, Acclaim, etc.) account for 80% of the VG’s in our sample while the

dummies for 2nd, 3rd and 4th publishers group the next 20% of the market share. We set Sony

as the reference publisher.
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3.5 Results

In this section we present our results in three subsections. In the first we present results regarding

the heterogeneity of the parameters. Next we present the results regarding trigger selection and

finally we discuss the model performance.

3.5.1 Heterogeneity of Landing Time and Speed

Our results indicate that there indeed exists heterogeneity in the model parameters. The first

contribution we have to offer is that we find significant firm effects on both the timing and speed

parameters across all mixtures. That is, firms might be deciding not only on when to cut the

price but also on how fast to cut it. To our knowledge, this result is new and we are the first

to show it empirically. In Table 3.2 and in Table 3.3 we can see the different firm effects across

mixtures and model parameters. For example, Acclaim’s landing time (λi) coefficient in the time

mixture is −0.196 and this means that VG’s of Acclaim face a price drop 17.8% earlier relative

to Sony. In addition, we find several of the firm effects on the landing speed (νi) to be significant.

For example, Electronic Arts has a ν that is 91.7 % higher than Sony while Agetec has a slower

landing speed with a ν parameter that is 3.81 times higher than Sony. An interesting feature of

the time mixture parameters is that most of the firm effects log(λ1i) are negative while the firm

effects for the log(ν1i) are positive. That is, it seems that the video game prices of most firms

are cut at earlier dates than Sony but most firms cut prices at slower speed relative to Sony.

In the last four columns of Table 3.3 we report the results for the hierarchical specification of

the initial and landing price levels, (3.7). In both cases we observe very important firm effects.

For example, Konami sets the landing prices 2.535 USD above the landing prices of Sony, 17.34

USD, while the launch prices of Konami are not significantly different than those of Sony that

start at 40.49.

We give a histogram of the posterior mean of the game-specific parameters of the three-

mixture model in Figure 3.8, Figure 3.9 and for the auto-regressive term of equation (3.4) in

Figure 3.10. The dispersion in the timing and speed parameters is reported in Figure 3.9. We

can see that each mixture has quite different thresholds and speeds. For example, the time
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mixture mean is around 7 months. That is, firms cut VG’s prices mainly in the 7th month after

their release. The timing parameters for all mixtures are graphed in the left frames while in the

right frames we present the speed parameter distribution. We note that if the speed parameter

νi is close to zero then prices fall more steeply. From the histograms in the right panels of

Figure 3.9 we see that several products face sharp price cuts. In addition, in Figure 3.8 we see

the distribution of the starting price level ρi for all i in the left frame and the distribution of

the κi in the right frame. These parameters show that the starting level might be as low as 20

USD and as high as 70 USD while the landing level is as low as 5 USD and as high as 35 USD.

In summary we find that firm effects are important to describe the price landing timing and

to describe its speed, the launch and the landing prices of the VG’s in our sample. Seasonality

is more important for the starting and landing levels of prices and less so for the price landing

timing and speed. We also find that for some mixtures the effect of the launch price and the

time to launch a new console are significant for some of the main parameters.

3.5.2 Triggers of Price Landings

Our second contribution is that we find that the triggers that best describe price landings

are competitive introductions and time and not cumulative sales. In Figure 3.11 we report a

histogram of the posterior probability of each of the triggers across all games in the three-mixture

version of our model.

The academic convention is that sales should be an important price driver. In contrast,

we find that the sales indicator is the least likely trigger variable of price landings and it is

useful to explain only a 12% of the video-games in our sample. Note that we do not go against

the academic convention that posits that sales are a price driver. Our results only indicate

that sales are not the main price landing trigger. Furthermore, we find that the competition

indicator, measured by competitive VG’s introductions, is the likely trigger of price landings of

approximately 25.7% of the VGs in our sample. The study of Nair (2007) finds no evidence of

important substitution patterns between video-games and hence he suggests that competition,

at the game-specific level, is not important to explain video-game prices. Our model cannot

provide insights regarding the individual level competition between different video-games but
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we find that competition, measured as the cummulative sum of VG’s introductions, is a likely

trigger of price landings. Finally, we find that the most likely trigger is time itself or in other

words, the most probable trigger is simply the age of a video-game. The time mixture has a

posterior mean probability of 62.21%.

In the fourth-mixture version of our model we tested a fourth trigger without much success.

The additional mixture included the release schedule of firms as trigger. The idea was to test

whether firms release schedule could have a large probability relative to the other three trigger

variables. Firms usually have information on the dates that their new VG’s are to be released

and therefore the prices of their previously released VG’s could depend on the dates of these new

introductions. Our data include the number of games each firm released at every point in time

and therefore we also know the number of games each firm will release after each point in time.

Hence, we sum the VG’s introductions before time t up to the introductions in the next three

months after t and this sum is the value of Di(t). Note that Di(t) is then the release schedule of

the manufacturer of the video game i at time t. We decided to use a three-months time window

because most online sources of VG’s releases cover, as a maximum, the upcoming three months.

Of course, in our database we just know the release schedule perfectly. However, our results

indicate that the probability of this latter trigger mixture is on average very close zero. Our

conclusion is that price landings are better described by the entire market introductions rather

than the release schedule of any single firm. This makes some sense given that the 78 VG’s firms

in our sample face on average 29 releases per month. Consequently, firms might be more likely

to monitor all market introductions rather than their own product introductions.

3.5.3 Model with Hierarchical Specification in the Mixture Prob-

abilities

We estimate the same specification of our model but now we add a hierarchical specification in

the mixture probabilities. In this section we discuss the estimates of this hierarchical specification

and in the Appendix 3.A we provide its technical details.
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The estimates of the parameters in the hierarchical structure of the mixture probabilities

are reported in Table 3.4. In contrast with the heterogeneity in the main parameters we do

not find substantial heterogeneity in the mixture probabilities. For example, we find only three

significant publisher effects (Konami, Activision, Midway) in the latent utility of sales and two

significant publisher effects (Capcom and Interplay) in the latent utility of the time mixture.

That is, we know that there is heterogeneity in the timing and speed of price landings but we

do not know why a trigger is more likely than the others. We consider this an area for further

research.

3.5.4 Model Performance

We compare the out-of-sample performance of our model against two models: A naive model

for prices, that is an AR(1), and against an alternative version of our model. In this alternative

model we use the same specification and parameters and the same number of mixtures as our

model but we replace all triggers with time. That is, Di(t) = time for all k mixture components.

We randomly selected 50 video-games and used their first six observations to forecast their

complete series. That is, only the first six observations of these 50 games were used for parameter

estimation while we continue to use all observations for all other games. These comparisons are

reported in Table 3.5 and in Table 3.6.

Our model preforms extremely well when compared against the AR(1) model and reasonably

well when compared against the restricted model. In Table 3.5 we see that our model forecasts

prices better than a naive AR(1) model for 40 out of the 50 randomly chosen games. We report

the root mean square forecast error and the log of the predictive density for all 50 VG’s. More

details on how we compute the predictive density are given in the Appendix 3.A. Moreover, our

model performs better than the model with three time mixtures for 19 out of the same 50 games

and in 18 other cases it performs equally well as the alternative specification. In total 37 out

of 50 games our specification performs at least as well as the alternative or better. This means

that there is information contained in past sales and the competition mixtures that increase our

model fit.
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The AR(1) model does not capture the timing of significant price cuts and the speed at

which the price cut occurs while our model captures these significant price cuts. Nonetheless,

the assumption that prices follow an AR(1) pattern is common in previous marketing literature

and our evidence suggests that this model performs poorly. The main reason is that new

products face significant price cuts during their life-cycle and hence the AR(1) is not a suitable

specification for such price patterns. At the moment and to our knowledge, we are the first to

propose an empirical model that captures these price dynamics.

The results we presented in the previous sections are robust to different model specifications.

For example, we estimated the model without the hierarchical specifications of all its parameters

and the price landing timing and speed parameters stay about the same. Furthermore, we

estimated the model without the auto-regressive structure in (3.4) and (3.5), and again the main

parameters are estimated similarly. A reason why our results stay the same is that the pricing

equation in (3.2) can accommodate many different pricing patterns with only four parameters

and that we let these parameters to be product-specific. These four parameters are the initial

and landing price levels, ρi and κi, and the timing and speed of price landings, the λi and νi.

3.6 Conclusions

Our aim with this chapter was to model the dynamics of new product price landing patterns.

Price landings usually follow the inverse of the well known S-shape of sales. Nonetheless, we

found no empirical studies dealing with these regularities of new product prices.

In this chapter we were concerned with products that face one significant price cut during

their life cycle. Several online price trackers report similar dynamics to a wider range of products

like mobile phones, cameras, storage media, books, etc. Our data was collected by NPD Group

but several websites like www.pricescan.com or www.streetprices.com let their users plot price

trends and indeed it is relatively easy to find many other products facing a single and significant

price drop during their lifetime. We believe that knowing when a price is cut or when to

significantly cut the price of a product permanently is an exciting area of further research and

one with wide managerial implications across different industries.
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In this chapter we provided evidence that there is heterogeneity both in the timing and speed

of price landings. We found that most of this heterogeneity is driven by firm effects. Our model

captures this heterogeneity and it is flexible and useful to forecast and describe the price landing

patterns in our data. Finally, we found that it is the age of a video game that is triggering the

price landings. The next most likely trigger is competition and the least likely is cumulative

sales. This latter finding goes against the academic convention that sales are the main driver

of prices. At least for our application we found convincing evidence that sales are not the most

likely trigger of significant price cuts.
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3.7 Figures and Tables

Figure 3.1: Price Landing Pattern for 50 Randomly Selected Games
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Figure 3.2: Typical Price Landing Pattern
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Figure 3.3: The Video Games Market
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Figure 3.4: What do publishers sell?
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Figure 3.5: Total Sales Distribution
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Figure 3.6: Main Pricing Function at Different Parameter Values
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Figure 3.8: Histogram of the Posterior Mean of Starting (ρi) and Landing Price (κi)
Parameters
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Figure 3.9: Histogram of the Posterior Mean of the Threshold (λk
i ) and Speed (νk

i ) Pa-
rameters
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Figure 3.10: Histogram of the Posterior Mean of the αi Parameters
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Figure 3.11: Histogram of the Posterior Mean of Price Triggers P (Si = k)
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Latent
Utility
of Sales
Mixture

Latent
Utility
of Time
Mixture

Intercept 3.727*** (0.579) 0.549 (0.445)
Game Type

Action 0.699* (0.360) 0.260 (0.269)
Arcade -0.032 (0.543) 0.404 (0.451)
Children 0.481 (0.479) 0.005 (0.456)
Driving 0.708* (0.402) 0.288 (0.278)
Family -0.100 (0.451) -0.577* (0.333)
Fighting 1.153*** (0.427) 0.357 (0.372)
Role playing -0.304 (0.552) -0.146 (0.355)
Shooter 0.809 (0.567) 0.716** (0.297)
Sports -0.010 (0.372) 0.057 (0.252)
Strategy 0.342 (0.613) -0.055 (0.362)
Compilations 0.930* (0.530) -0.258 (0.438)

Publisher

Electronic Arts -0.689 (0.514) -0.137 (0.239)
Acclaim -0.723 (0.583) -0.365 (0.284)
Infogames 0.723 (0.456) -0.332 (0.360)
Konami 1.110** (0.469) 0.068 (0.343)
Activision 1.060** (0.450) 0.356 (0.325)
Midway 0.884* (0.454) -0.119 (0.384)
Eidos Interactive 0.002 (0.668) 0.265 (0.365)
THQ -0.287 (0.531) -0.017 (0.459)
Capcom -0.355 (0.451) -0.821** (0.357)
Namco -0.043 (0.649) -0.503 (0.426)
Agetec 0.592 (0.558) 0.592 (0.512)
Interplay 0.648 (0.626) 0.800* (0.430)
Hasbro -0.364 (0.512) 0.303 (0.380)
2nd Publishers 0.203 (0.427) 0.387 (0.305)
3rd Publishers 0.324 (0.402) -0.025 (0.272)
4th Publishers 0.510 (0.374) 0.164 (0.301)

Season

Feb 0.159 (0.467) -0.026 (0.361)
Mar 0.002 (0.454) 0.441 (0.297)
Apr 0.448 (0.575) 0.296 (0.431)
May -0.309 (0.499) -0.361 (0.344)
Jun 0.067 (0.533) 0.709** (0.381)
Jul 0.149 (0.547) 0.007 (0.417)
Aug -0.197 (0.479) 0.355 (0.367)
Sep 0.008 (0.373) -0.214 (0.259)
Oct 0.156 (0.410) 0.285 (0.293)
Nov 0.070 (0.357) 0.069 (0.243)
Dec 0.666 (0.418) 0.329 (0.307)

Launch Info

Launch Price -0.162*** (0.013) 0.004 (0.007)
Time to Launch 0.010 (0.015) -0.012 (0.008)

Notes: Posterior standard deviation in parentheses. *,**,*** indicate zero
is not contained in the 90, 95, and 99% highest posterior density region.

Table 3.4: Results of Hierarchical Structure for Mixture Probabilities
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Game Title
Forecasted
Months

St. Dev.
Price

Forecast
RMSE

Forecast
RMSE
AR(1)

Log of
Pre-
dicted
Density

Log Like-
lihood of
predicted
AR (1)

NHL 2001 10 0.18 0.17 0.15 -0.89* -3.47
JJ’S VR FOOTBALL 98 8 2.39 1.76* 5.19 -5.06* -6.79
HIGH HEAT BSBALL 2002 18 7.14 2.18* 11.92 -10.25* -142.23
MADDEN NFL 98 12 4.56 2.55* 5.03 -11.05* -27.81
MR DOMINO 18 8.33 3.10* 12.34 -17.22* -188.45
THE CROW CITY ANGELS 18 14.53 3.24* 26.27 -12.15* -369.19
PITBALL 18 13.49 3.72* 27.92 -12.50* -264.59
FROGGER 2 18 10.48 3.86* 22.53 -12.30* -2421.81
BIG OL’ BASS 2 18 14.45 3.92* 22.63 -15.22* -485.79
MK & ASHLEY WINNER’S 18 11.88 4.11* 17.46 -11.90* -493.25
CIVILIZATION 2 18 9.73 4.25* 12.52 -8.94* -1009.23
PONG 18 11.43 4.37* 20.81 -14.54* -646.32
ROGUE TRIP 14 1.80 4.38 1.90 -16.24 -0.58
RESIDENT EVIL 3:NEMES 18 10.16 4.70* 10.34 -15.91* -71.64
ETERNAL EYES 18 8.31 4.92* 9.45 -24.18* -82.53
TEKKEN 2 18 7.39 5.13* 8.54 -15.13* -85.26
TEST DRIVE 4 18 11.50 5.39* 28.29 -12.53* -511.42
F1 WRLD GRAND PRIX 00 18 7.11 5.63* 7.52 -29.76* -50.37
FADE TO BLACK 18 9.09 5.88* 8.58 -21.99* -38.53
SHEEP RAIDER 18 9.35 6.03* 11.20 -81.57* -112.25
G POLICE2:WPN JUSTICE 9 10.79 6.04* 24.87 -8.60* -386.84
RISK 10 9.50 6.55* 12.39 -13.02* -267.31
SYNDICATE WARS 18 8.93 6.66* 12.83 -16.71* -55.53
JUGGERNAUT 18 9.33 6.71* 16.33 -51.62* -60.97
KISS PINBALL 10 8.47 6.73* 13.79 -11.21* -128.41
BACKYARD SOCCER 18 16.59 6.74* 23.35 -24.94* -652.10
OLYMPIC SUMMER GAMES 18 8.57 7.02* 12.52 -16.79* -38.77
NECTARIS:MILITARY MAD 18 13.34 7.06* 19.63 -16.75* -292.34
T.CLANCYS ROGUE SPEAR 18 5.38 7.88 4.54 -21.11 -16.62
TOCA 2 CAR CHALLENGE 18 13.75 7.97* 13.93 -23.36* -177.86
NFL XTREME 2 18 14.35 8.27* 24.53 -20.69* -467.21
ARENA FOOTBALL 17 3.40 8.35 4.08 -14.76* -23.53
FINAL FANTASY IX 13 6.23 8.43* 12.81 -10.78* -32.38
SHEEP 18 3.47 8.83 3.54 -22.08 -4.11
SIMPSON’S WRESTLING 12 8.66 8.87* 12.12 -16.69* -31.70
POCKET FIGHTER 18 10.51 9.02* 17.25 -17.09* -169.35
POWERBOAT RACING 18 10.50 9.19* 24.08 -14.13* -466.81
GRAND SLAM 97 18 11.09 9.53* 11.69 -24.66* -121.27
RAMPAGE WORLD TOUR 6 2.88 9.67 4.58 -1245.7 -6.05
EAGLE ONE: HARRIER 13 11.43 10.5* 13.02 -50.33* -847.83
STRIKER PRO 2000 9 10.66 10.6* 20.87 -10.52* -139.91
NEWMAN/HAAS RACING 16 3.88 11.31 4.63 -38.44 -4.55
DISCWRLD 2:MRTLY BYTE 18 6.31 11.42 5.95 -87.15* -41.79
CROSSROAD CRISIS 18 9.77 12.4* 15.33 -93.93* -458.48
SLAM N JAM 96 18 10.23 13.3* 19.53 -18.82* -280.41
NBA LIVE 2002 18 9.23 14.4* 21.76 -80.22* -466.39
ARMD COR 2 PRJ PNTSMA 15 8.71 15.0* 16.21 -11.77* -263.19
CRASH TEAM RACING 18 15.92 15.8* 17.91 -342.07 -117.05
DISNEY’S DINOSAUR 18 5.00 16.35 5.68 -27.82 -15.57
NFL BLITZ 2000 18 5.63 17.57 6.41 -30.46* -130.64

Notes: * Means the RMSE or the predictive likelihood is smaller in our model than in the AR(1)

Table 3.5: Forecasting Performance
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Log of Predictive Log of Predicted
Forecast St.Dev. Density (LPD) Density (LDP)

Game Title Horizon Pricea Original Model Alt. Model
NHL 2001 10 0.18 -0.89 * -0.90
JJ’S VR FOOTBALL 98 8 2.39 -5.06 * -4.89
HIGH HEAT BSBALL 2002 18 7.14 -10.25 * -9.92
MADDEN NFL 98 12 4.56 -11.05 * -11.12
MR DOMINO 18 8.33 -17.22 -15.86
THE CROW CITY ANGELS 18 14.53 -12.15 * -11.29
PITBALL 18 13.49 -12.50 * -12.06
FROGGER 2 18 10.48 -12.30 * -12.51
BIG OL’ BASS 2 18 14.45 -15.22 ** -16.29
MK & ASHLEY WINNER’S 18 11.88 -11.90 * -12.11
CIVILIZATION 2 18 9.73 -8.94 ** -11.36
PONG 18 11.43 -14.54 -13.10
ROGUE TRIP 14 1.80 -16.24 ** -30.14
RESIDENT EVIL 3:NEMES 18 10.16 -15.91 ** -17.48
ETERNAL EYES 18 8.31 -24.18 ** -25.35
TEKKEN 2 18 7.39 -15.13 ** -16.17
TEST DRIVE 4 18 11.50 -12.53 * -12.40
F1 WRLD GRAND PRIX 00 18 7.11 -29.76 -26.22
FADE TO BLACK 18 9.09 -21.99 ** -23.64
SHEEP RAIDER 18 9.35 -81.57 ** -121.60
G POLICE2:WPN JUSTICE 9 10.79 -8.60 * -8.56
RISK 10 9.50 -13.02 ** -33.94
SYNDICATE WARS 18 8.93 -16.71 -13.63
JUGGERNAUT 18 9.33 -51.62 ** -98.83
KISS PINBALL 10 8.47 -11.21 * -11.05
BACKYARD SOCCER 18 16.59 -24.94 -21.56
OLYMPIC SUMMER GAMES 18 8.57 -16.79 -14.71
NECTARIS:MILITARY MAD 18 13.34 -16.75 * -16.17
T.CLANCYS ROGUE SPEAR 18 5.38 -21.11 ** -22.90
TOCA 2 CAR CHALLENGE 18 13.75 -23.36 ** -26.08
NFL XTREME 2 18 14.35 -20.69 -17.40
ARENA FOOTBALL 17 3.40 -14.76 * -14.56
FINAL FANTASY IX 13 6.23 -10.78 -9.54
SHEEP 18 3.47 -22.08 ** -23.30
SIMPSON’S WRESTLING 12 8.66 -16.69 * -16.84
POCKET FIGHTER 18 10.51 -17.09 * -16.58
POWERBOAT RACING 18 10.50 -14.13 * -14.76
GRAND SLAM 97 18 11.09 -24.66 * -23.81
RAMPAGE WORLD TOUR 6 2.88 -1245.7 ** -2072.64
EAGLE ONE: HARRIER 13 11.43 -50.32 ** -77.20
STRIKER PRO 2000 9 10.66 -10.52 * -11.26
NEWMAN/HAAS RACING 16 3.88 -38.44 ** -54.93
DISCWRLD 2:MRTLY BYTE 18 6.31 -87.15 -38.19
CROSSROAD CRISIS 18 9.77 -93.93 -34.08
SLAM N JAM 96 18 10.23 -18.82 -15.18
NBA LIVE 2002 18 9.23 -80.22 ** -82.06
ARMD COR 2 PRJ PNTSMA 15 8.71 -11.77 ** -14.41
CRASH TEAM RACING 18 15.92 -342.07 ** -397.18
DISNEY’S DINOSAUR 18 5.00 -27.82 -18.46
NFL BLITZ 2000 18 5.63 -30.46 ** -34.48

Notes:** means that the Original Model LPD is greater than the Alternative LPD by more than
1 unit, * means that the difference between the original and alternative are less than 1 unit.
Alt. stand for Alternative and St.Dev for Standard Deviation.

Table 3.6: Comparison with Alternative Model



110 The Timing and Speed of New Product Price Landings

3.A Estimation Methodology

To draw inference on the parameters we will rely on a Bayesian analysis and more specifically

the Gibbs sampler. Whenever possible we use Gibbs sampling with block updating and when

there are no closed form sampling distributions we rely on the Metropolis algorithm. We run a

Markov Chain for 200 thousand iterations of which the first 100 thousand are discarded for burn-

in and we keep each tenth remaining draws. This Markov Chain has the posterior distribution

of the parameters and the latent trigger variable indicators Si i = 1, . . . , N as the stationary

distribution. We programmed all our routines in Ox (see Doornik (2007)) and our graphs in R

(see R Development Core Team (2005)).

In all what follows we collect the first level model parameters in the blocks: τi = (ρi,κi,αi,

σi,λk,νk), ρ = (ρ1, ..., ρN ), κ = (κ1, ..., κN ), α = (α1, ..., αN ), σ2 = (σ2
1 , ..., σ

2
N ), λk = (ln(λki), .

..,ln(λkN )) and finally νk = (ln(νik), ..., ln(νNk)).

We further collect all hyper-parameters in the following blocks: θ = (γP , γL,Π,Ω), where

Ω = (Ω1, ...,ΩK), Π = (π1, ..., πK). We have that γP = (γκ, γρ) where γκ = (γκ
1 , ..., γκ

M ) and

γρ = (γρ
1 , ..., γρ

M ). Finally, γL = (γL
1 , . . . , γL

K) where γL
k = (γλ

k , γν
k ) and γλ

k = (γλ
k1, ..., γ

λ
kM )

and γν
k = (γν

k1, ..., γ
ν
kM ). M refers to the number of variables in Z, K refers to the number of

mixtures (same as number of triggers), and N refers to the total number of products. Next

Z=(Z1, ..., ZM ) and φ(x;μ, σ2) denotes the normal pdf distribution with mean μ and variance

σ2 evaluated at x. Finally, p() denotes a general density function and IW (Ω̂, N) denotes the

inverted Whishart distribution with scale matrix Ω̂ and N degrees of freedom.

Note that in this context we treat the product specific parameters τi as latent variables.

We consider the log of λki and νki k = 1, ...K, i = 1, . . . , N as focal parameters strictly for

convenience and to impose that λki and νki are positive. This has no impact on the results. In

this Markov Chain we will sample the latent variables alongside the parameters.

The complete data likelihood for product i is

p(Pi, Si, τi|θ) = πSi × p(Pi|Si, τi, θ) × p(τi|θ), (3.12)
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where Pi = (Pi(0), ..., Pi(T )) and p(Pi|Si, τi, θ) is equal to

p(Pi(0)|Si, τi, θ) ×

t=T∏
t=1

p(Pi(t)|Pi(t − 1), Si, τi, θ). (3.13)

Furthermore, we have that the first observation likelihood is

p(Pi(0)|Si, τi, θ) = φ

(
Pi(0);P

∗
i (0),

1

1 − α2
σ2

i

)
, (3.14)

and all other observations have as likelihood

p(Pi(t)|Pi(t − 1), Si, τi, θ) = φ
(
Pi(t);P

∗
i (t) + αi[Pi(t − 1) − P ∗i (t − 1)], σ2

i

)
. (3.15)

Next, we have

p(τi|θ) = p(ρi, κi|θ)

K∏
k=1

p(λki, νki|θ), (3.16)

where

p ((ρi, κi)|θ) = φ
(
(ρi, κi)

′; γP ′Zi,Σ
)
, (3.17)

and

p ((λki, νki)|θ) = φ
(
(λki, νki)

′; γL′
k Zi,Ωk

)
. (3.18)

We impose flat priors on all almost all parameters, for αi we set a uniform prior on the

interval (-1,1) to impose stationarity. This completes the main model specification and next we

discuss how we sample from the posterior distribution for all parameters.

Sampling distributions

If πk is fixed across products, the density of Si conditional on Pi, τi, and θ equals a Multinomial

distribution with probabilities proportional to

πSi × p(Pi|Si, τi, θ). (3.19)
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The full conditional distribution for αi is a truncated normal on the interval [-1,1], where the

mean and variance are given by applying the Ordinary Least Squares formulas to a regression

of Pi(t)-P
∗
i (t) on its lag with known variance of the disturbance term σ2

i . A draw for σ2
i can be

obtained using the Metropolis-Hastings sampler and taking as candidate

σ2
icand

=

T∑
t=1

(ε̂i(t))
2

w
where w ∼ χ2

(T−1), (3.20)

where ε̂i(t) is the residual of equation (3.4) given all other parameters. We evaluate this candi-

date and the current draw of σ2
i in the conditional distribution of the first observation given in

equation (3.14). Hence we take the candidate as the next drawn value of σ2
i with probability

min

⎛⎝1,
φ

(
Pi(0);P

∗
i (0), 1

1−α2 σ2
icand

)
φ

(
Pi(0);P ∗i (0), 1

1−α2 σ2
icurrent

)
⎞⎠ . (3.21)

To derive the full conditional distribution of κi and ρi we first rewrite equations (3.4) and

(3.5) as √
1 − α2

i Pi(0) = [
√

1 − α2
i hSi(0)] × κi + [

√
1 − α2

i hSi(0)] × ρi + εi(0), (3.22)

and

Pi(t) − αiPi(t − 1) = [1 − hSi(t) − αi(1 − hSi(t))] × κi + [hSi(t) − αihSi(t)] × ρi + εi(t). (3.23)

These equations should be combined with the specification of the hierarchical layer in (3.7) as

follows: ⎛⎜⎜⎜⎜⎝
Yi

γρ′Zi

γκ′Zi

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
XA

i XB
i

1 0

0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎝ ρi

κi

⎞⎟⎠ +

⎛⎜⎜⎜⎜⎝
εi

ωρ

ωκ

⎞⎟⎟⎟⎟⎠ , (3.24)
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where we define XA
i and XB

i as

XA
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
1 − α2

i (1 − hSi(0))

1 − hSi(1) − αi(1 − hSi(1))

...

1 − hSi(Ti) − αi(1 − hSi(Ti))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ and XB
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
1 − α2

i hSi(0)

hSi(1) − αihSi(1)

...

hSi(Ti) − αihSi(Ti)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.25)

and Yi as

Yi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
1 − α2

i Pi(0)

Pi(1) − Pi(0)

...

Pi(T ) − Pi(T − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.26)

Finally, we can draw κi and ρi from

N
(
(W ′

iΓ
−1
i Wi)

−1W ′
iΓ
−1
i Yi, (W

′
iΓ
−1Wi)

−1
)
, (3.27)

where

Wi =

⎛⎜⎜⎜⎜⎝
XA

i XB
i

1 0

0 1

⎞⎟⎟⎟⎟⎠ and E

⎛⎜⎜⎜⎜⎝
(

εi ωρ ωκ

)⎛⎜⎜⎜⎜⎝
εi

ωρ

ωκ

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ =

⎛⎜⎝ σ2
i I 0

0 Σ

⎞⎟⎠ = Γi. (3.28)

Due to the non-linearity in the price patterns, the conditional distributions of λk and νk

are not of a known form. We will sample each parameter one at a time using a random walk

Metropolis Hastings sampler. Given the current draw of one of these parameters we draw a

candidate by adding a draw from a normal with mean zero and a fixed variance. This candidate

draw for λk and νk is accepted with probability

min

(
1,

p(λcand
ki |νki)

p(λcurrent
ki |νki)

)
and min

(
1,

p(νcand
ki |λki)

p(νcurrent
ki |λki)

)
, (3.29)
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respectively. The posterior of the i′th element of λk is

p(λki|νki) = p(Pi(0)|Si, τi, θ)
t=T∏
t=1

p(Pi(t)|Pi(t − 1)Si, τi, θ)φ
(
λki;λki|νki,Ω

λki|νki

k

)
, (3.30)

and the posterior of the i′th element of νk is

p(νki|λki) = p(Pi(0)|Si, τi, θ)

t=T∏
t=1

p(Pi(t)|Pi(t − 1)Si, τi, θ)φ
(
νki; νki|λki,Ω

νki|λki

k

)
. (3.31)

Here x|y refers to the conditional mean of x given y and σx|y refers to the conditional variance

of x given y. These are conditional posterior distributions because we allow λk and νk to be

correlated to each other. In other words, the timing of the price cut and the speed of the price

cut might be correlated and these correlation is different across mixtures. The variance of the

proposal density is chosen such that we obtain an acceptance rate close to approximately 25%,

that is the optimal rate for high-dimensional models (see Robert and Casella (2004, page 316),

Carlin and Louis (2000, page 154) or Gamerman and Lopes (2006, page 196)).

The conditional distribution of π1,. . . , πK is a Dirichlet distribution with parameters 1 +∑
i 1[Si = 1],. . . , 1 +

∑
i 1[Si = K]; that is, we draw each πk proportional to the number of

products assigned to mixture k, that is
∑

1 1[Si = k], and naturally restrict
∑

kπk=1.

Given the latent variables in τi sampling the hyper-parameters of the hierarchical part for

the marginal costs, launch price, and price landing characteristics is relatively straightforward.

We draw γP from a normal

γP ∼ N

⎛⎜⎝ (Z′Z)−1Z ′κ

(Z ′Z)−1Z′ρ
,Σ ⊗ (Z′Z)−1

⎞⎟⎠ , (3.32)

and γL
k |Ωk from

N

⎛⎜⎝ 1
1+g (Z′Z)−1Z′λki

1
1+g (Z′Z)−1Z′νki

,
1

1 + g
Ωk ⊗ (Z′Z)−1

⎞⎟⎠ . (3.33)

The factor g comes from the g-prior which states that the variance of (λki, νki) is proportional

to the variance of the data. See Fernandez et al. (2001) for a detailed discussion.
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Finally, we draw Σ ∼ IW
(
Σ̂, N

)
where

Σ̂ =

⎛⎜⎝ ω̂κ

ω̂ρ

⎞⎟⎠ (ω̂κ,ω̂ρ) (3.34)

and ω̂κ
i = κi −Z ′iγ

κ, ω̂ρ
i = ρi −Z ′iγ

ρ and ω̂κ = (ω̂κ
1 . . . ω̂κ

N) and ω̂ρ = (ω̂ρ
1 . . . ω̂ρ

N ). Next, we draw

Ωk ∼ IW
(
Ω̂k + G + I2, 7 + N

)
where

Ω̂k =

⎛⎜⎝ η̂λ
k

η̂ν
k

⎞⎟⎠ (η̂λ
k , η̂ν

k), (3.35)

and η̂λ
k = log(λk) − Z ′γλ

k and η̂ν
k = log(νk) − Z ′γν

k . finally Gk is defined as

Ĝk =

⎛⎜⎝ γ̂λ
k

γ̂ν
k

⎞⎟⎠ g(Z′Z)−1(γ̂λ
k , γ̂ν

k ) (3.36)

and I2 is an identity matrix size 2 × 2.

Hierarchical Structure in the Mixture Probabilities

The previous steps give the methodology to analyze our model without a hierarchical specifi-

cation on the mixture probabilities πk. As discussed in this chapter, the model can be easily

expanded to include a hierarchical specification on the mixture probabilities. As before, we will

assume that πki differs across products but here we test if a multinomial probit specification

that depends on Z is useful to explain their heterogeneity. For that we need to define first K

latent variables for each product i

y∗ki ∼ N(Z ′iδk, 1) (3.37)

where δ1 = 0 for identification. Product i belongs to mixture m if y∗mi is the largest of all y∗ki

k = 1, . . . ,K. Given (3.37) , we can write the conditional distribution of y∗mi given the other
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latent utilities (-m), denoted as y∗−m,i, as follows:

p(y∗mi|y
∗
−m,i, θ, τi, Si) = p(y∗mi > max(y∗−m,i)) × p(Pi, Si = m, τi|θ)

+p(y∗mi < max(y∗−m,i)) × p(Pi, Si = m∗, τi|θ) (3.38)

where m∗ = argmax
m �=k

(y∗ki ). Based on (3.38) we can apply the inverse cdf technique to draw y∗mi

from its full conditional distribution. Note that in this specification the indicator variable Ski

is determined based on y∗mi and the δm parameters can be obtained from a normal with mean

(Z ′iZi)
−1Z ′iδk and variance (Z ′iZi)

−1 for m = 2, . . . ,K.

Posterior Predictive Density

We used two measures to compare predictive performance in Table 3.5: the root mean squared

error and the log of the posterior predictive density for observations after t = 7. The predictive

density log(p(Pi(7),...,Pi(T )|Pi(1),...,Pi(6))) is defined as:

log

∫ ∫ ∫
p(Pi(7),...,Pi(T )|Pi(1),...,Pi(6), Si, τi, θ) × p(Si, τi, θ|Pi(1),...,Pi(6))dSidτidθ (3.39)

That is, we compute the log of the density for the forecast sample given the six observations

included in the model and the posterior of all model parameters given these latter observations.

The posterior predictive density can easily be obtained from the MCMC output by taking the

log of the average out-of-sample likelihood over all draws.



Chapter 4

Random Coefficient Logit Models for

Large Datasets

We present an approach for analyzing market shares and products´ price elasticities based

on large datasets containing aggregate sales data for many products, several markets and for

relatively long time periods. We consider the recently proposed Bayesian approach of Jiang et

al [Jiang, Renna, Machanda, Puneet and Peter Rossi, 2009. Journal of Econometrics 149 (2)

136-148] and we extend their method in four directions. First, we reduce the dimensionality of

the covariance matrix of the random effects by using a factor structure. The dimension reduction

can be substantial depending on the number of common factors and the number of products.

Second, we parametrize the covariance matrix in terms of correlations and standard deviations,

like Barnard et al. [Barnard, John, McCulloch, Robert and Xiao-Li Meng, 2000. Statistica

Sinica 10 1281-1311] and we present a Metropolis sampling scheme based on this specification.

Third, we allow for long term trends in preferences using time-varying common factors. Inference

on these factors is obtained using a simulation smoother for state space time series. Finally, we

consider an attractive combination of priors applied to each market and globally to all markets

to speed up computation time. The main advantage of this prior specification is that it let us

estimate the random coefficients based on all data available. We study both simulated data and

a real dataset containing several markets each consisting of 30 to 60 products and our method

proves to be promising with immediate practical applicability.
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4.1 Introduction

A growing number of scholars is developing estimation methods for random coefficient logit

models based on aggregate sales data. Currently, the estimation methods are based on the

generalized method of moments [GMM], as in Nevo (2001) and Berry et al. (1995) (hereafter

BLP), or based on likelihood or Bayesian approaches, as in Jiang et al. (2009) (hereafter

Bayesian BLP or BBLP), Yang et al. (2003), and Park and Gupta (2009). The choice of the

estimation method depends on the modeling assumptions regarding aggregate demand shocks,

consumer heterogeneity, stability of preferences, price endogeneity and on the size and type of

data available.

Recent Bayesian and maximum likelihood-based approaches have been successfully applied

to data containing relatively long time series of weekly data (ranging from one to six years)

concerning a small number of products (usually less than 6 products) sold in a single market (

Jiang et al., 2009; Musalem et al., 2006; Yang et al., 2003). The GMM approach has been applied

to similar sized data, like in Goeree (2008). Recently, Berry and Pakes (2007) use GMM and

apply an extension of the BLP model to data consisting of both small (between 2 and 10) and

large (100) number of products. The extension of Berry and Pakes (2007) is mainly focused on

relaxing the assumption of non-zero demand shocks specifically when the market is saturated

with many products. Their specification of null demand shocks may decrease the precision of

the BLP contraction mapping and they present new complementary routines that overcome this

issue.

One of the most challenging aspects for all methods is the estimation of the underlying

distribution of the random effects that describe individual level consumer heterogeneity. As only

aggregate data is available, the heterogeneity needs to be identified based on switching patterns.

The simulation results of Jiang et al. (2009) suggest that their Bayesian method performs well

and makes a more efficient use of the data relative to a GMM estimator. Nonetheless, today

still little is known about the scalability (that is the performance and adaptability) of current

methodologies to settings with many products and markets.

In this chapter we investigate the scalability of the Bayesian approach proposed by Jiang

et al. (2009) and we extend their method in four directions. First, we propose a factor structure
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for the covariance matrix of the random effects. We will assume that the covariance matrix

between J products can be modeled by a group of K factors, where the factor loadings are based

on observable characteristics. Such a structure helps to keep the dimension of the heterogeneity

structure under control. That is, we make the same distributional assumptions as in Jiang et al.

(2009) regarding the heterogeneity and aggregate demand shocks but we strongly reduce the

dimension of the covariance matrix. This reduction will be especially important in applications

with a large number of products.

Second, we specify the covariance matrix following Barnard et al. (2000) as a function of

correlations and standard deviations and we propose a Metropolis sampling scheme based on

this parametrization. This parametrization has two main advantages. A technical advantage is

that splitting the covariance in variances and correlations allows for a more efficient sampling

scheme. A practical advantage is that the correlation structure of the heterogeneity itself may

be most informative for managers.

The third extension in our approach is that we allow for time variation in preferences.

Preference fluctuations are likely to occur over long periods of time and over seasons. In the

currently considered Random Coefficient Logit Models such developments are often ignored.

One exception we are aware of is Chintagunta et al. (2005), who show that allowing for time

variation in preferences is beneficial to reduce both the uncertainty regarding brand preferences

and the uncertainty regarding the sensitivity of products’ shares to marketing efforts.

Finally, we consider an attractive combination of priors applied to each market and globally

to all markets. This prior specification let us analyze all data simultaneously and it facilitates

the estimation of the underlying distribution of the random coefficients based in all the data.

The Bayesian approach we use in this chapter allows for an efficient implementation of the

four extensions mentioned above. One main advantage of the Bayesian approach over simulated

maximum likelihood and GMM is that inference over any function of the parameters is straight-

forward because we obtain the posterior distribution of all parameters as the MCMC output.

This for example allows for a straightforward assessment of the uncertainty in (cross) price elas-

ticities. A second main advantage of the Bayesian approach is that we can incorporate efficient

sampling of time-varying parameters alongside the other model parameters. Chintagunta et al.
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(2005) use MLE and specify brand-specific time-fixed effects to account for time variation in

preferences. Their specification of brand and time-specific fixed effects is an attractive formula-

tion but the number of fixed effects to estimate may increase rapidly as the number of brands

and time periods increases. As Chintagunta et al. (2005), we allow for time-variation in prefer-

ences but we use the simple and efficient simulation smoother of Durbin and Koopman (2002)

to sample the time-varying parameters. The smoother is flexible because it let us reduce the

model to the setting where brand preferences are fixed in time and this reduction may depend

on the model’s parameter estimates or it can easily be specified a priori.

We illustrate our approach using both simulated data and a real dataset that contains sales

data for more than 20 markets each with a different, large, number of products and brands.

The remainder of the chapter is structured as follows. In the next section we discuss the model.

Next we present the Bayesian inference (some technical details are discussed in the appendix).

Section 4.4 shows the results of a simulation experiment. In Section 4.5 we show detailed results

of the application of the model to actual data. We conclude the chapter with a discussion.

4.2 Augmented Bayesian BLP Model

In this section we present our approach and we discuss how we augment the BBLP model in the

directions discussed earlier. First in subsection 4.2.1 we present the model specification. Next in

subsection 4.2.2 we discuss the share inversion method and the integration of the share function.

4.2.1 Model Specification

Consider consumers who make purchases from a set of J products during T time periods in M

different markets. In general not all products will be available in all markets. We will use the

letter J to refer to the total number of unique products available across all markets. J m denotes

the set of products that are available in market m. The size of this set, that is, the number of

products available in market m is denoted by Jm. In each period a consumer in market m can

either choose to purchase one of the products in J m or choose an outside good, that is, he buys

a product outside the set Jm.
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The purchase behavior of individual i in market m is based on utility maximization. We

assume that the (latent) utility for consumer i for product j at time t in market m (denoted by

um
ijt) contains three parts, (i) an “explained” part (wm

ijt), (ii) a market level aggregate demand

shock (ηm
jt ), and (iii) an individual level random effect (εm

ijt), that is, we specify

um
ijt = wm

ijt + ηm
jt + εm

ijt, j ∈ Jm, t = 1, . . . , T. (4.1)

We make the standard assumption of a type-I extreme value distribution for εm
ijt and we assume

ηm
jt ∼ N(0, τ2

m). We use a factor structure to further model wm
ijt, that is we use

wm
ijt = fm

it
′λm

jt, j ∈ J m, t = 1, . . . , T, (4.2)

where fm
it denotes an individual-specific Km dimensional dynamic factor, and λm

jt is a (Km × 1)

vector containing the factor loadings for product j in market m. The factor loadings are based

on observable product characteristics, such as, packaging and brand name, but also (log) price

and promotional indicators may be part of the factor loading vector. In general λm
jt will contain

constant as well as time-varying elements. In principle the same factors will be used in all

markets, however, in some cases some factors may not be present in a market. For example,

a particular package may not yet be available in a market. Therefore we need to specify the

number factors to be dependent on the market.

The factor fm
it gives the importance of a particular product characteristic for individual i in

market m at time t. We split this factor into a time-varying part, which is the same across the

population, and a heterogeneous part, which is constant over time, that is,

fm
it = f̄m

t + υm
i , where υm

i ∼ φ(0, AmΨAm′), (4.3)

where Ψ denotes the variance matrix of all individual level random effects and Am denotes

a selection matrix. This matrix selects the rows and columns of the variance matrix that

correspond to factors that are relevant for market m. The matrix Am can be obtained by

deleting all rows from the K dimensional identity matrix that correspond to irrelevant factors.
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Note that the variance of the random effects is in principle common across markets. Together

with the factor loadings in λm
jt the covariance matrix AmΨAm′ gives a flexible but parsimonious

specification for the variance structure of the preference heterogeneity.

Note that we can write the covariance matrix of the utilities for all products in market m,

call this matrix Σm, as a function of Ψ, the selection matrices Am and the factor loadings Λm
t

where Λm
t = {λm

jt}j∈Jm . That is,

Σm = Λm′
t Am′ΨAmΛm

t . (4.4)

Next we assume a particular law of motion for f̄m
t , the common dynamic component of the

factor. We use the state space specification

f̄m
t+1 = Γm

t f̄m
t + Πm

t ωm
t , (4.5)

where ωm
t ∼ N(0,Ωm) and Γm

t is a known matrix. In the state space literature, Ωm and Γm
t are

usually set to be diagonal. Furthermore, if we additionally restrict the k-th diagonal element

of Γm
t to be 1, we obtain a random walk for the k-th factor, that is, f̄m

kt+1 = f̄m
kt + ωm

kt. If

the variance of ωm
kt is set to zero (or the corresponding element of Πm

t ), we obtain a constant

specification for the factor, f̄m
kt = f̄m

k1. If we instead set the diagonal element of Γm
t to zero and

the corresponding variance to a non-zero value, we obtain independent random effects over time,

f̄m
k,t+1 = ωm

kt.

We complete the model by normalizing the utility of the outside good to be 0. Based on the

complete utility specification we can derive the purchase probabilities, or consumption share for

individual i, sm
ijt as a function of (fm

it
′Λm

t , ηm
t ), where ηm

t is a vector with elements {ηm
jt}j∈Jm and

Λm
t is a vector with elements {λm

jt}j∈Jm . We use {xm
jt}j∈Jm to refer to a vector containing the

elements (xm
1t, . . . , x

m
Jt) and we use j ∈ J m to denote that the product index j is market-specific

and hence it covers only the products in the set J m. Using the properties of the extreme value

distribution we obtain

sm
ijt(f

m
it
′Λm

t , ηm
t ) =

exp(fm
it
′λm

jt + ηm
jt )

1 +
∑

h∈Jm exp(fm
it
′λm

ht + ηm
ht)

. (4.6)
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The overall market share, denoted by sm
jt, of product j and time t in market m, measured over

the entire population, is obtained by integrating sm
ijt(f

m
it
′Λm

t , ηm
t ) over the individual-specific

parameters in fm
it . Therefore we have that

sm
jt =

∫
exp(fm

it
′λm

jt + ηm
jt )

1 +
∑

h∈Jm exp(fm
it
′λm

ht + ηm
ht)

φ(fm
it ; f̄m

t , AmΨAm′)dfm
it (4.7)

If we use fm
it = f̄m

t + υm
i and υm

i ∼ φ(0, AmΨAm′) we can write equation (4.7) as

sm
jt =

∫
exp(μm

jt + λm
jt
′υm

i )

1 +
∑

h∈Jm exp(μm
ht + λm

ht
′υm

i )
φ(υm

i ; 0, AmΨAm′)dυm
i , (4.8)

where μm
jt = (f̄m

t )′λm
jt + ηm

jt . Note that the share sm
jt inherits randomness only from the term ηm

jt

as we integrate over υm
i .

Following Jiang et al. (2009) we denote the relationship between the shares vector sm
t =

{sm
jt}j∈Jm and the vector with aggregate demand shocks ηm

t in (4.7) as

sm
t = h(ηm

t |Λm
t , f̄m

t ,Ψ). (4.9)

Based on the relation in (4.9) and the distribution of ηm
t , the joint density of the shares at time

t is

π(sm
t |Λm

t , f̄m
t ,Ψ, τ2

m) = φ(h−1(sm
t |Λm

t , f̄m
t ,Ψ)|0, τ2

m)|Jsm
t →ηm

t
|−1, (4.10)

for t = 0, . . . , T and m = 1, . . . ,M and where we use π(.) to denote a generic density and π(y|x)

the density of y given x. In addition, the Jacobian Jsm
t →ηm

t
is defined as the (Jm × Jm) matrix

with elements

∂sm
jt/∂ηm

kt =

⎧⎪⎪⎨⎪⎪⎩
−

∫
sm
ijts

m
iktφ(υm

i ; 0, AmΨA′m)dυm
i if k �= j∫

sm
ijt(1 − sm

ikt)φ(υm
i ; 0, AmΨA′m)dυm

i if k = j,

(4.11)

where the arguments of the functions sm
ijt and sm

ikt are dropped for convenience, see (4.8) and

j, k ∈ Jm. Given equation (4.10) the joint conditional density for the shares, or the likelihood,
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for market m is given by

π(sm|Λm, f̄m,Ψ, τ2
m) =

T∏
t=1

π(sm
t |λm

t , f̄m
t ,Ψ, τ2

m), (4.12)

where Λm = (Λm
1 , . . . ,Λm

T ), sm = (sm
1 , . . . , sm

T ) and f̄m = (f̄m
1 , . . . , f̄m

T ).

Two difficulties in this model are the inversion of the share function h() in equation (4.9) and

the evaluation of the integrals in equations (4.8) and (4.11). The inversion and the integration

are required to obtain the aggregate shocks ηm
t and hence to evaluate the density in equation

(4.10). We discuss these two issues next.

4.2.2 Share inversion method and integral approximation

To calculate the joint density in (4.12) we need to take two hurdles. First we need to solve the

integrals in (4.8) and (4.11). Next, we need to obtain the inverse of the function h() in (4.9).

We apply the contraction mapping of Berry et al. (1995) to obtain the inverse in terms of

μm
jt for all necessary m, j and t. Within this procedure we need to calculate the market shares

given μm
jt, Λm

t and Ψ, j ∈ J m, t = 1, . . . , T and m = 1, . . . ,M by integrating equation (4.8) with

respect to υi. We numerically approximate this integral by averaging over H draws from the

distribution of υi that is N(0, AmΨAm′). Jiang et al. (2009) report that H ranges from 20 to

50 in previous literature and they show that their Bayesian estimator has the same performance

for H = 50 and H = 200. However, in our case we may need more draws as we develop the

model for many more parameters.

A common approach to obtain each of the H draws of υi is based on the product of

the Cholesky decomposition of AmΨAm′ and draws from a standard normal, that is υd
i =

(AmΨAm′)1/2ζd where Σ1/2 denotes the Cholesky decomposition of Σ and ζd ∼ N(0, I) for

d = 1, . . . ,H, where I denotes an identity matrix. A more efficient approximation of the integral

may be obtained by using a quasi-random scheme to generate the ζd. Train (2003, chap. 9, page

236) suggests scrambled Halton sequences for integrals of large dimensions and his suggestion,

we believe, is motivated by the same family of logit models that we are concerned with here.
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In Figure 4.1 we compare the integration results based on scrambled Halton sequences ver-

sus the integration results based on regular normal draws. We consider the scenario where the

parameters are known and we use the approximation method discussed above to obtain the

market shares. In the top panel we report the performance when the integral has only three

dimensions and in the lower panel we report the performance when the integral has 30 dimen-

sions. In both panels we report the market share for only one of the products. This simple

exercise suggests that the market shares are much better approximated by integrating with Hal-

ton draws regardless of the dimension of the integral. For large dimensions the approximation of

the normal draws seems to converge to the approximation of the Halton draws after the number

of draws (H) is higher than 400 while the approximation based on Halton draws performs well

for H > 100.

4.3 Bayesian Inference

In this section we discuss the priors we choose to complete the model specification. Specifically,

we present in subsection 4.3.1 a prior for the matrix Ψ that is simple to calibrate when analyzing

many products and markets and at the same time the prior will let us treat the scale and the

correlation structure of Ψ separately. Next in subsection 4.3.2, we discuss the market-specific

priors. Finally in subsection 4.3.3, we discuss the MCMC sampling scheme.

4.3.1 Prior and Structure for Ψ

Jiang et al. (2009) specify the covariance matrix Σm in terms of the unique elements of its

Cholesky root. They set Σm = U ′U where

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

er11 r12 r13 . . . r1J

0 er22 r23 . . . r2J

0 0
. . .

. . .
...

...
...

. . . eeJ−1,J−1 rJ−1,J

0 0 . . . 0 erJJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.13)
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and they choose to set separate normal priors for the diagonal and off-diagonal elements of U.

That is, Jiang et al. (2009) set rjj ∼ N(0, σ2
j ) for the diagonal elements j = 1, . . . , J and

rjk ∼ N(0, σ2
od) for the off-diagonal elements j �= k. Note that Jiang et al. (2009) deal with

only one market m and that in our approach we model the heterogeneity through Ψ (that is a

K × K matrix) and not through Σm (that is a J × J matrix) where K is the number of factors

while J is the number of products.

This prior specification enforces the positive-definitiveness of Σm and in addition the priors

on the rjk elements used by Jiang et al. (2009) are symmetric and this matched well with

the random walk Metropolis Hastings [MH] sampling scheme they propose to sample the r-

parameters. A second advantage of Jiang et al. (2009) prior is that it can be set to be relatively

uniform on the correlation range (−1, 1). Overall, this specification is attractive and simple but

it also has a number of shortcomings. First, Jiang et al. (2009) note that to obtain a plausible

(implied) prior on the variances in Σm the prior variances σ2
j should be decreasing with j and

they provide a particular relation between σ2
j and j. However, the prior in one of the elements

of (4.13) may affect many of the elements in Σm and this complicates the prior interpretation,

specially when J is large. Second, this prior imposes a correlation structure simultaneously with

the overall scale of the heterogeneity. Other studies point out that it may be relatively hard

to identify the heterogeneity (Bodapati and Gupta, 2004) and the uncertainty related to the

Σm elements is therefore usually large, see for example Jiang et al. (2009) and Musalem et al.

(2006). However, we do not know if the large uncertainty reported in previous studies is due

to the uncertainty on the overall scale of Σm or if it is due to the correlation structure in Σm.

Finally, it is well known that the correlation structure of Σm is very important in order to obtain

different substitution patterns far from the IIA assumption of the logit. Therefore, we would

like to use a prior that can let us deal with the scale and correlations separately.

Finally, changing one element of U may lead to a very different Σm. This fact makes the

implementation of an efficient MH sampler difficult if J is large. More precisely, in their MH

scheme Jiang et al. (2009) choose to draw the candidate elements of U from a multivariate

normal that is calibrated based on a short chain of their model MCMC output. The length

of the chain needed for the calibration of the multivariate normal needs to be longer when
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the number of dimensions is large. When dealing with large dimensions, the step size in the

random walk MH sampling, for each of the rjk elements, needs to be set smaller as the dimension

increases in order to keep a good acceptance rate in the estimation algorithm. Although this last

issue always arises whenever many elements are updated simultaneously, here it can be more

dramatic as “local” changes in U lead to “global” changes in Σm.

Summarizing, we would like to use a prior specification that is simpler to calibrate when

dealing with large dimensions and at the same time we like to treat the scale and the correlation

structure of the heterogeneity separately.

We choose to use the prior specification of Barnard et al. (2000) for Ψ. We define Ψ = DRD

where D is a diagonal matrix with K elements (standard deviations) and R is a K×K correlation

matrix. For the variances in D we set the prior log(diag(D)) ∼ N(0,Δ). Formulating a prior on

R is not straightforward because we need a prior that deals with all the elements of R and the

restrictions on them. We need to assure the positive definitiveness of R, the range of its elements

must be (−1, 1) and all the elements together should satisfy triangularity restriction inherent

to any correlation matrix. In addition, we need to update all the elements of R simultaneously

to ease the computational burden. However, based on any variance matrix Σ one can obtain

the corresponding correlation matrix by standardization. Hence, we assume R = fc(S) and we

specify an Inverted Wishart prior for S with parameters (G, v). The function fc() transforms a

covariance matrix to a correlation matrix. The location matrix G is set such that the expected

value of S is an identity matrix; that is G = (v − K − 1) × I, v is the degrees of freedom of the

Inverted Wishart and I is an identity matrix of size K. Note that our variance matrix Ψ is now

actually a function of D and S. In the MCMC sampling below we will actually sample these

two matrices.

Barnard et al. (2000) set a prior directly on R while we set a prior on R implicitly by the

prior on S. The main reason why we deviate from them is that evaluation of the posterior

is very costly in our application and hence we need to use a proposal for S that updates all

the correlations in R in a single step. In contrast, the computation time of the application in

Barnard et al. (2000) allows for a relatively fast element by element update of the matrix R.
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In Figure 4.2 we report the implied correlation distributions for two different degrees of

freedom and for two elements of a Ψ matrix of size 10× 10. The implied correlations can be set

to be roughly uniform on the (−1, 1) interval depending on the degrees of freedom set on the

Wishart distribution. Therefore, the implied correlations of this prior are very similar to the

implied correlations of the specification used by Jiang et al. (2009). However, the parameters

in our suggested priors are easier to interpret.

4.3.2 Market-Specific Priors and Joint Posterior

We presented the likelihood for each of the m markets in equation (4.12) and we presented the

structure and prior for Ψ in the previous section. This variance matrix applies to all markets.

What is left to specify are the priors for τ2
m, Ωm and the initial state distributions for all common

dynamic factors fm
t . In addition the matrix Γm

t needs to be defined. We define fm
1 ∼ N(0, Pm)

where we set Pm reasonably large and non-informative, Pm = 100I for all m. We assume

Ωm = σ2
mHm where Hm is a diagonal matrix of size Jm and σ2

m ∼ vos
2
o/χ

2
vo

. The diagonal

elements of Hm are equal to one for the factors fm
t that are time-varying and equal to zero for

the factors that are fixed over time. We set Γm
t equal to an identity matrix Im of size Jm and

for τ2
m we do not set any prior.

The joint posterior is proportional to the product of the likelihood and priors for each market

times the prior distribution of Ψ that apply to all markets. Note that the factor loadings are

assumed to be given, as they represent observed product characteristics. The posterior becomes

π(f̄∗, τ2
∗ , σ

2
∗ ,D, S|s∗,Λ) ∝ π(log(diag(D)); 0,Δ)π(S;G, v)×(∏

m

π(sm|f̄m,Ψ, τ2
m)πm(f̄m

1 ; 0, Pm)

[
T−1∏
t=1

π(f̄m
t+1|f̄

m
t , σ2

mIm)

]
π(σ2

m; vo, s
2
o)

)
, (4.14)

where s∗ = (s1, . . . , sM ), f̄∗ = (f̄1, . . . , f̄M ), τ2
∗ = (τ2

1 , . . . , τ2
M ), σ2

∗ = (σ2
1 , . . . , σ

2
M ), Ψ =

Dfc(S)D.
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In addition, the priors for fm
1 , σ2

m, D and S are defined as follows

π(f̄m
1 ; 0, Pm) ∼ N(f̄m

1 ; 0, Pm)

π(σ2
m; vo, s

2
o) = (σ2)−(vo/2+1)e−vos2

o/2σ2

log(diag(D)) ∼ N(0,Δ)

π(S;G, v) ∝ |G|v/2

|S|(v+K+1)/2e−1/2tr(S−1G)

. (4.15)

4.3.3 MCMC algorithm

The approach we follow is a combination of the sampler proposed in Jiang et al. (2009) with

simulation smoother of Durbin and Koopman (2002) and a Metropolis Hastings sampler for

Ψ. We use the following steps: (i) conditional on Ψ we use the contraction mapping to obtain

the (implied) μm
jt , for m = 1, . . . ,M , j ∈ Jm, t = 1, . . . , T ; (ii) conditional on Ψ (and μm

jt) we

use the simulation smoother to sample f̄∗, the μm
jt values appear as dependent variables in this

smoother; (iii) conditional on f̄∗ and all μm
jt we sample τ2

∗ and σ2
∗ ; (iv) finally we use a Metropolis

Hastings sampler to draw the elements of D and S which determine Ψ.

More specifically, we use the following three set of conditionals

f̄∗|Ψ, σ2
∗ , τ

2
∗ , s

∗,Λ

σ2
∗, τ

2
∗ |Ψ, f̄∗, s∗,Λ

D,S|σ2
∗ , τ

2
∗ , f̄

∗, s∗,Λ.

(4.16)

We draw the first set of conditionals using the simulation smoother of Durbin and Koopman

(2002). That is, given μm
jt for all m, j and t we can draw the parameters of the following

measurement and state equations

μm
t = Λm

t
′f̄m

t + ηm
t with ηm

jt ∼ N(0, τ2
m)

f̄m
t+1 = Γm

t f̄m
t + Πm

t ωm
t with ωm

t ∼ N(0, σ2
mIm),

(4.17)

where μm
t is defined as the (Jm × 1) vector with elements μm

jt , j ∈ Jm. This specification is

attractive because we can set some of the common factors f̄m
t to be fixed in time while others can

remain time-varying. This is done simply by setting some of the elements in the diagonal matrix
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Πm
t equal to zero. The simulation smoother of Durbin and Koopman (2002) gives a draw from

the joint posterior of f̄m
t , for t = 1, . . . , T . For details we refer to their paper. Conditional on μm

t

and f̄m sampling the variances is straightforward. Given our priors they can be sampled from

Inverted Gamma distributions. That is, τ2
m ∼ IG(nm

τ , s2
τ ) and σm ∼ IG((υo + nm

σ ), (s2
σ + s2

o).

The nm
τ are the number of observations available for the measurement equation at market m

for m = 1, . . . ,M and s2
τ is the sum of squared residuals of the measurement equation. The nm

σ

is the number of observations available in the state equation at market m and s2
σ is the sum of

squared residuals of the measurement equation. The υo and s2
o are the parameters of the prior

for the variance of the state equation, see the priors in equation (4.15).

For the third set of conditionals we use a Metropolis Hastings algorithm. For the (log of

the) elements of D we use a standard random walk as candidate distribution. For comparison

with the second part of this step we write the proposal as

log(diag(Dcandidate)) ∼ N(log(diag(Dcurrent)), ζ2I). (4.18)

For S we also propose a random walk candidate distribution. However, for efficiency in the total

sampler we which to have a candidate that can generate matrices close to the current value. As

a candidate distribution we use an inverted Wishart distribution which has the current value as

expected value, that is,

Scandidate ∼ IW ((v1 − K − 1)Scurrent, v1). (4.19)

We choose v1 and ζ2 to achieve between 20% and 50% acceptance rate in the Metropolis steps.

In the MCMC we use two Metropolis steps to update D and S separately.

To sample D and S we evaluate the model posterior in equation (4.14) in two Metropolis

steps, the first for D and the second for S. We set

Dnew = Dcand with probability min{p∗(Dcand|S,f̄∗,τ2
∗
,σ2
∗
,s∗,Λ)

p∗(Dprev |S,f̄∗,τ2
∗
,σ2
∗
,s∗,Λ)

, 1}, (4.20)
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and we set

Snew = Scand with probability min{p∗(Scand|D,f̄∗,τ2
∗
,σ2
∗
,s∗,Λ)

p∗(Sprev |D,f̄∗,τ2
∗
,σ2
∗
,s∗,Λ)

, 1}. (4.21)

The candidate and previous posterior density in equation (4.20) are given by

p∗(Dcand|S, f̄∗, τ2
∗ , σ

2
∗ , s

∗,Λ) =

π(log(diag(Dcand)); 0,Δ) ×
∏
m

π(sm|Λm, f̄m,Ψcand, τ2
m), (4.22)

and by

p∗(Dprev|S, f̄∗, τ2
∗ , σ

2
∗ , s

∗,Λ) =

π(log(diag(Dprev)); 0,Δ) ×
∏
m

π(sm|Λm, f̄m,Ψprev, τ2
m). (4.23)

where Ψcand = Dcandfc(S)Dcand and Ψprev = Dprevfc(S)Dprev while the terms in the Metropolis

step in equation (4.21) are given by

p∗(Scand|D, f̄∗, τ2
∗ , σ

2
∗ , s

∗,Λ) =

π(Scand;G, v) × π(Sprev;Scand, v1) ×
∏
m

π(sm|Λm, f̄m,Ψcand, τ2
m), (4.24)

and by

p∗(Sprev|D, f̄∗, τ2
∗ , σ

2
∗ , s

∗,Λ) =

π(Sprev;G, v) × π(Scand;Sprev, v1) ×
∏
m

π(sm|Λm, f̄m,Ψprev, τ2
m), (4.25)

where now Ψcand = Dfc(S
cand)D, Ψprev = Dfc(S

prev)D and π(sm|Λm, f̄m,Ψ, τ2
m) is defined

in equation (4.12). Note that the proposal distribution for S is not symmetric and hence its

distribution (π(S;S′, v1)) also appears in the acceptance probability. We use the proposal distri-

butions in equation (4.18) and equation (4.19) to draw the candidate matrices Dcand and Scand

based on their previous values Dprev and Sprev, respectively.
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The Metropolis steps are very costly in terms of computation time in the MCMC algorithm.

This is the only step in the algorithm where we need to use the BLP contraction mapping and

where we need to evaluate the Jacobian in equations (4.10) and (4.11). Some time may be saved

by jointly updating these matrices. However, the joint updating of D and S will not let us

distinguish what is driving the acceptance rate in the Metropolis steps. Moreover, the separate

updating of these matrices let us distinguish if a candidate matrix Ψcand (Ψ = Dfc(S)D) is

rejected because of its correlation structure or because of its overall scale.

4.4 Simulation Experiment

We test our modeling approach on simulated data and in this section we discuss the data

generation process and the results of the MCMC estimation procedure.

4.4.1 Data Simulation

In this section we describe how we create synthetic data and we consider a setting where we

have data for many products and markets. This setting is not typical in the literature but it

that corresponds with the setting that we deal with in the application.

We assume products are sold in 10 markets and we simulate 4 years of monthly data for

each market. Each market will be assigned a specific number of products and these products

will be assigned to 10 different brands.

All 10 brands are available in each market and we assign 5, 6, 8 or 10 products to each brand

at each market. Hence, the number of products assigned to a brand varies per market and each

market consists of a specific number of products. The probability of a brand to be assigned

5 or 6 products at each specific market is 90% while the probability of being assigned 8 or 10

products is 10%. That is, the expected number of products per brand is 5.85 and the expected

number of products per market is 58.5. This is a large number of products relative to previous

studies. For example, Jiang et al. (2009) and Yang et al. (2003) study one market that consists

of 3 products and one outside good while Musalem et al. (2006) apply their model to a setting

with four products and one outside good.
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The mean utilities (the μm
jt) for products are market-specific. The mean products’ utilities

are assumed to depend on the products’ brands, the products’ attributes and the products’

prices and promotions. We define 5 attributes and we assign only one attribute per product and

all attributes are equally likely per product. Note that this last assumption implies that each

brand may have a certain number of products that share the same attributes. We set one of

the attribute coefficients as the base and equal to 0 while the rest is generated from a normal

distribution with mean 0 and variance 5.

Next, we define the price and promotion coefficients and these are −5 and −2, respectively,

and these coefficients are the same across markets. The price series for each product follows a

sine curve (with a very long cycle) plus normal noise with mean 2 and variance 1. To create the

promotional series we use a uniform distribution with range (0, 1). We assume that there is a

30% chance of a promotion and the range of promotions is between 0 and 30%. That is, when

we draw a promotional index value (from the uniform) lower than 0.70 then the promotional

index is equal to 1 otherwise the promotion index is equal to the drawn value.

Attribute, price and promotions coefficients will be fixed in time while the brand coefficients

will be time-varying. We generate 10 brand coefficients using the recursion in equation (4.17)

and we set σm to be equal to 0.40. We set the initial values for the brand coefficients fm
1 based on

a normal distribution with mean −3 and variance 0.16. We use the same recursion to generate

the attribute, price and promotion coefficients and their initial value is assigned as we discussed

in the previous paragraph. We further need to set Πm
t to be a diagonal matrix with the first

10 elements equal to 1 and the remainder 6 elements of the diagonal are equal to 0. The Γm
t is

equal to an identity matrix of size 16.

The factor loadings Λm
t will consist of brand and attribute dummies for all products at time

t plus the products prices and promotions at time t. That is, Λm
t is a J × K matrix, J is the

number of products and K is equal to 16 (the number of brands, attribute, price and promotion

coefficients). Finally, we assume that the variance of product demand shocks τ2
m are equal to

0.8 for all m.

We use the specification of Ψ = DRD to draw the random coefficients υm
i . We first draw a

matrix P based on a IW (I16, 21) and we set R = fc(P ). The implied range of the correlations
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in R goes from −1 to 1 but the extremes of the range are not common. Further, we assume

the scale of the heterogeneity depends on both small and large elements with the purpose of

checking whether their size affects their retrieval from the synthetic data. That is, we set D2 =

(2, 2, 2, 2, 8, 8, 8, 8, 4, 4, 4, 4, 2, 2, 2, 2). Finally, we use 3000 draws to approximate the integral in

equation (4.8) and we generate the draws of the random coefficients based on the Cholesky

decomposition of Ψ and normal draws generated with scrambled Halton sequences. The 16

factors in Ψ are available at every market and therefore the Am matrix is the same for all

markets and it is equal to I16.

4.4.2 MCMC Setup

We use a hybrid Metropolis Gibbs sampler to estimate the parameters of the model in equation

(4.7). The sampler iterates over the conditionals in equation (4.16). The first set of conditionals

concerns the f̄∗. We set the prior on the initial values as fm
1 ∼ N(0, 100I) for all m and we use

the simulation smoother of Durbin and Koopman (2002) to sample all elements of f̄∗.

The second set of conditionals samples the variances of equation (4.17). We did not set any

prior information on σ2
m and τ2

m for all m. Hence, τ2
m ∼ IG(nm, sm) where nm are the number

of observations in the measurement equation in (4.17) and sm are the sum of squared residuals

in the same equation. In a similar fashion, σ2
m ∼ IG(ns

m, ss
m) where ns

m are the number of

observations and ss
m are the sum of squared residuals of the state equation in (4.17).

The third set of conditionals concerns the sampling of the D and S matrices. We set the v

parameter in the prior π(S; I, v) equal to 21 and we use Δ = 10I in the normal prior of the log

of the diagonal elements of D.

We use the proposal distributions in equation (4.18) and equation (4.19) to draw the can-

didate matrices Dcand and Scand, respectively. In these proposals we set ζ2 equal to 0.01 and

υ1 equal to 10000. The large number in υ1 corresponds to steps of approximately 0.05 in the

elements of the correlation matrix R where R = fc(S). We calibrated ζ2 and υ1 to achieve an

acceptance rate between 20% and 50% for both Metropolis steps.

We let the Gibbs-Metropolis sampler to run for 20 thousand iterations. However, we do

oversampling of Ψ. We use 4 updates of S and one of D at every iteration. That is, we
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generate 100 thousand candidates for the matrix Ψ. The matrix Ψ contains 136 unique elements

and our purpose with the oversampling is to let all these elements to move at larger steps at

every iteration and let them adjust better to the rest of the model parameters drawn at every

iteration. In this way, the oversampling may compensate for the small moving steps that we need

to achieve a good acceptance rate in the Metropolis algorithm. Haran et al. (2003) also consider

the oversampling of parameters to accelerate their computation in the MCMC algorithm.

4.4.3 Results of the Simulation Experiment

In Table 4.1 we present the posterior mean and the 99% Highest Posterior Density Region

(HPDR) of the demand shocks for every market. The true value of τ2
m is equal to 0.66 for all

markets. Note that we generated data for 10 markets. In most cases, the posterior mean is very

close to its true value. The maximum absolute deviation of the posterior mean from the true

value is approximately 0.06, see the τ2
m=6 that is equal to 0.580.

In Table 4.2 we present the posterior mean and HPDR of the variance term in the state

equation (4.17), that is σ2
m. The true value of this parameter is 0.16 while in most cases the

posterior mean is close to 0.12. That is, we are finding a small negative bias that is close to 0.04

for most cases.

In Figure 4.3 we present the estimates of the fixed coefficients (in circles) and the box-plots

of their posterior distribution. Note that we specified 4 attribute coefficients and one price and

promotion coefficient that vary across markets. That is a total of 50 coefficients in all markets.

We see that for 30 out of the 50 coefficients the circles (true values) overlap with the position of

their distribution in the box-plot. In the same figure, we see that there is a systematic positive

bias in the posterior distribution of the price coefficients. The true value of the price coefficient

is equal to −5 while the posterior distribution is higher than −5. In contrast, the posterior

distribution of the promotion coefficients overlap with its true value (−2) for all markets.

In Figure 4.4 we present the distribution of the time-varying brand coefficients for the 5th

market. We see that the overall time profile is well retrieved by the estimation algorithm. In

most cases the true value is inside the 99% HPDR. The results for the other markets are very

similar.
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In Table 4.3 we report the posterior mean and HPDR for the elements of the D2 matrix. We

see that the 99% HPDR contains the true value for 7 out of the 16 elements. The deviation of

the posterior mean from its true value, when the true value is not contained in the HPDR, may

be as small as 1 or as large as 6 variance points. That is, we find large uncertainty regarding

the scale of the heterogeneity driven by the random coefficients. Jiang et al. (2009), Musalem

et al. (2006) and Yang et al. (2003) find similar levels of uncertainty.

In Figure 4.5 we report the 99% HPDR (in dashed lines) and the true value (solid line) of

the 120 unique elements of the correlation matrix R (fc(S)). We find that the HPDR contains

the true value for 57 out of 120 elements, that is 47.5% of the elements. However, we find that

the posterior mean of the correlations is on average 0.16 points far from its true level. Hence,

our results suggest that the uncertainty regarding the scale of the heterogeneity (the elements

of D) is much larger than the uncertainty in the elements of the correlation matrix R.

4.5 Empirical Application

In this section we apply our estimation approach to a real dataset and we analyze the substi-

tution patterns between a large number of products. Next we provide a description of the data

(in subsection 4.5.1), the modeling details (in subsection 4.5.1) and the estimation results (in

subsection 4.5.3).

4.5.1 Data

Our dataset contains sales, price and promotion data for all the products of one supermarket

food category. The data is monthly and it covers a period of four years and 18 different regions.

Consumers at each region may have available a minimum of 25 up to a maximum of 65 products

of 20 different brands. Each brand has its own positioning in terms of calories, taste and labeling

while each brand may offer products of the same size and packaging. Therefore, we can describe

each product in terms of its brand, size and packaging attributes and its price and promotion

data. There are brands with similar attributes both in terms of calories and taste and in terms

of packaging and size and these brands are usually produced by different companies. Our data
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contains products sold by all major companies at each market and very few firms compose the

market.1 Depending on the market, the size of the outside good varies from 20 up to a maximum

of 50%. The calculation of the outside good share is region-specific and it varies according to

the share of the closest and competing food categories.

4.5.2 Modeling Details and MCMC Setup

The MCMC setup for the application is very similar to the MCMC setup we use for the simulated

data. An important distinguishing feature is that the matrix Ψ consists of 32 rows and columns.

This number corresponds to 20 brands, 11 size and packaging attributes, one price and one

promotion factor. We leave one attribute as reference and this results in 32 random coefficients.

In the application the Am matrices select the appropriate elements of the Ψ matrix relevant for

the market m. That is, some attributes or brands may not be available in all markets.

We will assume that all coefficients are fixed with the exception of the brand coefficients that

will be specified as time-varying. We use the priors in equation (4.15) where we set Pm = 100I

for all m, υo = 1 and so = 0.01. The Δ matrix is equal to 25I and v = 35. We did not set a

prior on τ2
m parameters. The proposal distributions in equation (4.18) and equation (4.19) have

the parameters v1 = 30000 and ζ2 = 1/200. This configuration achieves between 30% and 50%

of acceptance rate in the Metropolis updates of S and D. We sample D and S separately in the

same way as we did in the simulation experiment.

The matrix Πm
t in equation (4.17) is set equal to an identity matrix of size Km (Km is the

number of factors at each m) and we set some of its diagonal elements equal to 0 and these zeros

correspond to the factors related to size, packaging and to price and promotions. The matrix

Γm
t is of size Jm (the number of products available at market m) times Km and it is also set to

be an identity matrix.

We ran the MCMC chain for 50 thousand iterations and we discarded the first 10 thousand

with a thin value of 20. The computation time was of approximately five days. The number of

1Because of our confidentiality agreement we can not reveal the companies names, brands or any other product or
market information in the chapter.
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draws that we used for approximating integrals was 200 and we use draws based on scrambled

Halton sequences.

4.5.3 Estimation Results

We present the posterior mean and HPDR of the τ2
m parameters in Table 4.4. The uncertainty

of the demand shocks is very large for six of the eighteen markets, see the τ2
m for m equal to 1,

2, 12, 13 and 17. The uncertainty in the demand shock for the remaining markets seems small

relative to these six markets.

The posterior mean of HPDR of the σ2
m parameters can be read in Table 4.5. These are the

variances of the time-varying coefficients and we see that they are very small as we expected.

The variance of time-varying parameters in state space models is usually small (Fruhwirth-

Schnatter, 2004) and this indicates slowly evolving factors.

In Table 4.6 we present the posterior mean and HPDR for the fixed coefficients at three

markets. We notice that price and promotion coefficients have the expected negative signs. The

promotional index is a number that takes a value between 0 and 1 and it indicates the percentage

of the regular price level that is observed. We notice that the uncertainty related to the price

coefficients varies across markets while at the same time they remain negative. The preference

for size also varies per market and we find that for each market there are only two sizes with a

positive posterior mean that may be larger than the base category. In Figure 4.6 we report the

evolution of the time-varying brand coefficients. We report the time profiles of the time-varying

factors relative to their starting point and their corresponding 99% HPDR. This transformation

is useful to illustrate how some brands’ preferences (measured by the time-varying factors) face

large variations relative to their starting position, like brands C, E, F or L, while we see other

brands like J or B with much smaller time variation. Note that this figure does not show the

level uncertainty around the time-varying brand coefficients. Their level uncertainty, however, is

similar to the uncertainty of the fixed coefficients. We see also that the coefficients for different

types of packaging show significant time variation relative to their starting point, see the bottom

row in Figure 4.6.
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In Figure 4.7 we report the distribution of 60 elements of the Ψ matrix. The Ψ matrix size

is 32 × 32 and therefore it contains 528 unique elements. We notice that the uncertainty varies

per element but overall the uncertainty is relative small for most correlations. The element 39

in the lower panel has the largest uncertainty and its range goes from −0.75 up to 0 while there

are other cases like the element 12 in the upper panel with very tight posterior distributions.

In Table 4.7 we present the posterior mean and the 99% HPDR of the matrix D2. Some of

the elements of the matrix are retrieved with a lot of uncertainty. For example, the posterior

mean of the D2
9 is 4.64 but its HPDR includes values close to 10 while the posterior mean of D2

15

is equal to 10.625 and its HPDR includes values as high as 22. These rest of the elements in the

D2 matrix, and the mayority, show a much smaller uncertainty relative to these high values in

D2
9 and D2

15. Previous studies, like Jiang et al. (2009), Musalem et al. (2006) and Yang et al.

(2003), report simular range of both the scale of the heterogeneity and its uncertainty.

Finally, in Figure 4.8 and Figure 4.9 we present the own-price and cross price elasticities for

the products in market 2. We computed the elasticities as we describe in the Appendix 4.A.

The price elasticities have a range that goes from −1 to −3.5 while the cross-price elasticities

range goes from 0 up to 1.6. In this last figure light (white) colors represent high values while

darker (dark red) colors represent lower cross price elasticities. In Figure 4.9 we notice that

many products respond to the price changes of a relatively small set of products. For example, a

price change in the 10th product affects almost all products in this market and their cross price

elasticity is close to 1.66. Finally, we notice that substitution patterns (measured by cross price

elasticities) are stronger among a small subset of products.

4.6 Conclusions

The estimation of aggregate share models based on the random coefficient logit specification

presents different challenges. The scalability of models and estimation algorithms is one of these

main challenges. Berry and Pakes (2007) is a recent paper with a similar concern as ours

and that is the practical application of this family of models to larger and more comprehensive

datasets. In this chapter we investigate the scalability of the BBLP approach and we successfully
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applied our method to simulated data and to a relative large real dataset. It is large in terms

of the number of products, brands and markets that it includes while it is still small relative to

the time periods we have available.

Our specification is based on the recent advances of Jiang et al. (2009), Durbin and

Koopman (2002) and Barnard et al. (2000). These advances all put together allow us to model

time variation in preferences and to separate the uncertainty of the random coefficients in terms

of their scale and in terms of their correlation. In addition, our mode specification combines

global and market specific priors and this allows us pool information across several markets.

We believe that the uncertainty related to the random coefficients is a great challenge. In

contrast with previous studies we report the uncertainty related to the correlation and the scale

of the random coefficients separately. Our results point that the overall scale of the covariance

matrix of the random coefficients may present a larger uncertainty relative to the uncertainty

present in their correlation structure. This last result is an initial step towards the untangling

and modeling of the sources of uncertainty in the random coefficients of the BBLP approach

and we consider that this is a promising area for further research.

We present an approach that is the “augmented” version of the BBLP and it should be

considered whenever there is a large dataset of market shares available for analysis. Large

datasets, particularly of shares, are rarely collected but they are becoming increasingly common

and more detailed. Therefore, approaches like ours may be needed more often in the future.

We presented our results to managers and they showed a great interest in understanding

the uncertainty regarding the correlations between a reduced number of key product factors.

Their immediate questions concerned what factors are “competing” between each other and to

what extent. Moreover, their intuition and knowledge of the market supports the idea that

preferences for key factors, like brands, are evolving in time. However, they usually measure

these time variations based on market wide “top of mind” surveys while the use of sales data for

this type of analysis is rare. Hence, the modeling of the evolution in brands-preferences based

in market shares data, they argue, is one of the key and most valuable aspects of our approach.
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4.7 Tables and Figures

Posterior HPDR
Mean 1% 99%

τ 2
m=1 0.636 0.618 0.698

τ 2
m=2 0.640 0.624 0.670

τ 2
m=3 0.595 0.580 0.626

τ 2
m=4 0.659 0.641 0.717

τ 2
m=5 0.618 0.598 0.657

τ 2
m=6 0.580 0.565 0.598

τ 2
m=7 0.657 0.640 0.711

τ 2
m=8 0.662 0.647 0.755

τ 2
m=9 0.641 0.624 0.682

τ 2
m=10 0.630 0.615 0.680

Notes: The true value of τ2
m is equal

to 0.64 for all m. HPDR stands for
Highest Posterior Density Region.

Table 4.1: Simulation Experiment: Posterior Distribution of the Variance of the Demand
Shocks
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Posterior HPDR
Mean 1% 99%

σ2
m=1 0.107 0.082 0.148

σ2
m=2 0.120 0.096 0.157

σ2
m=3 0.118 0.088 0.144

σ2
m=4 0.120 0.094 0.155

σ2
m=5 0.136 0.104 0.182

σ2
m=6 0.134 0.102 0.170

σ2
m=7 0.128 0.096 0.170

σ2
m=8 0.116 0.090 0.153

σ2
m=9 0.121 0.090 0.160

σ2
m=10 0.128 0.098 0.170

Notes: The true value of σ2
m is equal

to 0.16 for all m. HPDR stands for
Highest Posterior Density Region.

Table 4.2: Simulation Experiment: Posterior Distribution of σ2
m
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Posterior HPDR Real
Mean 1% 99% Value

Brand A 1.950* 1.081 4.089 2.0
Brand B 0.435* 0.209 3.446 2.0
Brand C 3.036* 1.958 3.755 2.0
Brand D 1.127* 0.890 3.514 2.0
Brand E 7.890* 5.126 8.983 8.0
Brand F 3.929 3.119 4.702 8.0
Brand G 3.066 2.421 4.500 8.0
Brand H 1.992 1.776 3.789 8.0
Brand I 2.295 1.817 3.617 4.0
Brand J 2.219 1.938 3.603 4.0
Attribute b 4.827 4.270 5.316 4.0
Attribute c 1.990 1.463 3.636 4.0
Attribute d 1.473* 0.732 3.202 2.0
Attribute e 2.988 2.693 3.490 2.0
Price 0.866 0.543 1.510 2.0
Promotion 1.533* 1.112 2.550 2.0

Note: * means that the real value is included in
the HPDR. HPDR stands for Highest Posterior
Density Region.

Table 4.3: Simulation Experiment: Posterior Distribution of the elements of D2.
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Posterior HPDR
Mean 1% 99%

τ 2
m=1 5.329 0.606 53.233

τ 2
m=2 7.518 4.782 11.322

τ 2
m=3 0.814 0.659 1.034

τ 2
m=4 0.895 0.684 1.172

τ 2
m=5 1.500 1.127 2.042

τ 2
m=6 1.284 0.989 1.715

τ 2
m=7 0.831 0.577 1.281

τ 2
m=8 0.638 0.574 0.734

τ 2
m=9 0.838 0.754 1.013

τ 2
m=10 0.467 0.395 0.589

τ 2
m=11 1.015 0.805 1.322

τ 2
m=12 5.664 1.632 65.241

τ 2
m=13 2.631 1.906 3.652

τ 2
m=14 0.752 0.672 0.901

τ 2
m=15 1.917 1.490 2.572

τ 2
m=16 1.439 1.316 1.607

τ 2
m=17 4.144 0.602 44.067

τ 2
m=18 1.612 1.328 2.101

Note: HPDR stands for Highest
Posterior Density Region.

Table 4.4: Application: Posterior Mean and HPDR of the τ 2
m.
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Posterior HPDR
Mean 1% 99%

σ2
m=1 0.0149 0.0090 0.0249

σ2
m=2 0.0200 0.0102 0.0397

σ2
m=3 0.0628 0.0357 0.1213

σ2
m=4 0.0384 0.0206 0.0650

σ2
m=5 0.0128 0.0080 0.0276

σ2
m=6 0.0180 0.0101 0.0293

σ2
m=7 0.0361 0.0208 0.0600

σ2
m=8 0.0322 0.0190 0.0563

σ2
m=9 0.0390 0.0202 0.0654

σ2
m=10 0.0339 0.0196 0.0611

σ2
m=11 0.0557 0.0272 0.1021

σ2
m=12 0.0131 0.0072 0.0236

σ2
m=13 0.0204 0.0113 0.0425

σ2
m=14 0.0252 0.0150 0.0450

σ2
m=15 0.0132 0.0088 0.0230

σ2
m=16 0.0255 0.0139 0.0429

σ2
m=17 0.0123 0.0073 0.0249

σ2
m=18 0.0147 0.0087 0.0202

Note: HPDR stands for Highest
Posterior Density Region.

Table 4.5: Application: Posterior Mean and HPDR of the σ2
m.
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Posterior HPDR
Mean 1% 99%

Market 1 Size A 0.811 -0.098 1.766
Size B -1.835 -3.025 -0.577
Size C 0.268 -0.643 1.164
Size D -0.513 -2.131 1.174
Size E -2.042 -3.053 -1.017
Price -2.684 -3.925 -1.529
Promotion -2.380 -6.455 1.856

Market 2 Size A 0.120 -0.207 0.438
Size B -0.934 -1.204 -0.669
Size D 0.414 0.059 0.739
Size E -0.218 -0.660 0.191
Price -0.904 -1.472 -0.309
Promotion -2.714 -4.229 -0.894

Market 3 Size A 0.749 0.397 1.093
Size B 0.237 -0.087 0.430
Size C -0.594 -1.015 -0.224
Size D -0.641 -0.877 -0.367
Size E -0.545 -0.821 -0.271
Price -0.593 -0.924 -0.211
Promotion -3.388 -4.764 -2.079

Note: HPDR stands for Highest Posterior Density Region.

Table 4.6: Application: Posterior Mean and HPDR of the Fixed Elements of fm (size and
price and promotion coefficients) for 3 out 18 markets
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Posterior HPDR
Mean 1% 99%

D2
1 1.436 0.801 2.493

D2
2 0.798 0.653 0.896

D2
3 1.341 1.184 1.619

D2
4 0.831 0.628 1.461

D2
5 0.293 0.249 0.335

D2
6 0.874 0.739 1.022

D2
7 1.853 0.970 4.412

D2
8 0.500 0.443 0.575

D2
9 4.648 1.509 9.801

D2
10 0.395 0.327 0.457

D2
11 1.197 0.787 1.718

D2
12 0.569 0.466 0.727

D2
13 0.556 0.478 0.603

D2
14 0.628 0.522 0.700

D2
15 10.625 3.911 21.916

D2
16 0.432 0.329 0.502

D2
17 0.195 0.160 0.238

D2
18 0.990 0.750 1.257

D2
19 3.249 1.824 5.073

D2
20 0.221 0.182 0.276

D2
21 0.337 0.248 0.378

D2
22 0.602 0.540 0.698

D2
23 7.294 5.028 12.136

D2
24 0.700 0.623 0.794

D2
25 2.361 1.697 2.710

D2
26 0.754 0.654 0.955

D2
27 0.643 0.522 0.732

D2
28 0.558 0.472 0.667

D2
29 0.579 0.468 0.672

D2
30 0.587 0.474 0.797

D2
31 0.590 0.443 0.777

D2
32 0.624 0.490 0.811

Note: HPDR stands for Highest
Posterior Density Region.

Table 4.7: Application: Posterior Distribution of the Elements of the D2 matrix, where
Ψ = DSD.



148 Random Coefficient Logit Models for Large Datasets

0 200 400 600 800 1000

0.
16

0.
20

0.
24

0.
28

Integral with 3 dimensions

H (Number of Draws)

E
xp

ec
te

d 
S

ha
re

Normal Draws
Halton Draws

0 200 400 600 800 1000

0.
15

0.
25

0.
35

Integral with 30 Dimensions

H (Number of Draws)

E
xp

ec
te

d 
S

ha
re

Normal Draws
Halton Draws

Figure 4.1: Performance of Halton Based Normal Draws versus Normal Draws
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Figure 4.2: Prior Correlations for Different Elements of Ψ. The degrees of freedom for
the Wishart Distribution v are set to 11 for the left panel and 20 for the right panel.
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Figure 4.4: Simulation Experiment: Real (Solid Line) versus Posterior Mean (Dots) and
the 99% HPDR (Dashed Lines) of the Time-Varying Brand Coefficients at Market 5
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Figure 4.9: Cross-Price Elasticities at Market 2
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4.A Appendix

Iterative BLP Procedure

We use the iterative procedure proposed in BLP to obtain the μt = (μ1t, . . . , μJt). Note that,

for convenience, we omit the market indicators m here. The procedure consists of the following

steps. First we obtain H draws of υi. To this end we write the d-th draw as υd
i = Ψ1/2ζd where

ζd is draw from a joint normal distribution which we obtain using scrambled Halton draws.

Given these draws and some initial value for μt we can compute the implied market shares ŝt.

Given the shares, both real st and implied ŝt, we can use the contraction mapping

μnew
t = μold

t + log(st) − log(ŝt) (4.26)

to obtain a new value for μt. We repeat the contraction mapping computing the implied shares

ŝjt as (
H∑

i=1

exp(μold
jt + λ′jtυi)

exp(μ0t) +
∑

k exp(μold
kt + λ′ktυi)

)
/H (4.27)

for j = 1, . . . , J and t = 1, . . . , T and we stop the contraction mapping when the values of μnew
t

and μold
t converge.

Note that we include and solve for the outside good utility μ0t in the contraction mapping

iterations. We discovered that the precision of the contraction mapping is higher when we iterate

over the utilities of all products together with the utility of the outside good.

Computing Elasticities

We use the following definition to compute the price elasticities ϕm
jl between product j and l in

market m conditional on all model parameters:

ϕm
jl =

pm
lt

E[sm
jt ]

∂E[sm
jt ]

∂pm
lt

=
pm

lt∫
sm
jtπ(ηt; 0, τ2

mI)dηm
t

×

∫
∂

∂pm
lt

sm
jtπ(ηt|τ

2
m)dηm

t (4.28)
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where sm
jt is defined in (4.7) and

∂

∂pm
lt

sm
jt =

⎧⎪⎪⎨⎪⎪⎩
−βm

∫
sm
ijts

m
iktφ(υm

i ; 0, AmΨA′m)dυm
i if k �= j

βm
∫

sm
ijt(1 − sm

ikt)φ(υm
i ; 0, AmΨA′m)dυm

i if k = j,

(4.29)

and βm is the price coefficient in market m. Finally, to obtain the posterior distribution of the

price elasticities we average (4.28) over the posterior draws for all parameters.



Chapter 5

Finding the Influentials that Drive

the Diffusion of New Technologies

In this chapter we consider the diffusion of similar technologies in a single market composed of

many locations. We address the identification of the influential locations that drive the aggregate

sales of these new technologies based on aggregate sales data and location specific online search

data.

In this chapter we put forward a model where aggregate sales are a function of the online

search of potential consumers at many locations. We argue that a location may be influential

because of its power to drive aggregate sales and this power may be dynamic and evolving in time.

Second, the influential locations may produce spillover effects over their neighbors and hence

we may observe clusters of influence. We apply Bayesian Variable Selection (BVS) techniques

and we use Multivariate Conditional Autoregressive Models (MCAR) to identify influentials

locations and their clustering.

We apply our methodology to the video-game consoles market and to new search data of

Google Insight. More precisely, we study the influential locations that drive the sales growth of

the Nintendo Wii, the Sony PS3 and Microsoft Xbox 360. Specifically, we study the diffusion

of these technologies at four different stages of their life-cycle. In this way, we can identify the

group of influential locations and its composition in different sub-periods.

Our results indicate that the influential locations and their economic value (measured by

search elasticities) vary over time. Moreover, we find significant geographical clusters of influen-

tial locations and the clusters composition varies during the life-cycle of the consoles. Finally, we

find weak evidence that demographics explain the probability of a location to be influential. The

main managerial implication of our results is the notion that the group of influential locations

and their clustering varies during the life-cycle of a technology. Hence, managers should aim to

identify the identity plus the locations and the dynamics of influentials.
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5.1 Introduction

An important topic related to the diffusion of new technologies is the identification of influentials.

Influentials play an important role as opinion leaders and trend setters and they critically affect

the speed of adoption of new technologies (van den Bulte and Joshi, 2007).

Recent attention is being given to the identification of the location and identities of these

influentials. In the literature, influentials are defined as individuals or groups of individuals that

influence the behavior of others in a significant way. Their influence has been studied at the

individual level (Trusov et al., 2010), at the firm level (Albuquerque et al., 2007) and at the

country level (van Everdingen et al., 2009). Influentials may have a specific location in a social

network (Trusov et al., 2010; Christakis and Fowler, 2009; Cho and Fowler, 2007) or a specific

physical location (Choi et al., 2009; Goldenberg et al., 2009). Their influence can be limited to

a few others (Christakis and Fowler, 2009, page 28) but their impact may also exceed national

boundaries (van Everdingen et al., 2009).

In this article we study the diffusion of a number of similar and competing technologies

and we address the identification of the influential locations that drive the aggregate sales of

these new technologies. We put forward a model where sales are a function of the online search

registered at many different locations. We will refer to this model as the sales-search model.

We know that consumers search for technologies (or products) online and we posit that online

search should be a good predictor of sales. However, people in many different locations search

for products while only the consumers living in a subset of these locations may be the key groups

driving the sales of new technologies. Moreover, the influential locations may not always be the

same. And, the cross-influence among locations may be important and time-varying or fixed in

time.

We present an approach that is new to the marketing literature and we study new search

data obtained from Google Insight. Our novelty is that we use the sales-search model together

with Bayesian Variable Selection techniques to select the locations that are most likely driving

the aggregate sales of these three new technologies. We use this methodology because there are

many possible important locations and a straightforward choice between them is not possible. In

addition, we present a second model with Multivariate Conditional Autoregressive priors (known
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as MCAR priors) to study the cross-location influence, the significance of spatial clustering of

influential locations and the competing relationships between technologies. We will refer to this

model as the spatial model.

Our data consists of the aggregate weekly sales of the Nintendo Wii, the PlayStation 3

and the Microsoft Xbox 360 for the entire US market and online search data for each of these

products. The online search data were obtained from Google Insight and these data consist of

weekly indicators of online search for each of these technologies in each US state. The data

cover a period from the launch time of each technology up to February 2010 (approximately

four years) for both the sales and the online search data. This dataset is attractive because it

allows us study three very successful technologies that receive worldwide interest. These three

products were marketed simultaneously in all US states and this fact allows us to discard the

explanation that a region may become influential because its products were available at an earlier

introduction date relative to other regions.1 Moreover, these technologies have unique names

and they have kept these unique names for long periods of time and therefore we can obtain

reliable online search data for all US states.2 The sales data we observe can be easily classified

in different periods of the products’ life-cycle and we will identify the influential locations at

these product life-cycle stages. We base these life-cycle stages on Rogers (2003) who suggests

that innovations are characterized by five periods when different groups of people (innovators,

early adopters, early majority, late majority and laggards) adopt an innovation. In this way we

will be able to uncover the location of influential groups of adopters at different life-cycle phases

of the products. Our results suggest that the influential regions driving aggregate sales differ

across the life-cycle of a technology. Moreover, our approach uncovers geographical clustering

of both influential and not influential regions. Influential regions seem to be close to each other

but we find that their influence and the geographical clustering varies over time. In addition, we

find only a weak association between demographic information and the probability that a region

is influential. Finally, our results indicate that a 10% increase in local online search translates

1For example, the launch time of the products studied by van Everdingen et al. (2009) differs across
countries.

2Note that it is impossible to obtain state level sales data. We made inquiries at different market
research firms, including NPD group, and to our knowledge there are no firms collecting these data.
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on average into a 1.5% percent increase in global sales but this number varies across regions and

diffusion periods and its range goes from 0 up to 3%.

The plan of the chapter is as follows. In Section 5.2 we discuss previous literature and its

relationship to our work. In Section 5.3 we present our methodology. Later in Section 5.4 we give

details about our data and some specific details regarding our model. In Section 5.5 we present

our results and finally in Section 5.6 we conclude the chapter. The statistical methodology that

we use is presented in detail in Section 5.A and Section 5.A.

5.2 Literature Review

The literature related to our work can be classified into micro-studies of adoption, like Choi

et al. (2009), Goldenberg et al. (2009), Trusov et al. (2010), Garber et al. (2004) and Jank

and Kannan (2005), and into macro-studies of technology diffusion, like van Everdingen et al.

(2009), Albuquerque et al. (2007) and Putsis Jr et al. (1997).

van Everdingen et al. (2009) examine the global spillover effects of product introductions

and take-offs. They find that the product take-off in a country can help to predict the take-

off of the same product in different countries. In addition, they report asymmetric patterns

of influence and foreign susceptibility. The heterogeneity in the spill-over effects is significantly

explained by economic and demographic characteristics. Moreover, van Everdingen et al. (2009)

discuss briefly the time dimension of influence. Their results suggest that there are countries

that have a large impact on others late in the diffusion process, while other countries may have

a smaller influence but sooner. Albuquerque et al. (2007) study the global adoption of two ISO

certification standards and their results indicate that cross-country influence is important and

it improves the fit of their model. They find that the role of culture, geography and trade in the

adoption process is different across the ISO standards. They use a multi-country diffusion model

and therefore they assume that a firm’s adoption is influenced by previous cumulative number

of adoptions by other firms in different countries. Therefore, the global cumulative adoptions

of ISO standards foster more adoptions. Albuquerque et al. (2007) also find that the influence

of cumulative past adoptions is stronger among firms close to each other or between firms in
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neighboring countries. Finally, Putsis Jr et al. (1997) study cross-country and inter-country

diffusion patterns and they report important cross-country influence on diffusion. Their findings

suggest that each country’s influence varies from product to product.

The micro diffusion studies have documented the role and economic value of influential

people in a social network (Trusov et al., 2010; Goldenberg et al., 2009) and the formation of

spatial clusters (Garber et al., 2004; Choi et al., 2009; Jank and Kannan, 2005). The study

of Garber et al. (2004) deals with the spatial distribution of adoption. They discovered that

the spatial pattern at early stages of the diffusion of a technology is an accurate predictor of

new product success. They argue that spatial clustering is a sign of imitation and therefore if

the spatial distribution of adoption shows clusters it is very likely that the diffusion process will

continue and sales will eventually take off. They compare the spatial distribution of adoption

against a uniform distribution of adoption and they find that successful products show an early

spike of divergence between these two distributions (cross-entropy) while the cross-entropy of

product failures remains relatively constant and low.

More recently, Choi et al. (2009) studied the temporal and spatial patterns of adoption in

Pennsylvania and they discovered that the spatial clusters of adoption change over time and that

the cross-region (cross zip code) influence decays over time. In the same way, Jank and Kannan

(2005) report spatial clusters of customers with the same price sensitivity and preferences and

they use spatial random effects to capture the geographical variation in preferences. The study

of Hofstede et al. (2002) is focused in identifying spatial country and cross-country segments

and they find evidence of contiguous and spatial clustering of consumer preferences. They argue

that the spatial dependence in preferences should be useful to define distribution and marketing

decisions across countries. Bradlow et al. (2005) provide an overview of spatial models and

their relationship to marketing models. Finally, Trusov et al. (2010) and Goldenberg et al.

(2009) suggest that influentials can have a significant economic value and they may foster the

diffusion of new technologies.

In this chapter we explore the time dimension and the spatial structure of influence at the

level between micro and macro, that is at the regional level within a country. The objective

of van Everdingen et al. (2009) and Albuquerque et al. (2007) is to identify the cross-country
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influence while our objective is to discover whether a region is influential and when it is in-

fluential. In contrast with previous research, in our study a region may be influential initially

while later it may exert no influence at all or the other way around. That is, we consider the

influence across the life-cycle of the products’ diffusion while previous research has not focused

particularly on this aspect. Moreover, the Bayesian Variable Selection technique that we use

to detect influentials also distinguishes our study from previous work at a technical level. Fi-

nally, the visual inspection of our results suggests important geographical clusters of influential

regions and we study whether these geographical clusters of influence are statistically relevant.

For this latter purpose, we fit a spatial model with MCAR priors and perform tests to detect

spatial clusters. It is the univariate version of this prior that has recently been applied in some

marketing studies, an example is Duan and Mela (2009). The MCAR prior can incorporate

both the spatial structure of the data as well as the relationship between technologies. To our

knowledge, we are the first to use an MCAR prior on a marketing application while it must be

mentioned that this prior is frequently used in bio-statistics and environmental studies.

5.3 Methodology

The approach we use consists of two main parts. First, in Section 5.3.1 we describe how we use

Bayesian Variable Selection techniques to identify the regions and the sub-periods during which

each region is likely to drive aggregate sales. The Bayesian Variable Selection technique will

let us compute the posterior probability that a region is influential for any given sub-period.

In Section 5.3.2 we specify a second model to study these posterior probabilities and our main

objective in this section is to test whether there are important spatial clusters or demographic

variables explaining these inclusion probabilities.

5.3.1 The Sales-Search Model

We observe the aggregate sales yit of i = 1, . . . ,M technologies at time t = 1, . . . , T . We

also observe the online search sijt for each of these i technologies at J different locations for

j = 1, . . . , J and time periods t = 1, . . . , T . In addition, sijtn will refer to the search observed
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at location j at a time t that is included in sub-period n, for n = 1, . . . , N . We define sub-

periods of diffusion because we are interested in studying the early, mid and late diffusion of the

technologies.

The sales equation is specified as

yit =
∑

j

∑
n

βijnsijtn + εit where εit ∼ N(0, σ2
i ). (5.1)

where both yit and sijtn are in logs; sales are measured in hundred thousands and search is

measured as an “interest indicator” and its range goes from 10 to 110. We give more details

about the data in Section 5.4. We specify a technology i, sub-period n (for n = 1, . . . , N) and

region j specific coefficient βijn and the error term εjt is assumed to be normal with zero mean

and variance σ2
i .

This specification sums over all sub-periods n and locations j but estimating such a model

may be impossible when the total number of regressors J × N is large relative to T . Note that

in practice J ×N can be even much larger than T . Moreover, it is very likely that many of the

βijn = 0 because of the likely correlation among the sijn and the fact that some locations may

simply do not drive sales. Hence, we need to select a subset location specific regressors that

consists of the best set of all possible regressors. We will call the set of all possible regressors X

and we will use Xγ to refer to the subset of best regressors. We will call qγ to the total number

of elements in Xγ and p to the total number of elements in X. That is, Xγ ⊂ X and X is a set

containing sijn for j = 1, . . . , J and n = 1, . . . , N . The purpose is to select a model that sums

only over this subset. Therefore we specify

yit =
∑

j

∑
n

γijnβijnsijn + εit where εit ∼ N(0, σ2) (5.2)

as the sales equation where γijn is a technology and region sub-period specific indicator that

takes the value of 1 if sijn is in the subset Xγ and zero otherwise. Note that JN potential

regressors result in 2JN possible subsets and vectors γi where γi = (γi11, . . . , γiJN )′.

One could suggest for equation (5.2) that we could also sum over i on the right hand side

and not only j and n. That is, the sales of a technology could be a function of the search for
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all technologies in the market. However, in our application there are over 2.57 × 1061 (that is

251×4 where 51 is the number of locations and 4 is the number of sub-periods) possible subsets of

regressors and if we were to sum over i there would be more than 1.69 × 10184 (that is 23×52×4)

subsets of models. That is 6.61 × 10122 more subsets. Therefore, we study the relationship

between technologies with a different model and we discuss this second model later in this

section. A second issue is that sales are a function of search while at the same time search may

be a function of sales. We are aware of this possible endogeneity of sales and search but as we

are using local indicators for search and aggregate measures for sales we believe the endogeneity

between them should be relatively weak. Finally, the right hand side could contain lags of the

search indicators. However, the inclusion of lags forbids us to compare the inclusion reason across

locations. For example, a location may be selected because it has an important lagged effect

while another location because of its contemporaneous effect on sales. We restrict the model to

a contemporaneous relationship between sales and search to be able to use the probability of a

location regressor to be in Xγ at a later stage in the spatial model.

We use Bayesian Variable Selection (BVS) as presented in George and McCulloch (1997) and

Chipman et al. (2001) to select the best subset of regressors. To use BVS we need proper priors,

we specify π(βi|σi, γi) as in Equation (5.5) and π(σ2
i |γi) as in equation (5.7); these are the prior

distributions of βi coefficients and the variance σ2
i where βi = (βi11, . . . , βiJN ) and we specify

the prior distribution of the indicators π(γi). We use equations (5.9) and (5.10) to define the

prior on γ. BVS is an attractive technique because we can draw inferences on the probability

of inclusion for each potential regressor in model (5.2). That is, we can draw inferences on

the posterior distribution of the indicators given the data π(γi|yi) where yi = (yit, . . . , yiT )′.

We estimate model (5.2) for each of the technologies separately and details of our estimation

approach are presented in the Appendix. In the Appendix we drop the sub-index i because we

use the same prior specification for all technologies.

5.3.2 The Spatial Model

The indicator vector γi is composed of location and sub-period indicators and based on BVS

we can compute for each element of the vector γi the probability that it equals one. That is,
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we can compute each region’s posterior probability to be included at any sub-period and this

posterior is available for each of the technologies. We will refer to the logit transformation3 of

this posterior probability as p̄ijn where as before i refers to the technology, j to the location and

n is the sub-period index.

Our objective is to test whether the variation in inclusion probabilities is explained by demo-

graphic variables and whether there are significant spatial effects in these inclusion probabilities.

Hence, we propose a model where the posterior probabilities of inclusion depend on a set of co-

variates Zn and their corresponding coefficients δn plus spatial effects Φn and some noise εn.

We propose that

P̄n = Znθn + Φn + εn (5.3)

where P̄n = (p̄′1n, . . . , p̄′Mn), p̄′in = (p̄i1n, . . . , p̄iJn). That is, P̄n is a J × M matrix with the

inclusion probabilities of each of the J locations for each technology in M columns. Zn are

covariates available for period n where Zn is a J×K matrix where K is the number of covariates.

We assume θn = ι ⊗ δn is a K × M matrix with coefficients where ι is a row vector of ones of

size M and δn is a K × 1 vector of coefficients. Φn = (φ′1n, . . . , φ′Mn), φ′in = (φi1n, . . . , φiJn) and

εn = (ε′1n, . . . , ε′Mn) with ε′in = (εi1n, . . . , εiJn). Both Φn and εn are J × M matrices.

The spatial effects Φ are a function of the relationships between technologies and the neigh-

borhood structure of the market. The Φ matrix is composed of one spatial effect for each

location and technology. Each spatial effect, in general terms, depends on the spatial effects

of all technologies at neighboring locations. Hence, the spatial effects reflect spatial clustering

but they do not detect the direction of influence between locations. This property of the spatial

effects is specified in a prior distribution that depends on Λ, Ψ and ρ where Λ is a M×M matrix

with the covariance structure between the technologies, Ψ is a J × J matrix that measures the

neighborhood or the spatial structure of the market and ρ is a parameter that measures spatial

auto-correlation. The element Ψkl is either a fixed distance between location k and l or an

indicator that takes a value of 1 if the location k is a neighbor of l and zero otherwise. In the

Appendix we provide details on how we draw inference about ρ, Λ, δn and the covariance matrix

3The function is log(p/(1-p)). A second transformation may be log(-log(p)). We tested both trans-
formations and our results are similar.
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associated with εn. Note that Ψ is a fixed matrix with the neighborhood structure and hence

we do not estimate it. We give more details about Ψ in the next section.

Next, we use this specification to explore if there are significant spatial effects Φ in the

posterior probabilities of inclusion for each region during each sub-period n and if there is a

relationship between the inclusion probabilities between technologies after controlling for the

covariates in Zn. Note that in the equation (5.3) we are pooling all technologies i = 1, . . . ,M

together. The reason we pool technologies together is that their inclusion probabilities may be

related to each other. For example, Texas could be the driver of growth for one technology but

not for all technologies. That is, technologies may be competing against each other when the

sign of the covariance terms in the Λ matrix are negative.

5.4 Data and Modeling Details

Weekly search indicators are available online from Google Insight for all US states and the

weekly series of sales data for the video-game consoles were obtained from VGchartz.com. The

data of VGchartz follows very closely the monthly figures of the NPD group. We use the latest

(year 2000) demographic information of the US Census Bureau for all US states.

In Figure 5.1 we present a printed screen with the exact keywords that we used to retrieve the

search data from Google Insights for Search (http://www.google.com/insights/search/). In

Table 5.1 we provide the R code to automatically retrieve the data from http://www.vgchartz.

com/.

To estimate the parameters of equation (5.2) we used MCMC and the chain ran for 210

thousand iterations and we discarded the first 10 thousand. The equation that we used includes

a spline term that captures the seasonal fluctuation of yi and its overall level. We fit a smoothing

spline of yi as a function of time and we use 10 degrees of freedom as the smoothing parameter;

we refer to Hastie et al. (2001, page 127-137) for mode details on fitting smoothing splines.

Sloot et al. (2006) also use spline terms to capture seasonal fluctuations. The spline term is

always included on the right-hand side of the model and we do not use BVS on this term.

Finally, note that we used the logs of yi and the sijn and that yit are the sales of the technology
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i at the end of week t and sijt is the online search index for the technology i at state j during

the week t.

Next, we use MCMC to estimate the parameters of equation (5.3) and the chain ran for

2000 iterations and we discarded the first 1000. We used much less draws than before because

convergence for a linear model is quite fast. We run the estimation for each sub-period separately

and therefore we estimated the parameters of equation (5.3) for each period.

We divide the sales data of each consoles in four periods of equal length. These periods

roughly correspond with the first four stages of adoption proposed by Rogers (2003). It is likely

that in practice the length of each period varies per product or industries. For example, we know

that the time to take-off is different across countries while within a country the take offs tend to

occur at a systematic time difference relative to other countries (van Everdingen et al., 2009;

Golder and Tellis, 1997; Tellis et al., 2003). Additionally, we choose periods of equal length to

be able to compare the influential locations across products for exactly the same period of time.

In this way we can naturally make cross-product comparisons.

We estimate equation (5.2) and equation (5.3) separately because we prefer not to impose

any spatial structure on the prior probability of including regressors in the prior for the indicator

variables, that is π(γ). We estimate equation (5.3) for each life-cycle stage. The disadvantage

of treating equations (5.2) and (5.3) separately is that the uncertainty of the first model is not

taken into account in the second model. A technical reason to keep the estimation of these

equations separately is that the posterior probabilities of inclusion are computed using the full

MCMC chain and therefore we know them only at the end of the estimation. However, the most

important reason to keep the estimation in two steps is not to impose a priori a spatial structure

in the inclusion probabilities. In this way, we leave the task of testing for spatial clustering as

a second step and we may be able to provide stronger evidence of any spatial structure.

We checked for convergence of the MCMC chains visually. We give more details about the

estimation approach and about the MCAR models in the Appendix.
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5.5 Results

In this section we first discuss the results for the sales-search model in equation (5.2) and then

for the spatial model in equation (5.3).

5.5.1 Sales-Search Model Results

In Figure 5.2 we report the posterior distribution of the number of regressors included in the

model, that is qγ . The average number of regressors included in the model is around 17 with a

minimum near 5 and a maximum of 35 regressors. If the regressors were uniformly distributed

among diffusion periods this would mean an average of 4 regressors per diffusion period.4

In Figure 5.3, 5.4 and 5.5 we graphically report the posterior means of the inclusion proba-

bilities for all US states and for the Nintendo Wii, the Sony PS3 and the Xbox 360, respectively.

All these probabilities are also reported in Table 5.2, 5.3 and 5.4. In Figures 5.3, 5.4 and 5.5 the

lighter (green) colors represent high posterior probabilities while the darker (red) colors repre-

sent low inclusion probabilities. We include a map of the USA including state names in Figure

5.17 to facilitate the reading of these figures.

In Figure 5.3 we can observe that the states with the higher inclusion probabilities during the

first diffusion period of the Nintendo Wii are Washington, Texas, Alabama, Wyoming, Kansas

and New Hampshire. So, this means that these states are more likely to drive the sales of the

Wii at an early stage of the Wii’s life-cycle. It is noticeable too that the Western states are

more likely to be included in the first diffusion period while the North-Eastern states have very

low probability of inclusion. However, during the third diffusion period the Western states are

not likely to be included in the model while it is more likely to include states in the center

and North-East of the US. In the last diffusion period we find that very few states have high

probabilities and these are Montana, North Dakota and New Hampshire. That is, there are

many locations driving the growth of the Wii at early life-cycle stages and relatively few engines

of growth at the end.

4Note that we chose υ1 = 7 and a = 50 and b = 100 (the parameters of the distribution of the prior
inclusion probability w, see equations (5.9) and (5.10)) and this set-up results in a relatively small number
of selected regressors qγ .
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The geographical pattern for the Sony PS3 is slightly similar to the pattern of the Nintendo

Wii. However, we find that during the first diffusion period there are many more states (relative

to the Wii) with high probability of inclusion. Again, all states in the West (California, Nevada,

Oregon and Washington) have higher inclusion probabilities but for the PS3 many states in

the East and North-East also have high probabilities during this first period. In fact, there are

very few states with low probability of inclusion during the first period and these are North and

South Dakota and Minnesota together with Kentucky and West Virginia. The opposite happens

during the last diffusion period where many states have low probability of being included in the

model. The probability of the West Coast states is high at the beginning and their influence

seems to diminish in subsequent periods. The maps seem to be revealing a boom bust pattern.

That is, many states may be influential during the first diffusion period but of this first set

of countries very few remain influential in the last diffusion period and other states take the

influential position.

The geographical pattern for the Microsoft Xbox 360 is very different from the other two

consoles. The states with higher probabilities at each diffusion period are fewer than for the

other two consoles and the influential states seem to be far from each other. However, for all

regions, with the exception of Washington and Oregon, the states that seem more likely to be

included in the model are in the North and North-East of the US.

An immediate question about these results is whether there is evidence of geographical

clusters. At first glance, influential regions seem to be neighbors of other influential regions

while not influential regions seem to be clustered together too. However, we may have some

bias when judging probability distributions (Kahneman et al., 1982, page 32) and therefore we

need some formal way to measure spatial association. Two statistics that can measure spatial

association in aereal data are the Moran’s I and the Geary’s C (Banerjee et al., 2004, page 71).

We computed both the Moran’s I and Geary’s C for all sub-periods and technologies and we

compared these two statistics, computed with the estimated inclusion probabilities, against the

distribution of these two statistics when we assume that the probability of inclusion is uniformly

distributed. Garber et al. (2004) also compare the observed spatial distribution of adoption

against the uniform distribution. High spatial association is indicated by high Moran’s I or by
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low Geary’s C statistics. In Figure 5.6 we report the statistics computed with the real inclusion

probabilities (in vertical dashed lines) and the distribution of both statistics (in the histograms)

assuming the inclusion probabilities follow a uniform distribution.5 As we can observe in Figure

5.6, when the inclusion probabilities are uniformly distributed the chances are very low to

obtain the statistics in the extremes where the Moran’s I and Geary’s C based on the estimated

inclusion probabilities appear. In the next section we discuss the results regarding the spatial

model (equation (5.3)) where we further investigate the significance of the spatial clustering.

In the left panel of Figure 5.7, 5.8 and 5.9 we report the histogram of the posterior mean of

the β coefficients for all sub-periods of the Nintendo Wii, the PS3 and Xbox 360, respectively.

We report the distribution of the β|γ = 1 coefficients. That is, we report their distribution given

that their corresponding regressor was included in the selected subset of regressors Xγ and we

refer to these coefficients simply as β. In the right hand panel of the same figures we report

the distribution of the posterior mean of the β coefficients divided by their posterior standard

deviation. As we can see, the size of the β coefficients seems to be centered around 0.15 for the

Nintendo Wii and the Xbox 360 and around 0.12 for the PS3. This means that on average a local

(state) increase of 10% in search translates into a 1.5% or 1.2% increase in the global (nation)

sales. The significance of the β coefficients varies from 1 up to 2 and there are approximately 25

regressors with a ratio (posterior mean over posterior standard deviation) higher than 1.5 and

this number is quite satisfactory for a model with an average number of 17 regressors included.

In Figures 5.3, 5.4 and 5.5 we noticed that the probability of inclusion of different regions

varies depending on the time period. In Figures 5.10, 5.11 and 5.12 we draw a scatter plot

between the posterior mean of the search elasticity (the β coefficients) for each state and their

probability of inclusion for the Nintendo Wii, the PS3 and Xbox 360, respectively. The vertical

and horizontal lines correspond with the average inclusion probability and the average search

elasticity, respectively. What we see in all three figures is that the place where states appear

varies not only relative to their inclusion probabilities but also relative to the search elasticities.

For example, in Figure 5.10 we see that the states with above average search elasticity and above

5We assume that the inclusion probability of each state is independent and identically distributed
from other states and they follow a uniform with range [0,1]. We draw the probability for every state
from the uniform and then we compute the Moran’s I and Geary’s C for L number of draws to obtain
the probability distribution of these two statistics.
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average inclusion probability (upper right quadrant) during the first period are Kansas, New

Hampshire, Delaware, New Mexico, Nebraska, Arizona, New Jersey and California. However,

the upper right quadrant states that appear in the following periods are different. For example,

during the forth period the upper-quadrant states are North Dakota, Montana, Maine and New

Hampshire. The Figures 5.11 and 5.12 for the PS3 and Xbox 360 confirm the same pattern,

different groups of states appear at each quadrant of the scatter plots at each sub-period. These

results point that some states may be important earlier in the diffusion of a technology while

other states become important during later states of the diffusion. Note that this result is not

explained by different introduction dates as the three consoles were launched simultaneously in

all US states.

The sales-search model takes into account the relationship between aggregate sales and the

online search at many different locations. This provides with interesting inclusion probabilities

and we can rank the states according to their power to drive the aggregate sales. If we were to

ignore all these details and we run a simple regression between aggregate sales and aggregate

online search we obtain the results reported in Table 5.13. The overall sensitivity of sales to

aggregate search (an indicator of search for all US) is larger than the sensitivity of sales to

state-specific search. The estimates range from 0.17 up to 0.46, see the coefficient of search in

this table. These last results seem intuitive but we miss the detailed region-specific analysis and

a possible spatial story behind the results of the sales search model.

5.5.2 Results of the Spatial Model

In Table 5.5 we report the posterior mean and the posterior standard deviation of the δ coef-

ficients of the spatial model (5.3). In the Table we report the δ coefficients for a set of seven

variables. We tested other demographic variables measuring the ethnic origin and age distri-

bution but we did not find them as significant and they were highly correlated with the set of

seven variables that we kept in the model.

As we can observe, our results indicate that there is not a very strong association between

demographic variables and the inclusion probabilities at each state. The reason why the posterior

standard deviations might be large is because we have only 48 states in the probability model
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and therefore we have very few observations to estimate the coefficients. A second reason may

be that we observe a relatively small variation in our dependent variable. Nonetheless, we find

some interesting features in the δn coefficients.

The variables that seem to be relevant are the percentage of the population in college dorms

and the percentage of the population that is married (percentage of households with married

couples). Both of these variables are somewhat significant during the first and second diffusion

periods. The effect of travel time to work is not significant but it is most of the time negative,

as we would expect given than longer commuting time reduces leisure time to play video games

or to search for consoles. Population density and income per capita seem to be slightly more

important in the last diffusion stage while in the first stages of diffusion they are not. A last

important feature to notice is that in many cases the size and sign of the δn coefficients may

vary according to the diffusion stage of the products. For example, it may be that students and

married couples tend to buy more video-game consoles at an early stage, as a high proportion of

these groups increases the chance of a state being influential, while these groups may not buy at

the end of the diffusion when we see that other parameters like population density and income

per capita are slightly more important.

We estimate the spatial random effects Φn along side with the δn coefficients and we report

their posterior mean and their posterior mean divided by their posterior standard deviation in

Tables 5.6, 5.7, 5.8 and 5.9 for the first, second, third and fourth diffusion periods, respectively.

In contrast with the δn coefficients, several of the spatial effects are significant. For example, in

Table 5.6 we see that the spatial effect of Texas is significant both for the Nintendo Wii and the

PS3 while it is not for the Xbox 360. This means that Texas is more likely to be driving the

sales of the Wii and PS3 relative to the Xbox 360 during the first diffusion period. In the same

table we notice that Ohio, South Dakota and Washington are positive and significant for the

Xbox 360. The spatial effect of Washington is significant for all three technologies. Tables 5.7,

5.8 and 5.9 show similar many significant spatial effects during the rest of the diffusion periods.

In Figures 5.13, 5.14, 5.15 and 5.16 we report the distribution of the spatial effects for the

Nintendo Wii and the first, second, third and fourth diffusion periods, respectively. In Figure

5.13 we can observe that for the first diffusion period the states with higher posterior spatial
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effects are Alabama, Delaware, Kentucky, Texas, Washington and Wyoming. The states with

the lowest spatial effects are Georgia, Massachusetts, Missouri and Rhode Island. Texas and

Wyoming continue to have a high spatial effect in the next diffusion period, see Figure 5.14 but

the other states that had a high spatial effect in the first period no longer continue to be high in

the second. In general, the spatial effect for each state varies according to the diffusion time of

the technologies. For example, according to our results Texas is very influential for the Nintendo

Wii at an early stage of its life-cycle while this state is not influential at the end of the life-cycle

of the Wii.

We are finding significant spatial random effects for several states and all diffusion periods.

However, a natural concern is whether the δn coefficients may have a different level of significance

if we were to exclude the spatial effects from equation (5.3). In Table 5.10 we report the same δn

coefficients estimated with ordinary least squares and their level of significance is relatively the

same as before. Again, the population in college dorms and the percentage of households with

married couples seem to be the more important variables. That is, the spatial effects explain

geographical variation without affecting the inference we draw from the posteriors of the δn

coefficients.

In Table 5.11 we present the posterior distribution of the correlations derived from the

matrix Λ. The matrix Λ is a 3 × 3 covariance matrix and it measures the covariance between

the spatial effects of different technologies. In the first diffusion period, for example, we find

that the correlation of the spatial effects of the Xbox 360 are negatively correlated with the

spatial effects of the PS3. The posterior mean of the correlation is −0.257 and the association

is significant (zero is almost excluded from the 95% highest posterior density region). This

negative correlation implies that if a state is likely to drive the sales of the Xbox 360 then it is

not likely to drive the sales of the PS3. The association between the spatial effects of the Wii and

those of the Xbox and PS3 are not different from zero (in these cases 0 is almost in the middle

of the highest posterior density region) during the first diffusion period. We find some other

significant associations during the third and fourth periods while in the second period we find no

association between the spatial effects of the different technologies. The variation in correlation

structure shows that at an early stage there is some degree of competition only between the
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PS3 and Xbox 360 (because of the negative correlation in their spatial effects) while at later

stages technologies seem to nurture each other (because we find significant positive correlations

in their spatial effects).

Finally, in Table 5.12 we report the highest posterior density region for the ρ coefficients.

We find roughly the same spatial decay (or spatial correlation) during all diffusion periods.

The posterior mean of the ρn for all n is around 0.82. This number should be between 0 and

1 and numbers close to 1 indicate high spatial correlation between a state and its neighbors.

The estimate of the ρ coefficient together with the Φn spatial effects are evidence of significant

clusters of spillover effects between states. We do not know the direction of influence between

the states but the model parameters capture significant spatial dependence among neighboring

states.

5.6 Conclusions

We applied Bayesian variable selection methods to identify the influential locations for the

diffusion of new technologies. We define influential locations as those that are more likely to

drive the aggregate sales of the technologies. For our particular data on game consoles, we find

that the influential locations change over time and that there is geographical clustering that is

significantly captured by the spatial random effects in the probability model and by different

measures of spatial association.

Moreover, we find variation in the groups of influential locations over time and the size of

their associated search elasticity varies over time too. The search elasticity for the technologies

at influential locations is on average 0.15. That is, an increase of 10% in local (state) search

translates into a 1.5% increase in country level sales. Finally, we find some evidence of time

variation in the association between spatial affects. Our results suggest that the geographical

clustering is not driven by demographic heterogeneity and we find some evidence that suggests

that the demographic effects vary over time.

In summary, our results suggest that influential locations may change over time together with

the relationship between technologies and the relevance of demographics. The main managerial
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implications of this research is the notion that the group of influential locations is not fixed and

therefore when a manager is looking to identify influentials, she or he should expect influentials

to play a role at different locations and at different times. If managers were to ignore the spatial

heterogeneity they will miss the valuable insights of how to allocate their marketing efforts based

on the important locations for their products. The relevant question is not only who is influential

but where and when and for how long a consumer or a group of consumers is influential.
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5.7 Tables and Figures

library(RCurl)

library(XML)

wii_sales<-rep(0,416)

week.numbers<-seq((39838)-2184,40358,by=7)

for(i in 1:416)

{

part1<-"http://vgchartz.com/hwtable.php?cons[]=Wii&reg[]=America&start="

part2<-"&end="

week<-week.numbers[i]

url.dir<-paste(part1,week,part2,week,sep="")

url.text <- getURL(url.dir)

doc <- htmlParse(url.text,useInternalNodes=TRUE, error=function(...){})

x = xpathSApply(doc, "//table//td|//table//th", xmlValue)

wii_sales[i]<-as.numeric(gsub(",", ".", x[12]))

}

write.csv(wii_sales,file="wii_data.csv")

Note that the keyword Wii should be changed to PS3 or X360
to retrieve the data for each of these consoles.

Table 5.1: R Code to Retrieve Data from VGChartz.com
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Posterior Inclusion Probabilities
1st Period 2nd Period 3rd Period 4th Period

Alabama 0.111 0.083 0.080 0.117
Alaska 0.074 0.069 0.091 0.115
Arizona 0.092 0.110 0.070 0.075
Arkansas 0.091 0.093 0.103 0.089
California 0.093 0.093 0.081 0.116
Colorado 0.076 0.069 0.098 0.079
Connecticut 0.074 0.057 0.103 0.071
Delaware 0.105 0.058 0.079 0.103
District of Columbia 0.076 0.108 0.077 0.083
Florida 0.096 0.061 0.090 0.077
Georgia 0.056 0.079 0.089 0.076
Hawaii 0.072 0.096 0.077 0.099
Idaho 0.086 0.082 0.075 0.112
Illinois 0.073 0.092 0.080 0.066
Indiana 0.079 0.059 0.065 0.082
Iowa 0.077 0.077 0.083 0.125
Kansas 0.108 0.085 0.088 0.083
Kentucky 0.075 0.091 0.093 0.099
Louisiana 0.102 0.122 0.081 0.065
Maine 0.079 0.080 0.090 0.137
Maryland 0.059 0.088 0.057 0.079
Massachusetts 0.084 0.119 0.096 0.074
Michigan 0.070 0.079 0.086 0.086
Minnesota 0.078 0.098 0.088 0.074
Mississippi 0.058 0.092 0.105 0.060
Missouri 0.086 0.075 0.088 0.093
Montana 0.095 0.084 0.099 0.173
Nebraska 0.092 0.073 0.093 0.090
Nevada 0.096 0.096 0.068 0.094
New Hampshire 0.105 0.097 0.076 0.154
New Jersey 0.095 0.127 0.103 0.073
New Mexico 0.099 0.096 0.113 0.105
New York 0.078 0.068 0.080 0.054
North Carolina 0.096 0.071 0.083 0.066
North Dakota 0.081 0.086 0.082 0.190
Ohio 0.078 0.090 0.102 0.089
Oklahoma 0.082 0.098 0.081 0.078
Oregon 0.098 0.144 0.063 0.055
Pennsylvania 0.064 0.081 0.065 0.062
Rhode Island 0.086 0.074 0.082 0.101
South Carolina 0.090 0.075 0.083 0.097
South Dakota 0.098 0.079 0.070 0.098
Tennessee 0.092 0.073 0.119 0.068
Texas 0.129 0.075 0.086 0.094
Utah 0.097 0.097 0.089 0.097
Vermont 0.076 0.073 0.136 0.091
Virginia 0.100 0.070 0.079 0.086
Washington 0.126 0.073 0.065 0.095
West Virginia 0.073 0.062 0.108 0.119
Wisconsin 0.072 0.076 0.131 0.060
Wyoming 0.107 0.115 0.107 0.119

Note: In bold probabilities larger than 0.10

Table 5.2: State Inclusion Probabilities for Each Diffusion Period for the Nintendo Wii
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Posterior Inclusion Probabilities
1st Period 2nd Period 3rd Period 4th Period

Alabama 0.088 0.073 0.094 0.086
Alaska 0.081 0.094 0.084 0.185
Arizona 0.081 0.063 0.091 0.057
Arkansas 0.101 0.090 0.098 0.093
California 0.096 0.096 0.088 0.080
Colorado 0.106 0.092 0.092 0.099
Connecticut 0.104 0.102 0.093 0.076
Delaware 0.086 0.078 0.118 0.090
District of Columbia 0.088 0.099 0.098 0.075
Florida 0.100 0.079 0.091 0.083
Georgia 0.095 0.097 0.103 0.067
Hawaii 0.098 0.080 0.094 0.088
Idaho 0.092 0.085 0.080 0.076
Illinois 0.091 0.107 0.082 0.088
Indiana 0.085 0.081 0.104 0.085
Iowa 0.087 0.102 0.087 0.093
Kansas 0.079 0.094 0.083 0.080
Kentucky 0.070 0.098 0.084 0.085
Louisiana 0.087 0.093 0.091 0.076
Maine 0.086 0.071 0.073 0.115
Maryland 0.095 0.119 0.085 0.093
Massachusetts 0.095 0.093 0.082 0.071
Michigan 0.089 0.109 0.081 0.086
Minnesota 0.073 0.068 0.081 0.086
Mississippi 0.086 0.085 0.087 0.078
Missouri 0.084 0.093 0.087 0.084
Montana 0.091 0.089 0.089 0.103
Nebraska 0.092 0.109 0.089 0.093
Nevada 0.096 0.087 0.090 0.072
New Hampshire 0.091 0.087 0.090 0.140
New Jersey 0.090 0.094 0.072 0.071
New Mexico 0.083 0.097 0.069 0.105
New York 0.096 0.089 0.093 0.064
North Carolina 0.103 0.083 0.082 0.071
North Dakota 0.070 0.076 0.084 0.094
Ohio 0.088 0.097 0.105 0.073
Oklahoma 0.080 0.091 0.091 0.084
Oregon 0.104 0.077 0.101 0.102
Pennsylvania 0.089 0.091 0.079 0.074
Rhode Island 0.081 0.087 0.082 0.130
South Carolina 0.090 0.092 0.076 0.090
South Dakota 0.066 0.068 0.079 0.094
Tennessee 0.089 0.087 0.095 0.091
Texas 0.108 0.093 0.113 0.065
Utah 0.101 0.072 0.109 0.097
Vermont 0.090 0.086 0.100 0.141
Virginia 0.096 0.083 0.062 0.073
Washington 0.101 0.081 0.095 0.069
West Virginia 0.074 0.083 0.106 0.097
Wisconsin 0.089 0.087 0.092 0.095
Wyoming 0.092 0.086 0.094 0.090
Note: In bold probabilities larger than 0.10

Table 5.3: State Inclusion Probabilities for Each Diffusion Period for the Sony PS3
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Posterior Inclusion Probabilities
1st Period 2nd Period 3rd Period 4th Period

Alabama 0.085 0.091 0.090 0.079
Alaska 0.104 0.188 0.080 0.199
Arizona 0.077 0.074 0.080 0.054
Arkansas 0.098 0.082 0.087 0.075
California 0.099 0.082 0.075 0.074
Colorado 0.078 0.088 0.087 0.084
Connecticut 0.078 0.081 0.091 0.101
Delaware 0.116 0.136 0.075 0.204
District of Columbia 0.091 0.096 0.097 0.071
Florida 0.102 0.066 0.100 0.065
Georgia 0.084 0.073 0.115 0.092
Hawaii 0.089 0.115 0.055 0.076
Idaho 0.087 0.109 0.076 0.137
Illinois 0.086 0.075 0.105 0.100
Indiana 0.086 0.087 0.074 0.064
Iowa 0.097 0.126 0.083 0.100
Kansas 0.114 0.082 0.087 0.081
Kentucky 0.103 0.078 0.101 0.109
Louisiana 0.067 0.074 0.082 0.058
Maine 0.097 0.113 0.097 0.095
Maryland 0.087 0.066 0.085 0.087
Massachusetts 0.095 0.100 0.085 0.079
Michigan 0.092 0.076 0.096 0.082
Minnesota 0.097 0.092 0.073 0.095
Mississippi 0.096 0.062 0.131 0.080
Missouri 0.079 0.087 0.098 0.073
Montana 0.071 0.059 0.087 0.096
Nebraska 0.084 0.067 0.071 0.095
Nevada 0.093 0.074 0.071 0.084
New Hampshire 0.089 0.098 0.089 0.119
New Jersey 0.085 0.110 0.095 0.071
New Mexico 0.091 0.112 0.071 0.100
New York 0.083 0.106 0.101 0.093
North Carolina 0.091 0.103 0.090 0.066
North Dakota 0.129 0.082 0.113 0.113
Ohio 0.099 0.094 0.083 0.079
Oklahoma 0.086 0.085 0.084 0.094
Oregon 0.116 0.081 0.087 0.081
Pennsylvania 0.096 0.087 0.093 0.085
Rhode Island 0.102 0.113 0.092 0.127
South Carolina 0.090 0.081 0.082 0.073
South Dakota 0.132 0.097 0.118 0.102
Tennessee 0.084 0.096 0.134 0.089
Texas 0.093 0.073 0.078 0.063
Utah 0.085 0.088 0.077 0.059
Vermont 0.082 0.110 0.152 0.082
Virginia 0.103 0.074 0.078 0.064
Washington 0.111 0.101 0.100 0.079
West Virginia 0.085 0.065 0.140 0.114
Wisconsin 0.090 0.087 0.093 0.086
Wyoming 0.070 0.125 0.105 0.084

Note: In bold probabilities larger than 0.10

Table 5.4: State Inclusion Probabilities for Each Diffusion Period for the Microsoft Xbox
360
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MCAR First Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3684 0.0163 -145.2131
Male Female Ratio 0.0103 0.0326 0.3152
Population Density 0.0042 0.0270 0.1569
Population in College Dorms 0.0337 0.0200 1.6820
Married Couple 0.0236 0.0171 1.3834
Travel Time to Work -0.0015 0.0194 -0.0751
Income per Capita 0.0106 0.0157 0.6723

MCAR Second Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.4029 0.0177 -135.4291
Male Female Ratio 0.0345 0.0361 0.9561
Population Density 0.0357 0.0285 1.2506
Population in College Dorms 0.0304 0.0232 1.3138
Married Couple -0.0208 0.0202 -1.0332
Travel Time to Work -0.0183 0.0221 -0.8307
Income per Capita -0.0185 0.0185 -1.0007

MCAR Third Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3715 0.0214 -110.8737
Male Female Ratio -0.0192 0.0409 -0.4694
Population Density -0.0294 0.0343 -0.8562
Population in College Dorms -0.0245 0.0251 -0.9758
Married Couple 0.0231 0.0251 0.9208
Travel Time to Work 0.0163 0.0258 0.6329
Income per Capita -0.0103 0.0199 -0.5181

MCAR Fourth Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3987 0.0283 -84.6213
Male Female Ratio -0.0305 0.0589 -0.5171
Population Density 0.0464 0.0474 0.9795
Population in College Dorms -0.0218 0.0339 -0.6436
Married Couple -0.0013 0.0324 -0.0402
Travel Time to Work -0.0157 0.0352 -0.4457
Income per Capita 0.0191 0.0267 0.7141
Note: The first column reports the posterior mean of the coefficient.
The second column reports the posterior standard deviation and the
third column reports the ratio of the posterior mean over the posterior
standard deviation, called here t-value.

Table 5.5: Posterior of MCAR δ coefficients
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MCAR First Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama 0.260 3.990 0.025 0.380 -0.011 -0.196
Arizona 0.053 0.780 -0.066 -1.203 -0.131 -2.336
Arkansas 0.041 0.770 0.141 2.329 0.110 2.093
California -0.038 -0.481 -0.001 -0.035 0.023 0.356
Colorado -0.164 -2.412 0.154 2.322 -0.141 -2.268
Connecticut -0.213 -2.762 0.135 1.903 -0.155 -2.167
Delaware 0.201 3.464 -0.005 -0.103 0.302 5.033
Florida 0.081 1.306 0.132 2.304 0.150 2.406
Georgia -0.462 -6.174 0.063 1.322 -0.055 -1.172
Idaho -0.243 -3.420 0.053 0.952 -0.034 -0.525
Illinois -0.070 -1.349 -0.007 -0.261 -0.053 -1.149
Indiana -0.232 -4.463 -0.014 -0.237 -0.066 -1.417
Iowa -0.138 -2.370 -0.058 -1.276 -0.051 -0.861
Kansas -0.162 -3.003 -0.037 -0.728 0.074 1.578
Kentucky 0.205 3.492 -0.101 -2.010 0.255 4.228
Louisiana -0.097 -1.705 -0.174 -2.826 0.218 3.517
Maine 0.183 2.815 0.010 0.151 -0.254 -4.285
Maryland -0.099 -1.467 -0.020 -0.460 0.105 1.764
Massachusetts -0.443 -5.272 0.027 0.278 -0.064 -0.882
Michigan -0.078 -1.512 0.041 0.791 0.047 0.952
Minnesota -0.264 -4.806 -0.037 -0.761 0.009 0.107
Mississippi -0.068 -0.913 -0.137 -2.282 0.152 2.150
Missouri -0.409 -5.690 -0.020 -0.524 0.080 1.520
Montana -0.013 -0.253 -0.037 -0.700 -0.095 -1.832
Nebraska 0.069 1.258 0.026 0.548 -0.217 -3.822
Nevada 0.056 0.629 0.055 0.717 -0.030 -0.324
New Hampshire 0.060 0.952 0.060 1.082 0.027 0.455
New Jersey 0.134 1.442 -0.011 -0.131 -0.034 -0.400
New Mexico 0.129 2.338 0.066 1.228 0.012 0.143
New York 0.052 0.622 -0.116 -1.556 -0.029 -0.410
North Carolina -0.160 -3.347 0.046 0.966 -0.099 -1.794
North Dakota 0.089 1.459 0.153 2.331 0.037 0.568
Ohio -0.126 -2.172 -0.266 -3.950 0.342 5.245
Oklahoma -0.125 -2.507 0.003 0.129 0.118 2.365
Oregon -0.065 -1.420 -0.081 -1.685 -0.020 -0.365
Pennsylvania 0.027 0.433 0.075 1.114 0.187 2.729
Rhode Island -0.289 -3.190 0.059 0.587 0.133 1.393
South Carolina 0.035 0.472 0.044 0.780 0.043 0.771
South Dakota 0.108 2.093 -0.276 -4.334 0.409 6.168
Tennessee 0.034 0.688 0.006 0.111 -0.054 -1.247
Texas 0.314 4.926 0.128 2.476 -0.020 -0.262
Utah 0.009 0.147 0.047 0.716 -0.124 -1.475
Vermont -0.139 -2.786 0.037 0.498 -0.057 -1.164
Virginia 0.082 1.547 0.038 0.831 0.109 2.372
Washington 0.353 6.191 0.121 2.318 0.224 4.035
West Virginia -0.160 -2.826 -0.142 -2.508 -0.011 -0.243
Wisconsin -0.242 -4.815 -0.024 -0.626 -0.013 -0.288
Wyoming 0.180 2.908 0.033 0.611 -0.239 -3.781

Note: The numbers correspond to the Φ parameters of the MCAR model for the first
diffusion period. We report the posterior mean of the spatial effects for the Wii, PS3
and X360 and the ratio of the posterior mean over the posterior standard deviation.

Table 5.6: Posterior of MCAR Spatial Effects
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MCAR Second Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama 0.005 0.082 -0.106 -1.394 0.096 1.139
Arizona 0.231 2.843 -0.278 -2.827 -0.148 -1.867
Arkansas 0.096 1.393 0.061 0.972 -0.024 -0.365
California -0.004 -0.039 0.019 0.185 -0.134 -1.459
Colorado -0.211 -2.324 0.053 0.683 0.005 0.091
Connecticut -0.392 -4.157 0.172 1.713 -0.061 -0.599
Delaware -0.365 -4.093 -0.080 -0.950 0.482 5.568
Florida -0.350 -4.939 -0.090 -1.367 -0.284 -3.924
Georgia -0.072 -1.085 0.118 1.746 -0.153 -2.014
Idaho 0.113 1.363 -0.057 -0.792 0.288 3.083
Illinois -0.063 -0.859 -0.020 -0.334 0.217 2.850
Indiana 0.046 0.592 0.180 2.409 -0.152 -2.212
Iowa -0.349 -4.061 -0.047 -0.740 0.017 0.274
Kansas -0.100 -1.419 0.159 2.145 0.382 4.606
Kentucky 0.005 0.129 0.095 1.494 -0.030 -0.495
Louisiana 0.072 0.934 0.127 1.718 -0.089 -1.073
Maine 0.406 5.404 0.123 1.628 -0.104 -1.115
Maryland -0.035 -0.398 -0.140 -1.670 0.305 3.512
Massachusetts -0.054 -0.581 0.232 2.550 -0.321 -3.198
Michigan 0.306 4.063 0.053 0.796 0.129 1.833
Minnesota -0.084 -1.101 0.223 2.738 -0.111 -1.645
Mississippi 0.139 1.745 -0.203 -2.384 0.085 1.070
Missouri 0.082 1.156 0.018 0.254 -0.278 -3.091
Montana -0.163 -2.117 0.044 0.563 -0.017 -0.213
Nebraska -0.020 -0.301 0.034 0.612 -0.351 -3.717
Nevada -0.212 -1.893 0.161 1.571 -0.299 -2.607
New Hampshire 0.176 2.273 0.074 0.955 -0.086 -1.124
New Jersey 0.091 0.830 -0.013 -0.146 0.108 1.013
New Mexico 0.372 4.661 0.069 1.076 0.234 2.975
New York 0.029 0.272 0.032 0.391 0.182 1.950
North Carolina -0.259 -3.558 0.010 0.128 0.177 2.434
North Dakota -0.237 -2.899 -0.075 -1.059 0.134 1.736
Ohio -0.036 -0.403 -0.137 -1.909 -0.087 -1.222
Oklahoma 0.052 0.714 0.102 1.671 0.087 1.135
Oregon 0.128 1.746 0.050 0.816 -0.012 -0.202
Pennsylvania 0.442 4.291 -0.143 -1.726 -0.105 -1.268
Rhode Island -0.139 -1.234 -0.022 -0.172 -0.079 -0.691
South Carolina -0.133 -1.663 0.080 1.223 -0.055 -0.710
South Dakota -0.102 -1.486 -0.216 -2.726 0.096 1.267
Tennessee -0.137 -1.954 0.027 0.502 0.108 1.570
Texas -0.171 -2.121 0.043 0.518 -0.207 -2.642
Utah 0.160 1.554 -0.118 -1.298 0.078 0.766
Vermont -0.137 -1.648 0.025 0.432 0.269 3.278
Virginia -0.181 -2.476 -0.013 -0.137 -0.125 -1.923
Washington -0.156 -1.911 -0.051 -0.760 0.164 1.966
West Virginia -0.251 -2.873 0.018 0.230 -0.211 -2.454
Wisconsin -0.143 -1.858 0.000 -0.016 -0.011 -0.187
Wyoming 0.254 2.904 -0.031 -0.453 0.333 3.692

Note: The numbers correspond to the Φ parameters of the MCAR model for the
second diffusion period. We report the posterior mean of the spatial effects for the
Wii, PS3 and X360 and the ratio of the posterior mean over the posterior standard
deviation.

Table 5.7: Posterior of MCAR Spatial Effects
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MCAR Third Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama -0.155 -2.445 0.003 0.000 -0.045 -0.739
Arizona -0.247 -4.132 0.003 0.112 -0.122 -2.098
Arkansas 0.085 1.788 0.038 0.831 -0.075 -1.489
California -0.016 -0.192 0.060 0.748 -0.093 -1.187
Colorado 0.111 1.571 0.056 0.795 0.002 0.000
Connecticut 0.216 2.797 0.107 1.416 0.093 1.206
Delaware -0.120 -2.013 0.292 4.726 -0.169 -2.349
Florida 0.033 0.730 0.040 0.932 0.141 3.158
Georgia -0.003 -0.161 0.134 2.776 0.256 5.227
Idaho -0.209 -2.808 -0.011 -0.166 -0.548 -5.979
Illinois -0.143 -3.097 -0.077 -1.455 -0.135 -2.773
Indiana -0.104 -2.571 -0.069 -1.580 0.176 3.609
Iowa -0.343 -5.740 0.131 2.517 -0.213 -3.606
Kansas -0.089 -1.768 -0.039 -0.748 -0.090 -1.730
Kentucky -0.055 -1.379 -0.114 -2.935 -0.068 -1.564
Louisiana 0.013 0.159 -0.083 -1.145 0.102 1.350
Maine -0.147 -2.509 -0.026 -0.453 -0.136 -2.225
Maryland 0.029 0.381 -0.183 -2.747 0.101 1.594
Massachusetts -0.336 -3.908 0.069 0.842 0.068 0.830
Michigan 0.107 2.373 -0.049 -1.242 -0.023 -0.579
Minnesota -0.028 -0.632 -0.086 -1.840 0.081 1.874
Mississippi -0.049 -0.737 -0.129 -1.942 -0.244 -3.254
Missouri 0.149 2.612 -0.041 -0.930 0.369 5.740
Montana -0.035 -0.683 -0.039 -0.789 0.084 1.485
Nebraska 0.081 1.574 -0.028 -0.577 -0.045 -0.986
Nevada 0.074 0.727 0.034 0.368 -0.194 -1.727
New Hampshire -0.316 -5.361 -0.027 -0.516 -0.273 -4.767
New Jersey -0.079 -0.704 0.090 0.850 0.074 0.646
New Mexico 0.118 2.261 -0.233 -3.983 0.036 0.626
New York 0.340 3.580 -0.147 -1.705 -0.120 -1.397
North Carolina -0.092 -2.102 0.059 1.387 0.142 3.221
North Dakota -0.079 -1.263 -0.082 -1.350 0.007 0.153
Ohio -0.046 -0.761 -0.010 -0.245 0.280 4.138
Oklahoma 0.106 2.612 0.127 3.062 -0.109 -2.295
Oregon -0.098 -2.227 0.018 0.431 -0.061 -1.229
Pennsylvania -0.286 -3.265 0.176 2.233 0.033 0.389
Rhode Island -0.222 -1.949 -0.023 -0.192 0.144 1.246
South Carolina -0.089 -1.493 -0.176 -2.974 -0.105 -2.070
South Dakota -0.252 -4.378 -0.132 -2.261 0.261 4.083
Tennessee 0.276 5.944 0.047 1.130 0.396 6.843
Texas -0.020 -0.361 0.250 4.013 -0.115 -1.882
Utah -0.094 -0.951 0.098 0.941 -0.242 -2.204
Vermont 0.411 7.663 0.088 1.529 0.530 9.155
Virginia -0.113 -2.047 -0.343 -6.009 -0.124 -2.607
Washington -0.321 -5.615 0.069 1.359 0.119 2.074
West Virginia 0.117 1.873 0.100 1.595 0.386 5.353
Wisconsin 0.404 7.422 0.040 0.977 0.056 1.251
Wyoming 0.180 2.606 0.042 0.677 0.154 2.353

Note: The numbers correspond to the Φ parameters of the MCAR model for the third
diffusion period. We report the posterior mean of the spatial effects for the Wii, PS3
and X360 and the ratio of the posterior mean over the posterior standard deviation.

Table 5.8: Posterior of MCAR Spatial Effects
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MCAR Fourth Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama 0.311 3.294 -0.008 -0.171 -0.092 -1.108
Arizona -0.092 -1.076 -0.367 -4.305 -0.412 -4.807
Arkansas 0.044 0.613 0.078 1.217 -0.123 -1.864
California 0.377 3.187 -0.005 -0.083 -0.080 -0.759
Colorado -0.040 -0.449 0.178 1.738 0.022 0.201
Connecticut -0.386 -3.484 -0.306 -2.844 -0.017 -0.144
Delaware 0.079 0.999 -0.045 -0.631 0.806 9.027
Florida -0.136 -2.313 -0.065 -1.059 -0.313 -5.411
Georgia -0.103 -1.827 -0.228 -3.586 0.088 1.323
Idaho 0.197 1.842 0.072 0.719 -0.077 -0.745
Illinois 0.277 4.295 -0.109 -1.978 0.485 7.363
Indiana -0.258 -4.541 0.022 0.413 0.158 3.015
Iowa -0.063 -0.839 -0.021 -0.271 -0.293 -4.108
Kansas 0.395 6.189 0.079 1.320 0.156 2.558
Kentucky -0.027 -0.567 -0.062 -1.127 -0.049 -0.780
Louisiana 0.155 1.626 -0.006 -0.162 0.254 2.682
Maine -0.307 -3.621 -0.149 -1.864 -0.412 -4.844
Maryland 0.372 3.837 0.191 2.154 0.002 -0.065
Massachusetts -0.233 -2.048 -0.065 -0.597 -0.140 -1.277
Michigan -0.155 -2.323 -0.191 -3.465 -0.089 -1.414
Minnesota 0.006 0.061 0.007 0.110 -0.038 -0.671
Mississippi -0.137 -1.491 0.007 -0.006 0.113 1.163
Missouri -0.374 -4.820 -0.103 -1.523 -0.076 -1.138
Montana 0.118 1.436 0.006 0.001 -0.132 -1.815
Nebraska 0.729 8.505 0.187 2.936 0.118 1.865
Nevada 0.132 0.819 0.160 1.043 0.180 1.101
New Hampshire 0.066 0.846 -0.196 -2.587 -0.054 -0.703
New Jersey 0.394 2.581 0.285 1.962 0.124 0.840
New Mexico -0.151 -2.031 -0.168 -2.577 -0.181 -2.489
New York 0.219 1.758 0.203 1.710 0.162 1.303
North Carolina -0.462 -7.091 -0.277 -4.951 0.081 1.415
North Dakota -0.247 -3.025 -0.166 -1.989 -0.251 -3.191
Ohio 0.805 8.115 0.075 0.965 0.260 3.472
Oklahoma 0.050 1.012 -0.146 -2.722 -0.071 -1.272
Oregon -0.073 -1.372 -0.004 -0.084 0.109 1.615
Pennsylvania -0.443 -3.824 0.165 1.630 -0.056 -0.544
Rhode Island -0.566 -3.806 -0.380 -2.586 -0.243 -1.660
South Carolina 0.121 1.680 0.038 0.472 -0.175 -2.585
South Dakota 0.149 2.292 0.100 1.566 0.191 2.710
Tennessee -0.235 -3.317 0.053 0.929 0.029 0.457
Texas 0.163 1.913 -0.198 -2.502 -0.239 -3.037
Utah 0.178 1.235 0.169 1.186 -0.324 -2.171
Vermont 0.052 0.736 0.489 6.011 -0.060 -0.965
Virginia -0.011 -0.171 -0.166 -2.960 -0.304 -5.075
Washington 0.133 1.688 -0.188 -2.728 -0.060 -0.839
West Virginia 0.355 3.908 0.144 1.711 0.302 3.604
Wisconsin -0.351 -5.133 0.099 1.862 0.008 0.121
Wyoming 0.375 3.677 0.088 0.941 0.018 0.213

Note: The numbers correspond to the Φ parameters of the MCAR model for the
fourth diffusion period. We report the posterior mean of the spatial effects for the
Wii, PS3 and X360 and the ratio of the posterior mean over the posterior standard
deviation.

Table 5.9: Posterior of MCAR Spatial Effects
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OLS First Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3730 0.0131 -180.7930
Male Female Ratio 0.0185 0.0195 0.9480
Population Density 0.0039 0.0228 0.1720
Population in College Dorms 0.0263 0.0164 1.6040
Married Couple 0.0198 0.0161 1.2250
Travel Time to Work 0.0131 0.0194 0.6740
Income per Capita -0.0028 0.0217 -0.1300

OLS Second Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.4053 0.0159 -151.0310
Male Female Ratio 0.0218 0.0237 0.9230
Population Density 0.0239 0.0277 0.8620
Population in College Dorms 0.0257 0.0199 1.2910
Married Couple -0.0092 0.0196 -0.4710
Travel Time to Work -0.0136 0.0235 -0.5780
Income per Capita -0.0194 0.0263 -0.7390

OLS Third Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3730 0.0131 -180.7930
Male Female Ratio 0.0185 0.0195 0.9480
Population Density 0.0039 0.0228 0.1720
Population in College Dorms 0.0263 0.0164 1.6040
Married Couple 0.0198 0.0161 1.2250
Travel Time to Work 0.0131 0.0194 0.6740
Income per Capita -0.0028 0.0217 -0.1300

OLS Fourth Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.4008 0.0203 -118.0540
Male Female Ratio -0.0197 0.0302 -0.6520
Population Density 0.0355 0.0354 1.0030
Population in College Dorms -0.0237 0.0254 -0.9310
Married Couple 0.0210 0.0250 0.8400
Travel Time to Work 0.0189 0.0300 0.6290
Income per Capita 0.0182 0.0336 0.5410
Note: These are parameter estimates of the model in equation (5.3)
obtained by OLS and with no spatial effects.

Table 5.10: OLS δ coefficients
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MCAR First Period
Mean 5% 95%

Λ12 (Wii-PS3) 0.075 -0.185 0.337
Λ13 (Wii-Xbox) 0.115 -0.139 0.352
Λ23 (PS3-Xbox) -0.257 -0.488 0.036

MCAR Second Period
Mean 5% 95%

Λ12 (Wii-PS3) -0.082 -0.344 0.210
Λ13 (Wii-Xbox) 0.096 -0.156 0.354
Λ23 (PS3-Xbox) -0.103 -0.377 0.179

MCAR Third Period
Mean 5% 95%

Λ12 (Wii-PS3) 0.061 -0.204 0.302
Λ13 (Wii-Xbox) 0.401 0.145 0.600
Λ23 (PS3-Xbox) 0.117 -0.137 0.368

MCAR Fourth Period
Mean 5% 95%

Λ12 (Wii-PS3) 0.409 0.156 0.601
Λ13 (Wii-Xbox) 0.349 0.090 0.552
Λ23 (PS3-Xbox) 0.311 0.058 0.534
Note: We present the posterior mean and the
posterior 95% highest density region of the cor-
relation matrix obtained from the Λ matrix.
The Λ matrix measures the covariance between
the spatial effects of the three products.

Table 5.11: Posterior of MCAR Λ correlations
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HPDR
95% 50% 5%

MCAR 1st period ρ 0.975 0.805 0.150
MCAR 2nd period ρ 0.975 0.825 0.150
MCAR 3rd period ρ 0.975 0.825 0.150
MCAR 4th period ρ 0.975 0.815 0.200
Note:

Table 5.12: Highest Posterior Density Region (HPDR) for the ρ coefficient.
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Aggregate Model for the Wii
Variable Estimate Std. Error t-value
spline 0.663 0.088 7.554
Search Wii 0.468 0.121 3.862

Aggregate Model for the PS3
Variable Estimate Std. Error t-value
spline 0.862 0.108 7.974
Search PS3 0.171 0.133 1.287

Aggregate Model for the X360
Variable Estimate Std. Error t-value
spline 0.722 0.122 5.916
Search X360 0.375 0.163 2.304
Note: The dependent variable is aggregate sales for
each of the consoles (in logs). The right hand side
includes a spline term and the logs of the search index
for the console. The R2 is higher than 0.95 for all
three regressions.

Table 5.13: OLS Regressions between Aggregate Sales Data and Aggregate Online Search
Data
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Figure 5.1: Google Insights for Search
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Number of Regressors Included
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Figure 5.2: Model Size: Posterior Distribution of the Number of Regressors Included in
the Model for the Nintendo Wii
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Moran’s I for Uniform Probabilities
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Figure 5.6: Moran’s I and Geary’s C for Uniform Probabilities (Histogram) and Moran’s
I and Geary’s C for all Diffusion Periods and Technologies (Vertical Lines)
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Posterior Mean of Regression Coefficients
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Figure 5.7: Nintendo Wii Model: Histogram of the Posterior Mean of the Regression
Coefficient for all US States and All Time Periods (Left Panel) and Posterior Mean Over
Posterior Standard Deviation (Right Panel)
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Posterior Mean of Regression Coefficients
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Figure 5.8: Sony PS3 Model: Histogram of the Posterior Mean of the Regression Co-
efficient for all US States and All Time Periods (Left Panel) and Posterior Mean Over
Posterior Standard Deviation (Right Panel)
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Figure 5.9: Microsoft Xbox Model: Histogram of the Posterior Mean of the Regression
Coefficient for all US States and All Time Periods (Left Panel) and Posterior Mean Over
Posterior Standard Deviation (Right Panel)
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5.A Methodology

In this appendix we discuss the BVS method and the MCAR model estimation we use to study

the probabilities of inclusion of the different regions and locations.

Bayesian Variable Selection

In what follows we follow closely the presentation of George and McCulloch (1997) section 4.

In Section 4 they discuss the specification of conjugate priors for β and σ. We chose to use

conjugate priors because it facilitates the integration of β and σ out of the posterior distribution

of the indicators γ and hence the computation of the posterior of γ becomes simple and fast.

The likelihood is specified as

f(Y |β, σ) = φ(Y ;Xγβγ , σ2I) (5.4)

where Y = yi = (yi1, . . . , yiT ), Xγ is a subset of potential regressors for which γ = 1, I is an

identity and φ(y;x,Σ) is the Normal distribution density with mean x and variance Σ evaluated

at y. The prior for β is

π(β|σ, γ) = φ(β; 0, σ2DγRDγ), (5.5)

where Dγ is a diagonal matrix with elements

Dkk
γ =

⎧⎪⎨⎪⎩ υ0 when γk = 0

υ1 when γk = 1,
(5.6)

and R is a correlation matrix. R ∝ I or R ∝ (X ′
γXγ)−1 are attractive choices when υ0 = 0. The

scalars υ0 and υ1 are chosen according to the objectives of the modeler. The choice of υ0 and

υ1 affect the number of regressors included in the subset Xγ and the threshold after which an

element of β is distinguished from zero. See George and McCulloch (1997, page 346-347) for

more details.

George and McCulloch (1997) discuss how different choices of υ0 and υ1 affect the selection

of variables and the size of the β coefficients that are included in the model. The suggestion is
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to set υ0 small and υ1 large such that when the posterior supports that γk = 0 then the prior

specification is narrow enough to keep βk close to zero. A popular choice in the literature is

to set υ0 = 0 and to specify π(β|γ) = π(βγ |γ) × π(βγ̄ |γ) where π(βγ |γ) = φ(βγ ; 0, σ2Σγ) and

π(βγ̄ |γ) = 1 being βγ and βγ̄ the coefficients included and excluded in the model, respectively.

The attractiveness of this last specification is that we can select βk depending on how significantly

they are different from zero rather than selecting them depending on their relative size when

υ0 �= 0.

The prior for σ2 is

π(σ2) = IG(ν/2, νλ/2) (5.7)

where ν are the degrees of freedom and λ is the scale of the inverse gamma (IG) distribution.

What is left to specify is the prior for the indicators γ. They are usually specified as

π(γ) =
∏
k

wγk
k (1 − wk)

1−γk , (5.8)

where wk is the probability of including the k regressor in the model. A popular choice in the

literature is to use wk = w and therefore

π(γ) = wqγ (1 − w)p−qγ , (5.9)

where qγ is the number of regressors included out of a total set of size p. This last prior can be

combined with a conjugate prior on w and set w ∼ Beta(a, b) and the prior becomes

π(γ) =
B(a + qγ , b + p − qγ)

B(a, b)
, (5.10)

where B(x, y) is the beta function with x and y parameters. See Chipman et al. (2001) for

other choices of π(γ). Careful selection should be given to the scalars υ1 and w (or a and b)

as they directly affect model size. Large υ1 and small w concentrate the prior on parsimonious

models with large coefficients while large w and small υ1 concentrate the prior on saturated

models with small coefficients (Clyde and George, 2004, page 86).
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The joint density π(Y, β, σ2|γ) = π(Y |β, σ2, γ)π(β|σ, γ)π(σ2 |γ) has a closed form expression

when υ0 = 0 and after integrating over β and σ2 and that is

π(Y |γ) ∝ |X ′
γXγ + Σ−1

γ |−1/2|Σγ |
−1/2(νλ + S2

γ)−(T+ν)/2, (5.11)

where

S2
γ = Y ′Y − Y ′Xγ(X ′

γXγ + Σ−1
γ )X ′

γY, (5.12)

and Σγ = DγRDγ . The posterior of the indicators is straightforward to compute as π(γ|Y ) ∝

π(Y |γ)π(γ) and the Metropolis-Gibbs sampler is straightforward and it proceeds by sampling

π(γ|Y ), π(βγ |Y, σ2, γ) and π(σ2|Y, βγ , γ) sequentially.

We use a = 50 and b = 100 for the prior on w (in equation (5.10)). The prior of σ2 has

ν = 1000 and λ = 0.30. We follow the recommendation of George and McCulloch (1997, page

341) who suggest to set λ such that the posterior of σ2 assigns substantial probability to an

interval close to the sample variance of Y and the variance of the residual of a saturated model.

The prior on β in equation (5.5) and (5.6) has υ0 = 0 and υ1 = 7 and we use R = (X ′
γXγ)−1.

A short review of aereal data models

Aereal data usually refers to cross sectional or panel data collected across different regions or

areas with well defined boundaries. Therefore aereal data consists of aggregate or summary

measures at different locations. The CAR and SAR models are among the most popular models

applied to aereal data but there are many other popular approaches like kriging or spatial

interpolation. In this review we focus on the CAR model and its multivariate extensions.

CAR stands for Conditional Autoregressors and SAR stands for Simultaneous Autoregressors

and hence CAR models are usually referred as Conditionally Autoregressive models and the SAR

as Simultaneous Autoregressive models.

The CAR and SAR models are discussed in several sources. A basic reference is Cressie

(1992). Cressie covers topics that range from model specification, classical and Bayesian estima-

tion to the theoretical foundations of the CAR and SAR models. Many other topics in spatial

analysis are discussed in Cressie (1992). Banerjee et al. (2004) focus on Bayesian analysis and
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estimation of spatial models. Held and Rue (2002) review many of the computational methods

and sampling techniques usually applied to the Bayesian analysis of CAR models and to more

general spatial models referred to as Gaussian Markov Random Fields.

Wall (2004) compares the CAR and SAR models and offers some insights about the different

correlation between locations implied by these two models. The CAR and SAR models might be

equivalent under certain conditions, for example see Assunçao (2003) or Banerjee et al. (2004,

page 86). We intend to apply spatial priors to the distribution of model parameters. Therefore,

in what follows we focus on the CAR model as it is better suited than the SAR both as a

hierarchical prior specification on a model’s parameters and for Bayesian modeling (Banerjee

et al., 2004, page 86).

The main assumption of the CAR model is that a measurement at a location has a condi-

tional distribution with a mean that is proportional to a weighted sum of the measurement at

neighboring locations. Both the joint distribution and the conditional distribution of the spatial

effects given all other spatial parameters can be derived in closed form and they are presented

in Banerjee et al. (2004, page 79) and in the references therein. However, there are alternative

specifications to the joint distribution of the spatial effects and a common approach is to use the

pairwise difference specification (Besag et al., 1991). Haran et al. (2003) present how to use

block updating when some of the coefficients in a linear regression follow the pairwise difference

prior.

The CAR is suited for univariate aereal data and Mardia (1988) presents an extension to

the multivariate case, usually referred to as multivariate CAR or simply as MCAR. It is common

to have more than one measurement at each location and the MCAR allows to model both the

correlation among measurements of neighboring sites and the correlation among the different

measures across sites. Gelfand and Vounatsou (2003) and Carlin and Banerjee (2003) apply

Bayesian analysis to the MCAR of Mardia (1988) and present applications with two and up

to five dimensional data. On the other hand, Gamerman et al. (2003) present a multivariate

version of the pairwise difference specification (used as a prior) and its sampling schemes.

Other extensions of the CAR model incorporate dynamics into its spatial coefficients. Waller

et al. (1997), Nobre et al. (2005) and Gelfand et al. (2005) propose models that use a random
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walk specification for the mean or for the variance of the spatial effects. Gelfand et al. (2005)

provide a review of spatio-temporal models.

Linear Model with CAR Prior

Next we work out the specification and sampling for the model

yi = xiβ + φi + εi, (5.13)

where yi is measured at i locations for i = 1, . . . , p, xi is a set of k covariates at i and β is

a coefficient column vector k × 1 while εi and φi are random effects meant to capture overall

variability and spatial heterogeneity, respectively. We define y
′

= (y1, . . . , yp), φ
′

= (φ1, . . . , φp)

and X = (x1, . . . , xk). The distribution of εi is

ε ∼ N(0,Σ), (5.14)

where ε
′

= (ε1, . . . , εp), Σ = σ2I and σ2 is the variance of ε. N(μ,Σ) refers to a normal

distribution with mean μ and covariance matrix Σ. We define λε = 1/σ2. The prior distribution

of the spatial effects φi follows

φi|φj∼i ∼ N
( ∑

j∼i

cijφj , τ
2
i

)
. (5.15)

This form states that the distribution of φi given its j neighbors, denoted as j ∼ i, has a normal

distribution with a mean that is a weighted sum (using weights cij) of the neighboring values

and variance τ2
i . Besag (1974) shows that the joint distribution of the spatial effects in (5.15)

can we written in the form

φ ∼ N(0,Ω), (5.16)

where φ = (φ1, . . . , φp) and Ω is a p× p symmetric and positive semi-definite or positive definite

matrix. In the literature it is common to define the elements of Ω−1 directly instead of specifying

Ω. For example, Banerjee et al. (2004, page 79) assume that τ2
i = τ2/wi+ and that cij = wij/wi+

where wij takes the value of 1 if j ∼ i and zero otherwise and where wi+ is the total number
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of neighbors of i. Given these assumptions Ω−1 = T−1(I − C) and given that T is a diagonal

matrix with elements Tii = τ2/wi+ and Cij = cij then Ω−1 can be written as

Ω−1 =
1

τ2
(Iwi+ − W ), (5.17)

where Iwi+ is a diagonal matrix with elements wi+ and Wij = wij. This last specification for Ω

results in an improper distribution given that the rows of (Iwi+ − W ) sum to zero. A solution

to this issue is to specify Ω as

Ω−1 =
1

τ2
(Iwi+ − ρW ), (5.18)

where ρ takes a value (between 0 and 1) that makes Ω−1 positive definite and consequently the

distribution of φ becomes proper. For a discussion on the impropriety of the CAR distribution

and the role of the ρ parameter see Banerjee et al. (2004, page 163), Eberly and Carlin (2000),

Sahu and Gelfand (1999) or Best et al. (1999). This latter form implies that

φi|φj∼i ∼ N
(
ρ

∑
j∼i

cijφj, τ
2
i

)
. (5.19)

The distribution of φ is usually referred as CAR(τ2) when the conditional distributions of

the spatial effects are defined as in equation (5.15) and it is referred as CAR(ρ, τ2) when its

conditional distribution follows (5.19). In what follows we use Ω−1 = λφQ with Q = Iwi+ − ρW

and λφ = 1/τ2. To carry out Bayesian inference and to complete the model specification we

need to define the priors for β, λy, λφ and ρ. We specify them as

p(β) ∝ 1

p(λy) ∝ λy
aye−byλy

p(λφ) ∝ λ
aφ

φ e−bφλφ

p(ρ) ∝ discretized prior

(5.20)

We use p(·) generically to denote a probability density. That is, the prior for β is non-

informative, the priors for λy and λφ have the form of a Gamma distribution. Finally, for ρ we

give probability mass to a discrete set of values with a high proportion of them near 1. Gelfand
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and Vounatsou (2003) suggest the use of discretized priors for ρ. The model specification is now

complete and next we describe the sampling steps to estimate equation (5.13).

Sampling Steps for the CAR

To sample the parameters of the model in equation (5.13) we can apply the Gibbs sampler and

MCMC. To derive the posterior of β we can write the likelihood of equation (5.13) as

L(y|β, λy) ∝ |M |−1/2e−
1
2
(y−Xβ)′M−1(y−Xβ), (5.21)

where M = ( 1
λφ

Q−1 + 1
λε

I). The posterior of β is then

p(β|y, λy, λφ) ∝ |M |−1/2e−
1
2
(β−b)

′

(X′M−1X)−1(β−b), (5.22)

with b = (X ′M−1X)−1X ′M−1y. Therefore β can be sampled from N(b, (X ′M−1X)−1).

Next we derive the posterior distribution of the spatial effects φ. To do so we write the

density of y conditional on β. That is

L(y|β, φ, λy) ∝ λp/2
y e−

λy
2

(ỹ−φ)
′

(ỹ−φ), (5.23)

with ỹ = y − Xβ. Therefore, the posterior of φ is

p(φ|ỹ, λy, λφ) ∝ λp/2
y e−

1
2
((φ−a)

′

R−1(φ−a)), (5.24)

where a = (λyI + λφQ)−1λy ỹ and R−1 = (λyI + λφQ). That is φ can be sampled form N(a,R).

The posterior of λy and λφ are

p(λφ|ỹ, φ, λy) ∝ λ
p/2+aφ

φ e−λφ( 1
2
φ
′

Qφ+bφ)

p(λy|ỹ, φ, λφ) ∝ λ
p/2+ay
y e−λy( 1

2
(ỹ−φ)

′

(ỹ−φ)+by).
(5.25)

That is λφ ∼ Γ(p/2 + ay, by + 1/2φ
′

Qφ) and λy ∼ Γ(p/2 + aφ, bφ + 1/2(ỹ − φ)
′

(ỹ − φ)).
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Finally we need to sample the ρ in the Q matrix. We know that

p(ρ|φ, y, λy , λφ) ∝ |Q|1/2e−
1
2
φ
′

Qφp(ρ). (5.26)

A common method to sample ρ is to assume that p(ρ) is a uniform distribution with range

(0, 1) and to sample it with the Metropolis-Hastings algorithm. A second popular choice is to

discretize ρ in a set of values and to draw them proportional to their posterior probability. We

use the following set 0.01, 0.10, 0.20, 0.30, . . . , 0.70, 0.71, 0.72, . . . , 0.99.

In summary we use the next steps in the Gibbs sampler

1. β ∼ N((X ′M−1X)−1X ′M−1y, (X ′M−1X)−1)

2. φ ∼ N((λyI + λφQ)−1λy ỹ, (λyI + λφQ))

3. λy ∼ Γ(p/2 + ay, by + 1/2φ
′

Qφ)

4. λφ ∼ Γ(p/2 + aφ, bφ + 1/2(ỹ − φ)
′

(ỹ − φ))

5. ρ ∼ p(ρ|φ, y, λy , λφ)

where x ∼ Γ(a, b) means that x follows a Gamma distribution with the form cxae−bx where c

is a constant. At the end of the sampling step 2 we center the φ vector around its own mean

following Eberly and Carlin (2000) and Best et al. (1999). The re-centering is equivalent to

sampling with the restriction
∑

φi = 0. Rue and Held (2005) show a general form to sample

with linear restrictions and that is equivalent to centering around a mean.

Multivariate Linear Model with MCAR Prior

Next we expand the linear model of Section 5.A to a multivariate setting. The exposition follows

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003).

In this setting we observe J different measurements at each location. That is we use the no-

tation yji to refer to the jth measurement at location i. We use the notation yj for (yj1, . . . , yjp)
′

and Y is a p × J matrix with columns (y1, . . . , yJ). The same notation is used for the spatial

effects φij and the error terms εij. That is φj = (φj1, . . . , φjp)
′

, Φ = (φ1, . . . , φJ ) and finally
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εj = (εj1, . . . , εjp)
′

, E = (ε1, . . . , εJ). We observe a common group of N covariates X where

X = (x1, . . . , xN ) and xi = (xi1, . . . , xip)
′

. Hence we can write

Y
(p×J)

= X
(p×N)

· B
(N×J)

+ Φ
p×J

+ E
(p×J)

(5.27)

To carry out Bayesian inference we define the following priors

p(B) ∝ 1

p(Σ) ∝ |Σ|−
v
2 e−

1
2
trΣ−1VΣ

p(Φ|Λ,Ψ) ∝ |Ψ|−J/2|Λ|−p/2e−
1
2
tr(ΨΦΛΦ

′

)

p(Λ) ∝ |Λ|−
v0
2 e−

1
2
trΛVΛ

(5.28)

Above Σ is a J × J covariance matrix of E and �(E) ∼ N(0,Σ ⊗ I); Λ is J × J and it is the

inverse of the covariance matrix between the columns of Φ while Ψ is p× p and it is the inverse

covariance matrix between the rows of Φ. That is, �(Φ) ∼ N(0,Λ−1 ⊗ Ψ−1).

The form of Ψ might be identical to the form of the Q matrix in the CAR prior. That is

Ψ = (Iwi+ − ρW ) where W and Iwi+ are defined as before. A second choice for Ψ might be

Ψ = (Iwi+ − W ). Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) use the

first form while Gamerman et al. (2003) use the second. A third choice is to define a general

form for Λ ⊗ Ψ as Gelfand and Vounatsou (2003) propose. Gelfand and Vounatsou (2003)

propose a form of Q that allows an item (J items) specific ρ parameters. They first define

Qj = (Iwi+ − ρjW ) and its Choleski factorization Qj = P
′

jPj . Then they define

Λ ⊗ Ψ = P
′

(Λ ⊗ Ip×p)P, (5.29)

where P is a diagonal matrix with Pj blocks. This last form may allow for a more flexible

correlation structure of the Φ parameters. In the application we assume ρj = ρ for all j.
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Sampling the Multivariate Linear Model with MCAR Prior

If we condition on Φ and define Ȳ = Y − Φ we obtain the traditional multivariate regression

model

Ȳ = X · B + E. (5.30)

Given this last expression we can write the density of the model as

p(Ȳ |X,B,Σ) ∝ |Σ|−p/2e−
1
2
tr(Ȳ −XB)′(Ȳ−XB)Σ−1

. (5.31)

The joint posterior of B and Σ can be written as

p(B,Σ|X,Y ) = p(Y |X,B,Σ)p(B)p(Σ)

∝ |Σ|−
p+v
2 e−

1
2
trΣ−1G,

(5.32)

where G = (Ȳ −XB)′(Ȳ −XB)+VΣ. Furthermore, we can write G = S+V +(B−B̃)
′

(X
′

X)(B−

B̃) where S = (Ȳ − XB̃)′(Ȳ − XB̃) and B̃ = (X
′

X)−1X
′

Ȳ . This last form of G allows us to

easily integrate out either B or Σ in the last equation and to obtain the posteriors of B and Σ

respectively. Therefore

p(B|X,Y,Σ) ∝ |Σ|−
p+v
2 eΣ−1(B−B̃)

′

(X
′

X)(B−B̃)

p(Σ|X,Y ) ∝ |Σ|−
p+v
2 e−

1
2
trΣ−1(VΣ+S),

(5.33)

and we can sample B and Σ using these last forms for a matric-variate normal for B and a

Inverse Wishart for Σ.

If we condition equation (5.27) on B and we take Ỹ = Y −XB then we have a multivariate

regression model

Ỹ
(p×J)

= Φ
(p×J)

+ E
(p×J)

, (5.34)

and given equation (5.34) we can write the density of Ỹ as

p(Ỹ |Φ,Σ) ∝ |Σ|−p/2e−
1
2
tr(Ỹ −Φ)′(Ỹ−Φ)Σ−1

. (5.35)
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If we use φ =�(Φ), y =�(Ỹ ) then equation (5.35) can be expressed as

p(y|φ,Σ) ∝ |Σ|−p/2e−
1
2
(y−φ)

′

(Σ−1⊗Ip×p)(y−φ). (5.36)

In the same way the prior for Φ can be expressed in vectorized form as

p(φ) ∝ |Ψ|−J/2|Λ|−p/2e−
1
2
φ′(Ψ⊗Λ)φ. (5.37)

We use the vectorized forms to derive the posterior of φ. That is p(φ|y,Σ,Ψ) ∝ p(y|φ,Σ)× p(φ)

and therefore

p(φ|y,Σ,Ψ) ∝ |Λ|−
(2p+v0)

2 |Σ|−p/2e−
1
2
((φ−a)′M−1(φ−a)+Sφ) (5.38)

where Sφ = y′Hy + a′M−1a, M−1 = (H + F ), H = Σ−1 × I, F = Ψ ⊗ Λ and a = MHy.

The posterior of Λ can be derived from the third and fourth line of equation (5.28) as follows

p(Λ|Φ, Y,Σ,Ψ) ∝ |Λ|−
(p+v0)

2 e−
1
2
trΛ(VΛ+Φ

′

ΨΦ). (5.39)

If the form of Ψ contains a ρ or ρj parameters Gelfand and Vounatsou (2003) suggest to sample

them from a discretized prior. The posterior of the ρ parameters is

p(ρ|Φ, Y,Σ,Λ) ∝ |Ψ|−J/2e−
1
2
tr(ΨΦ

′

ΛΦ). (5.40)

In summary we use the following Gibbs steps

1. β|X, Ȳ ,Φ,Λ,Ψ ∼ N(�((X ′X)−1X ′Ȳ ),Σ ⊗ (X ′X)−1)

2. φ|B,X, Y,Λ,Ψ ∼ N((Σ−1 ⊗ I + Ψ ⊗ Λ)−1(Σ−1 ⊗ I)y, (Σ−1 ⊗ I + Ψ ⊗ Λ))

3. Σ|Y,B,Φ,Λ,Ψ ∼ IW ((p + v)/2, VΣ + S)

4. Λ|Ψ, B,X, Y,Σ ∼ IW ((p + v0)/2, VΛ + Φ
′

ΨΦ)

5. ρ|Φ,Λ, B,X, Y,Σ ∼ p(ρ|Φ, Y,Σ,Λ)
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In the chapter we set VΣ = I3 and VΛ = I3 and υ0 = 5 while υ = 3 and p = 48. We

use 48 states because we leave out Hawaii and Alaska. The matrix Ψ is defined based on the

neighborhood structure of the US states where the element Ψkj takes the value of one when the

state k is neighbor of the state j and zero otherwise. We further assume that ρj = ρ and we

sample this parameter based on the discretized prior described above. Finally, we assume that

Σ = σ2I and the β coefficients are equal across technologies.





Nederlandse Samenvatting

(Summary in Dutch)

Dit proefschrift richt zich op de analyse van nieuwe of zeer recente marketing gegevens. Hiertoe

introduceren we een aantal nieuwe econometrische modellen. We presenteren modellen die nut-

tig zijn om het volgende te analyseren: (1) het optimale tijdstip voor de lancering van nieuwe en

dominante technologieën, (2) de triggers, snelheid en de timing van een substantiële prijsverla-

ging voor nieuwe producten, (3) de heterogeniteit in preferenties van consumenten die leidt tot

specifieke substitutiepatronen in geaggregeerde verkoopgegevens, en (4) locaties die een grote

invloed hebben op de verspreiding van nieuwe technologieën. De econometrische technieken die

we toepassen zijn divers, maar ze zijn voornamelijk gebaseerd op Bayesiaanse methoden. We

maken gebruik van Bayesiaanse mixture modellen, Bayesiaanse variabele selectie technieken,

Bayesiaanse spatial modellen en we introduceren een nieuwe Bayesiaanse benadering voor het

random coëfficiënten logit model. De gegevens die we analyseren bestaan uit unieke en grote

datasets. We bestuderen de prijzen van video-games, de verkopen van video-game consoles, de

totale omzet voor specifieke consumentenproducten en online zoekgegevens van Google.





Resumen en Español

(Summary in Spanish)

En esta tesis se analizan nuevas bases de datos de mercadotecnia y se presentan nuevos modelos

econometricos. Estos nuevos modelos son útiles para analizar (1) el tiempo de lanzamiento ópti-

mo de nuevas tecnoloǵıas, (2) los factores que provocan cortes drásticos en los precios de nuevos

productos y a la vez la velocidad y el momento en el que ocurren los cortes, (3) la heterogenei-

dad de los consumidores que determina los patrones de sustitución presentes en datos de ventas

agregados, y (4) los mercados influyentes que determinan la difusión de nuevas tecnoloǵıas. Los

métodos econométricos que se utilizan en esta tesis son diversos pero en su mayoŕıa son métodos

Bayesianos. Usamos modelos de mezcla de distribuciones, técnicas Bayesianas de selección de

variables, modelos Bayesianos para datos geográficos y proponemos un nuevo enfoque Bayesiano

para el modelo logit con coeficientes aleatorios. Los datos que se analizan son precios de video-

juegos, ventas de consolas de videojuegos, datos agregados de ventas de productos de consumo

y datos de búsqueda en ĺınea de Google.
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l)MARKETING MODELING FOR NEW PRODUCTS

This thesis addresses the analysis of new or very recent marketing data and the intro -
duction of new marketing models. We present a collection of models that are useful to
analyze (1) the optimal launch time of new and dominant technologies, (2) the triggers,
speed and timing of new products’ price landings, (3) the consumer heterogeneity that
drives substitution patterns present in aggregate data, and (4) the influential locations that
drive the diffusion of new technologies. The econometric approaches that we apply are
diverse but they are predominantly Bayesian methods. We use Bayesian mixture modelling,
Bayesian variable selection techniques, Bayesian spatial models and we put forward a new
Bayesian approach for the random coefficient logit model. The data that we analyze
consist of unique and large datasets of video-game prices, video-game consoles’ sales,
aggregate sales data for consumer products and Google’s online search data. 
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