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Preface

Data is being collected by websites, mobile applications, dispensations (on various 
pretexts), and even by devices. This data must be analyzed to become useful. The 
patterns extracted by this data can be used for targeted marketing, for national 
security, for propagating believes and myths, and for many other tasks. Machine 
Learning helps us in explaining the data by a simple model. It is currently being 
used in various disciplines ranging from Biology to Finance and hence has become 
one of the most important subjects.  

There is an immediate need for a book that not only explains the basics but also 
includes implementations. The analysis of the models using various datasets 
needs to be explained, to find out which model can be used to explain a given data. 
Despite the presence of excellent books on the subject, none of the existing books 
covers all the above points.    

This book covers major topics in Machine Learning. It begins with data cleansing 
and presents a brief overview of visualization. The first chapter of this book talks 
about introduction to Machine Learning, training and testing, cross-validation, and 
feature selection. The second chapter presents the algorithms and implementation 
of the most common feature selection techniques like Fisher Discriminant ratio 
and mutual information. 

The third chapter introduces readers to Linear Regression and Gradient Descent. 
The later would be used by many algorithms that would be discussed later in the 
book. Some of the important classification techniques like K-nearest neighbors, 
logistic regression, Naïve Bayesian, and Linear Discriminant Analysis have been 
discussed and implemented in the next chapter. The next two chapters focus on 
Neural Networks and their implementation. The chapters systematically explain the 
biological background, the limitations of the perceptron, and the backpropagation 
model. The Support Vector Machines and Kernel methods have been discussed 
in the next chapter. This is followed by a brief overview and implementation of 
Decision Trees and Random Forests. 



Various feature extraction techniques have been discussed in the book. These 
include Fourier Transform, STFT, and Local Binary patterns. The book also 
discusses Principle Component Analysis and its implementation. 

The concept of Unsupervised Learning methods like K-means and Spectral 
clustering have been discussed and implemented in the last chapter. 

The implementations have been given in Python, therefore cheat sheets of NumPy, 
Pandas, and Matplotlib have been included in the appendix.
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Chapter 1
An Introduction to 
Machine Learning

With the advancements in technology, data collection has become easy. When you 
turn on location in your mobile, upload your pictures on Facebook or Instagram, fill 
online forms, browse websites, or even order items from an e-commerce website, 
your data is collected. What do companies do with this huge data? They analyze it, 
find your preferences, and this helps them in marketing. The advertisements being 
shown to you, generally, depending on the above things. Marketing professionals 
must lure you into buying something that you need or are even remotely interested 
in. Your data helps them. Likewise, the dispensation may keep track of suspicious 
activities using this data, may tract the source of transactions, or gather other 
important information using this data. However, this is easier said than done. It is a 
huge data, and its analysis cannot be done using conventional methods.

Let us consider another example to understand this. Suppose Hari visits YouTube 
every day and watches videos related to Indian Classical Music, Hindi Poetry, and 
watch Lizzie McGuire. His friend Tarush goes to YouTube and watches Beer Biceps 
and other videos related to workouts. After some time, YouTube starts suggesting 
different relevant videos to both of them. While Hari is shown a video related to 
Lizzie McGuire’s reboot or Dinkar, in the recommended videos’ list, Tarush is not 
recommended any such video. On the other hand, Tarush is shown a recommendation 
for a workout video.
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It may be stated that recommendation requires an in-depth analysis and cannot 
be done solely based on any conventional algorithms. Those using e-commerce 
websites or famous music streaming apps like YouTube must be knowing that the 
recommendations are mostly good, if not excellent. Here the task is prediction. 
Your browsing history helps in this task, and for sure, it cannot be accomplished by 
conventional algorithms. Moreover, the betterment in the output, with time, means 
there is a well-defined performance measure for the task.

Machine learning comes to the rescue of those wanting to analyze this huge data, 
predict trends, find patterns, and so on. This chapter introduces machine learning, 
discusses it’s types, explains how the given data is divided, and discusses its 
pipeline. This chapter also presents an overview of the history of machine learning 
and its applications.

Structure
The main topics covered in this chapter are as follows:
 • Conventional algorithm and machine learning
 • Types of learning
 • Working
 • Applications of machine learning
 • History of machine learning

Objective
After reading this chapter, the reader will be able to learn the following topics:
 • Understand the definition and types of machine learning
 • Understand the working of a machine learning algorithm
 • Appreciate the applications of machine learning
 • Learn about the history of machine learning

Conventional algorithm and machine 
learning
The algorithmic solution of a problem requires the input data and a program to 
produce an output. Here, a program is a set of instructions, and output is generated 
by applying those instructions to the input data. In a machine learning algorithm, 
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the system takes the Input Data along with the examples of Output (in the case 
of supervised learning). It creates a model, which establishes (or tries to establish) 
some relation between the input and the output. Learning, in general, is improving 
the outcome using experience (E). How do we know that we have improved? The 
performance measure tells the performance of our model. As per Tom Michel, 
machine learning can be defined as follows.

If the performance measure (P) improves with experience (E) on task (T), then the 
system is said to have learned.

Here, the Task (T) can be Classification, Regression, clustering, and so on. The data 
constitutes Experience (E). The Performance Measure (P) can be any accuracy, 
specificity, sensitivity, F measure, Sum of Squared errors, and so on. These terms 
will be defined as we proceed. To understand this, let us consider an example of 
disease classification using Magnetic Resonance Imagining. If the number of patients 
correctly classified (accuracy) as diseased is considered as a performance measure, 
then this problem can be defined as follows:
	 •	 T: Classify given patients as diseased or not-diseased
	 •	 P: Accuracy
	 •	 E: The MRI images of a patient

The task will be accomplished by pre-processing the given data, extracting relevant 
features from the pre-processed data, selecting the most important features, applying 
a classification algorithm followed by post-processing. In general, a machine learning 
pipeline constitutes the following steps (Figure 1.1):

Figure 1.1: Machine learning pipeline

These terms will become clear in the following chapters. Pre-processing has been 
discussed in the second chapter. The chapter also introduces the idea of Feature 
selection. The next six chapters discuss supervised learning techniques, and the last 
chapter introduces Feature extraction. I decided to discuss Feature extraction at the 
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end because some of the techniques require the knowhow of concepts introduced in 
the previous seven chapters. Having seen the definition of machine learning, let us 
now have a look at its types.

Types of learning
Machine learning can be classified as supervised, unsupervised, or semi-supervised. 
This section gives a brief overview of the types.

Supervised machine learning
This type of learning uses the labels of the data in training set to predict the label of 
a sample in the test set. The training set acts as a teacher in this type of algorithm, 
which supervises the training process. The data in these algorithms contain samples 
and their correct labels. The training process tries to uncover the pattern hidden in 
the data. That is, the learning aims to relate the labels Y with the data X as y = f(x), 
where x is a sample, and y is the label.

If this label is a discrete value, then the process is termed as classification. If y is a real 
value, then it is called regression. Chapter 3 of this book introduces a regression, and 
Chapter 4 to Chapter 8 discusses classification algorithms.

Examples of classification are face detection, voice detection, object detection, and 
so on. Classification essentially means placing the given sample into one of the 
predefined categories. Examples of regression include predicting the price of a 
commodity, predicting temperature, housing price, and so on.

Unsupervised learning
This type of learning uses input Data(X) but no labels. The learning aims to learn 
about the data by grouping the like samples or by deducing the associations. Since 
there is no teacher involved in the algorithm, it is called unsupervised learning. 
Clustering and association come under unsupervised learning. Clustering uncovers 
the groupings in the data. Association, on the other hand, uncovers the rules which 
associate the events. Chapter 9 of this book discusses clustering.

There is something in between supervised and unsupervised learning. It is called 
semi-supervised learning. In this type of learning, a part of the input data may be 
labeled. Many practical problems fall into this category.
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Working
This section discusses the working of a machine learning algorithm. We begin with 
understanding the data. It is followed by the division of data into train and test sets. 
The learning algorithm is then applied to the training data, and the performance is 
then measured.

Data
In the discussion that follows, the data is represented by X, which is a matrix with n 
rows and m columns (n × m matrix). Here, n is the number of samples, and m is the 
number of features in each sample. The labels are represented by y, which is a (n × 1 
matrix). It may be noted that the ith row of y contains the label corresponding to the 
ith row of X.

For example, consider the Wine dataset available at the UCI Machine Learning 
Repository. The data considers attributes of wines from three different cultivars but 
from the same region in Italy. The dataset has 13 features, which are as follows (as 
per the official documentation at https://archive.ics.uci.edu/ml/datasets/Wine):
1. Alcohol
2. Malic acid
3. Ash
4. Alkalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
8.	 Nonflavanoid	phenols
9. Proanthocyanins
10. Color intensity
11. Hue
12. OD280/OD315 of diluted wines
13. Proline

The label is the class of the Wine (1, 2, or 3). The number of samples in the dataset is 
178. That is, the values of the 13 features determine the class of Wine. The value of n 
is 178, and that of m is 13. The data, X, is 178 × 13 array, and the response variable, 
y, is a 178 × 1 array. It is followed by pre-processing, which involves many things, 
including removing null values. Some of these techniques have been discussed in 
the second chapter. Once you have got the data, create a train, and a test set out of 
the data.
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Train test validation data
Suppose you are given the responsibility of teaching a topic to a group of students. 
How will you find whether your students have understood the topic? You will 
probably take a test, and based on the performance of the test; you will judge 
how well the topic has been understood. Wait! The performance is indicative of 
the learning only if the questions asked are not the same as those discussed while 
teaching (or during training). It is because giving the same questions in the test will 
judge how well the students can memorize, not their understanding of the topic.

The same is true for a machine learning model. The data used in the training phase 
should not be used for testing. So, to have confidence in the model, the given data is 
divided into two parts train and test Figure 1.2:

Figure 1.2: Splitting the data into train set and test set

Well! It may also mislead us in believing that the model so developed is good (or 
bad). So, we randomly split the data into train data (x %) and test data (100-x%) and 
find the accuracy. Repeat this process many times and take the average accuracy. It 
increases the confidence in the model so developed.

It may also be stated that while training, we may need to use some data for testing. 
We cannot use the test data because of the reasons stated above. So we divide the 
train data into train and validation. Train the model using the train data, and once 
the parameters are learned. Test the model using the test data:
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Figure 1.3: Splitting the data into train set, test set, and validation set

While learning, this validation data can be used to see the training performance. 
Once the model has learned, the test data can be used to test the model.

Another approach to validation is referred to as cross-validation. In this approach, 
the given data is divided into k parts. Out of these k parts (say part 1), one is used for 
testing and the rest for training. The process is repeated, taking part 2 as the test data 
and the rest as the train data. Likewise, k such models are created, and the average 
performance of these k models is reported. For example, in Figure 1.4, the value of 
k is 6. The data is split into six parts, and in each iteration, one of the parts is used 
for testing and the rest for training. The performance of the model is reported as the 
average of the six models:

To summarize, K-Fold is better than the train-test split as it gives more confidence 
in the results. However, the volume of the data must be considered before applying 
K-Fold. Also, in K-Fold, you take the average performance of K models and declare 
it as the output. Having seen the methods of division of data into train and test, let 
us move forward.
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Figure 1.4: K Fold Validation: K=6

Rest of the steps
The division of data is followed by choosing the target function and its representation. 
The learning algorithms are then applied to the training set. The algorithm learns its 
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parameters using the training set and then applies them to the test set. We will learn 
about learning about our journey. The performance measures, which tell you how 
good your algorithm is, are discussed in the next chapter.

Having seen the outline of the machine learning pipeline, let us have a look at some 
of the exciting applications of machine learning.

Applications
Machine learning is an involved task, and along with other things, it also requires 
algorithms that learn from data. Machine learning has successfully been applied in 
many domains and disciplines. From Social Science to Drug Development, ML has 
proved it’s mental everywhere. It is creating history, and we are a part of this history. 
Let us just not watch it, let us live this history and immerse ourselves in ML.

Natural Language Processing (NLP)
NLP aims to process and understand natural language. It involves linguistics, 
engineering, and artificial Intelligence. The advancements in ML have greatly helped 
the field. One of the fascinating examples of the advancement in this field is Alexa, 
voice assistance by Amazon.

Weather forecasting
This discipline aims at predicting the weather conditions at a particular location, 
using the past data available. It may be stated that even before the advent of machine 
learning, or even computers, the weather was being predicted. However, the latest 
technologies have helped improve this prediction.

Robot control
As per the literature review, the mechanical parts of the robot are generally controlled 
by software. This software may fail if it does not update itself with time, or learn. 
At this point, ML comes into play. ML helps a robot in making intelligent decisions 
using the training data.

Speech recognition
Speech recognition aims at the translation of spoken languages by computers. It 
requires computational linguistics and Computer Science. This field helps in 
understanding speech.
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Business Intelligence
The data collected by a company must be converted into a form, which helps us in 
making decisions. This field helps in analyzing data to create the following:
	 •	 Reports
	 •	 Graphs
	 •	 Dashboards

The above helps in generating actionable insights into the data. Along with the 
above, ML has been successfully used in diagnosing diseases using medical imaging 
and many other things. So, machine learning is interesting. Let us have a brief look 
at how the story started.

History
One of the central characters in this play is the Neural Network. The story of this 
character started when Warren McCulloch and Walter Pitts published a paper 
explaining the working of Neurons in 1943. They created an electric circuit of this 
model. The model laid the foundation for machine learning. This model has been 
discussed in the fourth chapter of this book.

The Turing Test was conceived in the 1950s to find whether the user is a human or 
a computer. This test laid the foundation for accessing algorithms used in many 
ML applications, including chatbots. Many researchers contributed to incremental 
research on these topics.

One of the most exciting events in the history of ML is the creation of the first 
computer program to play checkers by Samuel. The McCulloch Pitts model was also 
being studied and analyzed. The perceptron model was created by Rosenblatt in 
1958. Windrow and Hoff created two models ADELINE for binary classification and 
MADELINE, which could eliminate echo.

The researchers came up with novel ways to handle the inability of these models 
to detect non-linearly separable data. John Hopfield created a network that had 
bidirectional lines in 1982.

The development of Multi-Layer Perceptron helped in classifying the non-linearly 
separable data also. The discipline got a boost with the invention of Support Vector 
Machines, which did not need the whole data to create a separating hyperplane and 
were based on the concept of maximum margin classifier.

The second half of the ‘90s witnessed some amazing inventions. IBM developed 
Deep Blue in 1997, which was a chess-playing computer. It was followed by the 
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development of tools that could handle large data and hardware, which could 
process faster. 

Currently, we are in the Deep Learning Age. GoogleBrain was developed in 2012. 
It was a deep neural network created by Jeff, which focused on pattern detection in 
images and videos.

AlexNet was also developed by 2012. It won the ImageNet competition by a large 
margin in 2012, which led to the use of GPUs and Convolutional Neural Networks 
in machine learning. DeepFace was developed in 2014. It is a Deep Neural Network 
created by Facebook, which they claimed can recognize people with the same 
accuracy as a human can. The research in the field of ML and DL continues and will 
hopefully amaze ourselves in the future also.

Conclusion
Machine learning is being used in diverse application domains. It is both useful 
and interesting. The creation of hand-crafted features, selection of features, 
application of models, and evaluation of performance is no alchemy. It involves a 
deep understanding of Computer Science, statistics, and many other disciplines. 
Moreover, it can be applied in many application domains and can be used for the 
good of the society. It is being used for predicting diseases, understanding the effects 
of medicines, and so on. This chapter introduced machine learning. The definition, 
types, and processes have been discussed in this chapter. The chapter also threw 
light on the applications and the history of machine learning.

This chapter helps you to get hold of the fundamentals. It also aims to help you 
motivate yourself towards learning machine learning. The reader must have also 
understood the pipeline and the division of data into train and test set. Also, 
this chapter forms the basis of the following chapters. The next chapter takes the 
discussion forward and introduces pre-processing and feature selection. Welcome to 
your journey towards becoming a machine learning professional! Before proceeding 
any further, let us spare a minute to see what we have learned.

Exercises
Multiple Choice Questions
 1. Which of the following is not a type of machine learning?
 a. Classification
 b. Regression
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 c. Clustering
 d. All of the above are the types of machine learning

 2. Which of the following is a type of supervised learning?
 a. Classification   b. Regression
 c. Both   d. None of the above

 3. Which of the following is a type of unsupervised learning?
 a. Clustering   b. Finding association rules
 c. Both   d. None of the above

 4. In the case of supervised learning:
 a. Both X and y are given
 b. Only X is given
 c. X and the labels of some of the samples are given
 d. None of the above

 5. In the case of unsupervised learning:
 a. Both X and y are given
 b. Only X is given
 c. X and the labels of some of the samples are given
 d. None of the above

 6. In the case of semi-supervised learning, 
 a. Both X and y are given
 b. Only X is given
 c. X and the labels of some of the samples are given
 d. None of the above

 7. If the label y in the case of supervised learning is discrete, then it is referred to 
as 

 a. Classification   b. Regression
 c. Both   d. None of the above

 8. If the label y in the case of supervised learning is a real value, then it is referred 
to as 

 a. Classification   b. Regression
 c. Both   d. None of the above
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 9. Can we use the whole input data for training?
 a. Yes   b. No
 c. Depends on the problem d. None of the above

 10. Which of the following may not produce better performance in training, but 
will lead to a robust model?

 a. 70% train, 30% test  b. 30% train, 70% test
 c. K-Fold   d. None of the above

 11. The performance of K-Fold represents:
 a. The performance of the final model
 b. The average performance of all the models developed
 c. Depends on the situation
 d. None of the above

 12. If the value of K in K-Fold is 1, then:
 a. All the data would be used in training
 b. All the data would be used in testing
 c. Depends on the situation
 d. None of the above

 13. If the value of K in K-Fold is same as the number of input samples, then:
 a. All the data would be used in training
 b. All the data would be used in testing
 c. Depends on the situation
 d. None of the above

 14. Which of the following is a part of an ML pipeline?
 a. Feature extraction  b. Feature selection
 c. Learning   d. All of the above

 15. Which of the following must be performed, in case of data having very high 
dimensionality?

 a. Feature selection   b. Pre-processing
 c. Both   d. None of the above
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Theory
 1. Define machine learning. Explain the difference between a conventional 

algorithm and an ML algorithm.
 2. What is supervised learning? Give examples to explain why it is called 

supervised learning.
 3. What is unsupervised learning? Give examples to explain why it is called 

unsupervised learning.
 4. Define classification.
 5. Define regression. How is it different from classification?
 6. Define clustering. Give examples.
 7. Explain the importance of dividing the data into train and test set.
 8. What is the validation data? How is it useful while training?
 9. Explain K-Fold validation. How is the performance of a model measured using 

K-Fold validation?
 10. State some of the applications of machine learning. Write a brief note on the 

history of machine learning.

Explore
As you proceed, you will need data for your experiments. Explore the following link 
to find out the various data available for:
	 •	 Classification
	 •	 Regression
	 •	 Clustering

https://archive.ics.uci.edu/ml/index.php

Perform the following tasks:

 1. Download three datasets of each type and read the data using Python.
 2. Find the number of features and the number of samples in each dataset.
 3. Find out the data type of each feature.
 4. Find the statistical description of each feature (mean, median, mode, standard 

deviation).



Introduction
Machine learning is an intricate task. Learning from the data involves cleaning 
of data, extracting features, selecting relevant features, and applying learning 
algorithms. The first and most important task is to clean the data. The data may 
contain missing values due to the reasons discussed in the chapter. The data may also 
contain “Not a Number” or “NaN”’s. Since missing data will hamper the learning 
process or, worse, will make the model learn incorrectly, dealing with such values is 
essential. This chapter gives an overview of how to deal with such values. Cleaning 
of data will enhance the performance of our Machine Learning model and make the 
results more meaningful. At times it is essential to convert the continuous data to 
categorical one. This chapter also introduces the discretization of data.

Once the data is clean, we extract the features and then move to the selection of 
relevant features. The feature extraction methods have been discussed in the 
following chapters. The second part of this chapter focuses on feature selection. Some 
of the statistical methods of feature selection have been discussed in this chapter. 
The chapter is important as it is the starting point of the road to machine learning. 
The methods discussed in the chapter will make your model efficient and effective.

Chapter 2
The Beginning: 

Pre-Processing and 
Feature Selection



16      Machine Learning for Beginners

Structure
The main topics covered in this chapter are as follows:
	 •	 Dealing with the missing values and ‘NaN’’s
	 •	 Feature selection
	 •	 Chi-Squared test
	 •	 Using variance to select features
	 •	 Pearson correlation

Objective
After reading this chapter, the reader will be able to:
	 •	 Understand the importance of dealing with the missing values
	 •	 Understand the importance of feature selection
	 •	 Understand the Chi-Squared test and Pearson’s correlation

Dealing with missing values and ‘NaN’
If your data contains missing values or ‘Not-a-Number’ type values, you might 
not be able to apply the standard procedures to carry out tasks like classification, 
regression, and so on. Therefore these missing values must be dealt-with before 
learning from the data. Knowing the source of the missing data can greatly help you 
in identifying the proper techniques to deal with them. These values may occur due 
to numerous reasons. Some of the most common ones are as follows:
	 •	 Incomplete filling of forms by the users
	 •	 If the database is migrated from some other, some data may have been lost
	 •	 Errors due to programs or due to other technical reasons

To deal with a missing value, one must:
	 •	 Find information about the feature which contains missing values. For 

example, if all the values in a feature are in a given range, the probability of 
the missing value lying in that range is high.

	 •	 Find the type of feature. For example, if a feature contains string type values, 
the missing value must also be a string.

	 •	 Find if the missing value can be replaced with obvious value. For example, 
if the column named country, in the regular employee table of a company 
located in Faridabad, has a missing value, its probability of being “India”  
is high.
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There are many ways to deal with such values, but the application of any technique 
requires an in-depth analysis of the data at hand and due deliberations. It is because 
filling these placeholders with incorrect data may lead to the formation of a model 
that does not perform well.

Some of the most common ways to deal with the missing values are as follows:
	 •	 Ignoring the records having missing values: This solution is problematic if 

the number of samples is low. But in the case of data with many samples, this 
solution might work.

	 •	 Replacing the missing values with average/median: This may not be 
possible if the range of the values is too large. However, if this range is low, 
this solution might work.

	 •	 Replacing the missing values with those obtained from regression: This 
book contains a dedicated chapter on regression. Applying the regression 
techniques for finding out the missing values is one of the options, but this 
may not work in some of the cases.

According to many data scientists, replacing missing values with the mean is 
not a good idea. It is because replacing many values with mean will reduce the 
variance and would undermine its correlation with other features. To understand 
the procedure of dealing with the missing values, consider the following data.

This section uses a file called Research_data.csv. The file contains seven fields:
	 •	 R_ID: Research ID of the researcher
	 •	 F_Name: The first name of the researcher
	 •	 L_Name: The last name of the researcher 
	 •	 No_Books: The number of books authored by him/her
	 •	 No_Papers: The number of papers authored by him/her
	 •	 R_Score: The Research Gate score of the researcher

The data types of the fields are as follows:
	 •	 R_ID: Integer
	 •	 F_Name: String
	 •	 L_Name: String 
	 •	 No_Books: Integer
	 •	 No_Papers: Integer
	 •	 R_Score: Float
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The contents of the file are as follows (Table 2.1):

R_ID F_Name L_Name No_Books No_papers R_Score

0 1001.0 Harsh Bhasin 9 25 15.37
1 1002.0 Kumar Gaurav NaN 10 10.23
2 1003.0 Lovish Kundu NaN 8 8.20
3 NaN Arush Jasuja 2 NaN
4 1005.0 Kim parsons Nan 15 12.56
5 1006.0 Pulin Verma NaN 2 4.00
6 1007.0 ABC XYZ 5 8 7.21
7 1008.0 LMN QRS 1 13 9.76

Table 2.1: The given table contains missing values and NaN’s

Note that the file contains NaN and missing values. The following steps take the 
reader on the journey of dealing with the missing values. The following code uses 
Pandas.
1. Importing Numpy and Pandas:
 import pandas as pd

 import numpy as np

2.  Observing a few rows of the given data: Use read_csv method to read the file 
and the head method to see the first few rows of the file 

 df = pd.read_csv(“property_data.csv”)

	 #	The	first	few	rows

 data=df.head()

 print(data)

 Output:

R_ID F_Name L_Name No_Books No_papers R_Score

0 1001.0 Harsh Bhasin 9 25 15.37
1 1002.0 Kumar Gaurav NaN 10 10.23
2 1003.0 Lovish Kundu NaN  8 8.20
3 NaN Arush Jasuja 2 NaN
4 1005.0 Kim parsons Nan 15 12.56

Table 2.2: Output of Step 2
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3. Finding ‘NAN’ values and ‘NAN’ type-values: The NAN values in the data can 
be found by the isnull method of a column of a dataframe:

 # Finding Nan’s in the No_Books column

 print(df[‘No_Books’])

 print(df[‘No_Books’].isnull())

 Output:
 0  9

 1  NaN

 2  NaN

 3  2

 4  Nan

 5  NaN

 6  5

 7  1

 Name: No_Books, dtype: object

 0  False

 1  True

 2  True

 3  False

 4  False

 5  True

 6  False

 7  False

 Name: No_Books, dtype: bool

	 Note	 that	 the	 above	method	does	 not	work	 if	 a	 field	 has	 ‘Nan’	 or	 any	 other	
value	in	place	of	‘NaN.’	Moreover,	the	method	will	not	work	if	the	value	of	a	
field	having	an	integer	data	type	is	empty.	For	example,	if	the	method	is	applied	
to the No_Papers	field,	 the	expected	results	are	not	obtained.	Note	 that	 in	 the	
example	that	follows,	False is displayed for row 3:

 print(df[‘No_papers’])

 print(df[‘No_papers’].isnull())

 Output:
 0  25
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 1  10

 2  8

 3      

 4  15

 5  2

 6  8

 7  13

 Name: No_papers, dtype: object

 0  False

 1  False

 2  False

 3  False

 4  False

 5  False

 6  False

 7  False

 Name: No_papers, dtype: bool

 The	solution	of	the	above	problem	is	to	find	the	unique	values	in	the	column	(or	
manually	observe	the	column)	and	replace	each	‘NaN’	like	values	with	‘NaN’.	
This can be done by assigning na_values	to	the	list	containing	possible	‘NaN’	
values in the column:

 missing = [“n/a”, “na”, “Nan”,” “]

 df = pd.read_csv(“Research_data.csv”, na_values = missing)

 The above statements will result in the replacement of all the values in the 
missing	list	with	the	standard	‘NaN.’	It	can	be	observed	by	printing	the	values	
of	the	affected	fields:

 print(df[‘No_Papers’])

 print(df[‘No_papers’].isnull())

 Output:
 0  3.0

 1  3.0

 2  NaN

 3  1.0
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 4  3.0

 5  NaN

 6  2.0

 7  1.0

 8  NaN

	 Name:	NUM_BEDROOMS,	dtype:	float64

 0  False

 1  False

 2  True

 3  False

 4  False

 5  True

 6  False

 7  False

 8  True

 Name: NUM_BEDROOMS, dtype: bool

4.  Dealing with the ‘NAN’ in an integer type column: Note that the above method 
will not work if a column contains characters, and one of the values is an integer. 
To consider the integer value in a column having data type character, as ‘NaN,’ 
the following code can be used:

 count=0

 for item in df[]:

  try:

   int(item)

   df.loc[count, ]=np.nan

  except ValueError:

   pass count+=1

 Likewise,	to	convert	any	value	having	a	particular	data	type,	the	value	code	can	
be used by replacing the type.

5.  Counting the total number of missing values in each column: To count the 
total number of missing values in each column, the following statement can be 
used:

 print(df.isnull().sum())
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 Output:
 R_ID   1

 F_Name   0

 L_Name   0

 No_Books  3

 No_papers  0

 R_Score  1

 dtype: int64

6.  Finding the total number of missing values: To find the total number of missing 
values in the data, the following statement can be used:

 print(df.isnull().sum().sum())

 Output: 
 5

7.  Replacing the ‘NaN’ values with a particular value in a particular column: 
To replace the ‘NaN’ values with a particular value in a particular column, the 
following statement can be used:

	 df[<column	name>].fillna(<value>,	inplace=True)

8.  Replace ‘NAN’ with the mean: To replace the ‘NaN’ with the mean of the 
column, the following statement can be used:

 m = df[]<column name>].mean()

	 df[<column	name>].fillna(m,	inplace=True)

 As	stated	earlier,	replacing	the	missing	value	with	the	mean is not recommended.

9.  To drop the records with ‘NaN’ values: To drop the records with ‘NaN’ values, 
the following statement can be used:

 df.dropna()

 Output:

R_ID F_Name L_Name No_Books No_papers R_Score

0 1001.0 Harsh Bhasin 9 25 15.37
4 1005.0 Kim parsons Nan 15 12.56
6 1007.0 ABC XYZ 5 8 7.21
7 1008.0 LMN QRS 1 13 9.76

Table 2.3: The output of Step 9
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Having seen the ways to deal with the missing values, let us now move to the process 
of discretization. The next section gives a brief overview of the process.

Converting a continuous variable to cate-
gorical variable
A continuous variable can be converted into a categorical variable in many ways, 
some of which have been explored in this chapter.

To begin with, a continuous variable can be converted into binary by setting the 
value less than a threshold to 0 and those greater than the threshold as 1. This 
process is called Dichotomizing. To understand the need for this, consider a study 
about happiness with the present dispensation where your happiness question 
ranges from 1 to 10. You might be interested in categorizing the results as either great 
happiness or low happiness. To accomplish this task, you can also split a continuous 
variable into two parts. Likewise, to divide the values into n parts, a similar process 
can be applied.

The following code converts the Fisher-Iris data into categorical values. In the first 
step, the required modules have been imported. The second step extracts the data 
and asks for the value of the number of levels. The third step performs the required 
task:

1. Import the required modules:
 import numpy as np

 from sklearn import datasets

 data= datasets.load_iris()

2. Extracting data:
 x=data.data[:100,:]

 x=np.array(x)

 print(x.shape)

 y=data.target[:100]

 y=np.array(y)

 print(y.shape)

 n=int(input(‘Enter the value of n \t:’))

3. Carry out categorization:
 for i in range (x.shape[1]):
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  x1=x[:,i]

  max1=np.max(x1)

  min1=np.min(x1)

  step=(max1-min1)/n

  print(max1, ‘ ‘,min1, ‘ ‘,step)

  for k in range (n):

   a=min1+(step*k)

   b=min1+(step*(k+1))

  for j in range(x.shape[0]):

   if ((x[j,i]>=a) and (x[j,i]<=b)):

    x[j,i]=k

 print(x)

In case of data having a very large number of features, feature selection is used. The 
following sections give an in-depth overview of some of these methods.

Feature selection
The pre-processing of data follows feature extraction. These features will be used 
to create a feature set, which will help in learning. Feature extraction has been 
discussed in the last chapter of this book. At times, the features so obtained are 
huge in number. For example, if you have a 256×256 picture and wish to consider 
each pixel of the picture as a feature, you will have 216 features. A picture with more 
pixels will have more features. Likewise, a video will have an even larger number of 
features. The extraction techniques, discussed in the following chapters, help to find 
better features. Some techniques even represent the given data with a lesser number 
of features. However, not all the features so obtained are equally important. Some 
of them are redundant, and some are noisy. The redundant features do not enhance 
the performance of a model, and the noisy features may degrade the performance of 
a model. Therefore, a smaller, more relevant subset of features needs to be selected 
to carry out the required learning task efficiently and effectively. So, having a larger 
number of features results in the following problems:
	 •	 Learning with a larger number of features is computationally expensive
	 •	 Some features are redundant
	 •	 Some features are noisy
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Feature selection aims at better performance and reduced learning time. This 
selection can be classified as follows:
	 •	 Feature selection: This method aims at selecting the most relevant features 

from the given set of features.
	 •	 Feature elimination: This method aims at eliminating the irrelevant features 

from the given set of features.

Feature selection can again be classified as follows:
	 •	 Filter methods: The filter methods select the features considering their 

relation with the labels.
	 •	 Wrapper methods: The wrapper method uses the classifier/repressor to find 

the subset that gives the best performance.

Except for the above, some learning methods have inbuilt feature selection 
mechanisms. Feature selection methods generally arrange features in order of their 
importance. To do this, these methods may consider a single feature or a set of 
features. The former is referred to as Univariate methods, and the later are called 
Multivariate methods.

Univariate feature selection methods place features in order of their relation with 
the output variables. It can be done using statistical tests. Some of the prominent 
methods that can be used for this purpose are as follows:
	 •	 Chi-Squared
	 •	 Variance based
	 •	 Correlation-based
	 •	 ANOVA

The next three sections discuss Chi-Squared, Variance based, and Correlation-based 
methods for feature selection.

Chi-Squared test
Feature selection in case of data having categorical variables can be made using the 
χ2 test. A categorical variable is one that can take values from a given set. The test is 
applicable for categorical variables, so continuous data is converted into categorical 
data by applying the techniques studied in the last-but-one section.

“The Pearson’s Chi-Squared (χ2) test supposes that the expected frequencies of a categorical 
variable match the observed frequencies for that variable [1].”
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The observed frequencies of variables can be determined using the given data and 
their expected frequencies using the methods explained in the following discussion. 
If the value of the χ2 is large, the expected and the observed frequencies are far apart. 
In case this value is low, the two are nearer.

The result obtained on applying the test needs to be compared with the critical value. 
This critical value is found using tables by calculating the degree of freedom. The 
degree of freedom is found using the following formula:

degreesoffreedom: (numberofrows - 1) * (numberofcolumns - 1)

Formally, the test can be stated as follows:

χ2 Test: 
	 •	 Reject Null hypothesis is χ2 >= Critical Value
	 •	 Do not reject the Null hypothesis if χ2 < Critical Value

The following steps explain the process of finding the χ2. The code uses Pandas. The 
following examples use a file called Dept_paper_Data.csv. The file contains four 
fields:
	 •	 R_ID: Research ID of the researcher
	 •	 Department: The department of the researcher
	 •	 No_Papers: The number of papers authored by him/her
	 •	 Patent: If the researcher has a patent

The data types of the fields are as follows:
	 •	 R_ID: Integer
	 •	 Department: String
	 •	 No_Papers: Integer
	 •	 Patent: String

The contents of the file are as follows (Table 2.4):

R_ID Department No_papers Patent

0 H001 CS 3 Y
1 H002 CS 5 NA
2 H003 CS 2 NA
3 H004 CS 9 N
4 H005 CS 1 Y
5 H006 CS 6 NA

Contd…
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6 H007 CS 1 N
7 H008 ECE 2 NA
8 H008 ECE 0 N
9 H009 ECE 4 N
10 H010 ECE 10 Y
11 H011 ECE 3 N
12 H012 ECE 1 Y

Table 2.4: The research output table

It is intended to find whether the value of the Patent field depends on the Department 
of the researcher. The following steps will help us to apply Chi-square to accomplish 
the given task.

In the above example, Patent can take values:
	 •	 ‘Y’
	 •	 ‘N’
	 •	 ‘NA’

And the Department can take the following values:
	 •	 ‘CS’
	 •	 ‘ECE’

And are hence categorical variables. Therefore, the test can be used to accomplish 
the given task. Firstly, the summary of the values of categorical variables of the two 
features needs to be drawn. It can be done using a table called a contingency table. 
Table 2.5 shows the format of the contingency table:

_ ‘Y’ ‘NA’ ‘N’

‘CS’ 2 3 2
‘ECE’ 2 1 3

Table 2.5: Format of the contingency table

The following steps will help us to apply The Pearson’s Chi-Squared Chi-square to 
accomplish the given task:

1.  Find unique values from the Department column and place them in a list called 
departments. Likewise, find unique values from the Patent column and place 
them in a list called patent_values:
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 departments=df[‘Department’].unique()

 print(departments)

 patent_values=df[‘Patent’].unique()

 print(patent_values)

 Output:
 [‘CS’ , ‘ECE’]

 [‘Y’ , ‘NaN’, ‘N’]

2.  Find the records where Patent is ‘Y’ and Department is ‘CS’. Likewise, find the 
number of records for all six combinations. The task can be accomplished by 
using the following code:

 table=np.zeros((2,3))

 i=0

 j=0

 for dept in departments:

  j=0

  for val in patent_values: 

   a=(df[(df[‘Department’]==dept) & (df[‘Patent’]==val)].count())

   table[i,j]=a[0]

   j+=1

  i+=1

 print(table)

 Output:
 array([[2., 3., 2.], [2., 1, 3.]])

Having obtained the contingency table, we can proceed further and find the expected 
frequencies, as shown in Table 2.6. Note that the last column contains the sum of 
values in that row, and the last row contains the sum of values of that column:

_ ‘Y’ ‘NA’ ‘N’

‘CS’ 2 3 2 7
‘ECE’ 2 1 3 6

4 4 5

Table 2.6: Calculating expected frequencies
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The expected frequency of the cell at the intersection of ‘CS ‘and ‘Y’ is:
7 × 4

13
It is obtained by multiplying the value at the last cell of the corresponding column 
with the last cell of the corresponding row and dividing the result with the last cell 
of the table. Likewise, the expected frequency of each cell (Ei) can be calculated. The 
value of the chi-squared metric is calculated by using the following formula:

χ 2 = −∑( )/( )O E Ei i i

The table value corresponding to the degree of freedom, which in this case is two 
is then compared with the calculated value, and decision regarding dependence is 
made.

The implementation of this test using SKLearn is as follows: In the code that follows, 
the chi2_contingency and scipy.stats needs to be imported. The module has a 
method called chi2_contingency, which takes the contingency table as its argument 
and outputs the value of the statistics, the p_value, and the degree of freedom 
(d_of_freedom). The critical value can be obtained by using the chi2.ppf method, 
which takes probability and the degree of freedom as its arguments. The comparison 
between the two values is then made, and the result is printed:
from scipy.stats import 

from chi2

value, p_value, d_of_freedom, expected = chi2_contingency (table)

print(expected)

probability = 0.95

critical = chi2.ppf(probability, d_of_freedom)

if abs(value) >= critical:

  print(‘The variables are Dependent’)

else:

  print(‘The variables are not Dependent’)

alpha = 1.0 - probability

print(‘significance=%.2f,	p=%.2f’	%	(alpha,	p_value))

if p_value<= alpha:

  print(‘Reject’)

else:

  print(‘Do not reject’)
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Output:
[[2.15384615 2.15384615 2.69230769]

[1.84615385 1.84615385 2.30769231]]

The vairbles are not Dependent

significance=0.05,	p=0.57

Do not reject

Having seen the implementation of Chi-squared, let us now move to another feature 
selection technique called the Pearson Correlation.

Pearson correlation
Pearson’s coefficient of correlation between two variables X and y is given by:

corr X y X y X yX y X
i

n

i i
i

n

i
i

n

i, /(( ) = −( )× −( )







 −( ) ×

= = =
∑ ∑ ∑

1 1

2

1

−−( )y
2
)

Where Xi is the ith element of X and yi is the ith element of y.

If the value of corr(X,y) is high, the samples are highly correlated, and if the value of 
this coefficient is low, they are less correlated. If the value of corr(X,y) is 1, it denotes 
a perfect positive correlation. In case this value is -1, it denotes a perfect negative 
correlation. The value 0 indicates that X and y are not related. To place the features 
of a given data in order of their importance using this test, we take one feature at 
a time and find its correlation with y. The coefficients so obtained are placed in a 
list. The values of this list indicate the importance of features. The following code 
implements the method. The implementation includes the following methods:
	 •	 load_data

	 •	 pearson_cor

The load_data function returns the data and the target of the Fisher Iris dataset:
Def load_data():

Data=load_iris()

data=Data.data

target=Data.target

return (data, target)

The Pearson’s coefficient can then be calculated for each feature, using the formula 
stated above:
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def pearson_cor(X,y):

 corr=[]

 for i in range(X.shape[1]):

  x=X[:,i]

  x_mean=np.mean(x)

  y_mean=np.mean(y)

  x1=x-x_mean

  y1=y-y_mean

  prod=x1*y1

  num=np.sum(prod)

  den=np.sqrt((np.sum(x1*x1))*(np.sum(y1*y1)))

  c=num/den

  corr.append(c)

 return corr

Finally, the above functions can be invoked to get the Person’s coefficient of each 
feature and place them in order:
X,y=load_data()

corr=pearson_cor(X,y)

feat=np.argsort(np.abs(corr))

print(feat)

The above code results in a list consisting of indices placed in the order of importance 
of features. In the case of Fisher Iris data, the list is [2, 0, 1, 3], which means that the 
third feature is the most important, followed by the first and then the second. The 
fourth feature is the least important. If one aims to select the top two features, he can 
select the third and the first feature. In case the top three features are required, the 
second feature can also be selected. 

The next section discusses feature selection using the variance threshold.

Variance threshold
If a feature has the same value in all the samples, it is not important for classification 
or regression. Therefore, such a feature can be excluded from the data. Extending 
this argument further, we can say that the feature which has low variance may not 
be very important. It may be stated that for Bernoulli random variables, the variance 
is given by:



32      Machine Learning for Beginners

Var = p × (1 – p)

Where p is the probability. For the Boolean features, the above formula can be used 
as a threshold. For example, in a dataset with Boolean features, if it is intended to 
remove which are same for more 90% of the samples the threshold .9 * (1 - .9) can 
be used as an argument of the VarianceThreshold method and the final data, which 
does not contain the relevant features can be generated using the fit_transform 
method of SKLearn. The method can be implemented using the following code:
#Selecting features using variance threshold 

import numpy as np

from sklearn.feature_selection import VarianceThreshold

X, y=load_data()

sel = VarianceThreshold(threshold=(.9* (1 - .9)))

sel.fit_transform(X)

print(sel)

Feature selection can also be accomplished using some of the methods which require 
the know-how of some of the learning algorithms discussed in the following chapters 
and hence have not been included here.

Conclusion
Like the Simpsons revolve around the Simpson family, but the absence of other 
characters will have a catastrophic effect on the series. You can understand Liza only 
if the rest of the characters show very little respect for nature. Homer is effective only 
because of Ned Flanders, and Marge shines as Homer does not. In machine learning, 
the learning algorithms are the protagonists. However, they will lose their cut if the 
procedures like data cleaning are absent.

This chapter is the first step towards machine learning and data science. The 
techniques discussed in this chapter not only make your model effective and 
efficient but will also help you in many other disciplines. The chapter begins with 
the methods of dealing with the missing values and ‘NaN’’s. It is followed by a brief 
discussion on converting continuous data into categorical ones.

The second part of this chapter introduces one of the most important topics of 
machine learning, which is feature selection. Some important techniques of feature 
selection, like the Chi-Squared test, variance-based method, and Pearson correlation, 
have been discussed in the chapter.
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The methods introduced in this chapter would help you to clean the data and find 
missing values. It will not only improve the performance of the model but also make 
the results more meaningful. The reader is expected to analyze the methods and by 
varying the parameters.

The next chapter introduces the regression for finding the values of unknown 
samples. The reader should clean the data and deal with the missing values before 
applying the algorithms introduced in the next chapter.

Exercises
Multiple Choice Questions
 1. Missing values may occur due to?
 a. Incomplete filling of forms by the users
 b. If the database is migrated from some other, some data may have been lost
 c. Errors due to programs or due to other technical reasons
 d. All of the above

 2. To deal with a missing value, one must?
 a. Find information about the feature
 b. Find the type of feature
 c. Find if the missing value can be replaced with an obvious value
 d. All of the above

 3. Some of the most common ways to deal with the missing values are as follows:
 a. Ignoring the records having missing values
 b. Replacing the missing values with average/median
 c. Replacing the missing values with those obtained from regression
 d. All of the above

 4. Which of the following is true?
 a. Not all the features so obtained are equally important
 b. The redundant features do not enhance the performance of a model
 c. The noisy features may degrade the performance of a model
 d. All of the above
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 5. Having a larger number of features results in?
 a. Computationally inefficient learning
 b. Redundant features
 c. Noisy features
 d. All of the above

 6. Feature selection aims at?
 a. Better performance  b. Reduced learning time
 c. Both   d. None of the above

 7. Several features can be reduced by?
 a. Feature selection   b. Feature elimination
 c. Both   d. None of the above

 8. Which of the following are the types of feature selection?
 a. Filter methods   b. Wrapper methods
 c. Both   d. None of the above

 9. Which of the following are the types of feature selection? 
 a. Univariate methods  b. Multivariate methods
 c. Both   d. None of the above

 10. Some of the prominent methods that can be used for feature selection are?
 a. Chi-Squared   b. Variance based
 c. Correlation-based  d. All of the above

Programming/Numerical
Create a file called Student.csv, having the following data:

S_ID F_name L_name No_Sub Fees

H001 Pratham Reehal 1 1500
H002 Tanishq Chitkara 2750
H003 _ Arora 2 2750
H004 Krishna Sharma 2
H005 Tarush _ 1 3000
H006 Eliel Joseph 1 3000
H007 Ram Mohan 2 6000
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The description of the fields is as follows:
	 •	 S_ID: Student ID
	 •	 F_Name: First name
	 •	 L_Name: Last name
	 •	 No_Sub: Number of subjects
	 •	 Fees: Total fees

The data type of each field is as follows:
	 •	 S_ID: String
	 •	 F_Name: String
	 •	 L_Name: String
	 •	 No_Sub: Integer
	 •	 Fees: Float

Now, perform the following tasks:

 1. Read the CSV file using Pandas
 2. Replace the ‘NaN’ type values with ‘NaN’
 3. Replace the unknown value in the Fees field with the mean
 4. Replace the unknown value in the No_Sub field with the median
Another field called distinction is added to the table. The updated data is as follows:

S_ID Distinction

H001 Y
H002 N
H003 Y
H004 NA
H005 N
H006 Y
H007 N

 1. Find whether No_Sub and Distinction are correlated? 
 2. Apply the Chi-Squared test to find whether No_Sub and Distinction are 

correlated.
 3. If Distinction is the label, find which feature is more important No_Sub or 

Fees. Accomplish this task using:
 a. Variance   b. Correlation
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 4. Use the Breast Cancer dataset (https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.load_breast_cancer.html) and place the features in 
terms of their importance using:

 a. Variance   b. Correlation

 5. Do you observe anything peculiar while applying the first method?
 6. Perform the above task using the Fisher Iris dataset.

Theory
 1. Explain the importance of feature selection.
 2. What are the types of feature selection?
 3. Differentiate between filter and wrapper methods.
 4. What is Univariate feature selection? Give an example.
 5. Explain the Chi-Squared test for feature selection.
 6. How can variance be used for selecting features?
 7. Explain the application of Pearson Correlation for feature selection.
 8. How do you deal with missing values in the given data? Explain.
 9. What are the problems in replacing the missing values with mean?
 10. What are the problems in replacing the missing values with zeros?



Introduction
At times we need to apply our skills to solve the problems of the people of the 
nation. The nation, which is different from what is being shown, where untimely 
rains cause farmer distress, where people work for their lifetime to buy a house, 
where weather determines whether a family will have the evening meals or not. 
Regression partially helps us to predict the above and accomplish the task of making 
people’s lives better.

Regression is a supervised learning technique where the values of the dependent 
variable are real. This chapter introduces gradient descent, which will not only help 
in implementing regression but also in the classification algorithms discussed in the 
following chapters. The algorithm assumes that the dependent variables depend 
linearly on the independent variables, which may not always the case. The regression 
technique based on the values of the nearest neighbors will overcome this limitation. 
This chapter also presents the results of the application of the above algorithms on 
different datasets, hence uncovering the applicability of an algorithm on diverse 
datasets and hence its robustness.

Chapter 3
Regression
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Structure
The main topics covered in this chapter are as follows:
	 •	 Line of best fit
	 •	 Gradient descent method
	 •	 Implementation
	 •	 Linear regression using SKLearn
	 •	 Finding weights without iteration
	 •	 Regression using K-nearest neighbors

Objective
After reading this chapter, the reader will be able to:
	 •	 Define regression
	 •	 Find the line of best fit
	 •	 Understand gradient descent
	 •	 Implement Regression using SKLearn
	 •	 Use K-nearest neighbors for regression

The line of best fit
A survey was conducted in a start-up, in which the respondents were asked to state 
their income and the rent paid by them. The data collected has been shown in Table 
3.1. Here, the income is the independent variable, and the rent is the dependent 
variable:

Income Rent 
23000 9500
14000 5000
24000 10000
52500 18000
43750 16000
18000 6000
15000 5000
16000 6000
41500 18000
45000 17500

Table 3.1: Income and rent paid by ten employees
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Now, given the value of the independent variable, the value of the dependent variable 
is to be predicted, based on the given data. Let us start by plotting the data (Figure 
3.1). Note that if the data is plotted, a positive correlation between the dependent 
and the independent variables can be observed:

Figure 3.1: Graph Income versus Data

If the line of best fit is found, the value of the dependent variable can be predicted, 
given the value of the independent variable. If sx is the standard deviation of X, sy 
is the standard deviation of Y, r is the coefficient of correlation between X and Y,  
x is the mean of X and y is the mean of Y, the line of best fit for two data sets X and 
Y are given by the following equation:

y = mx + c

Where:

m = (r × sy)/sx

And:

c = y – mx

Figure 3.2 shows the predicted values of rent and actual values. The slope of this line 
comes out to be 0.377552163, and the y-intercept comes out to be 47.16042351. The 
equation of the line, therefore, becomes:

y = 0.377552163 x + 47.16042351

This line can be used to predict the values of rent, given the income:
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Figure 3.2: The red squares depict the predicted values of y, and the blue  
rhombus depict the actual values of the rent

So, if the income of a person is 15000, then the value of rent comes out to be 
5710.442871.

In the above case, the number of independent variables was one. If there is more 
than one independent variable, then the regression is termed as multiple regression:

y = w0 + w1 x1 + w2 x2 + w3 x3 + … + wn xn

Here:

x1, x2, x3, …, xn are the independent variables. y is the dependent variable, w0, w1, w2, 
…, wn are the weights, to be found using the given data, where weights correspond 
to the coefficient to of the features, in the line (or hyperplane) of best fit. To find 
the weights, the least square method can be applied. That is, from amongst many 
possible straight lines (or hyper-planes), we select the line having the least mean 
square distance from the given points.

“The goal of linear regression procedures is to fit a line or a hyper-plane through the points. 
Specifically, the program will compute a line so that the squared deviations of the observed 
points from that line are minimized.[1]”

Gradient descent method
Given X, a matrix having m columns and n rows, and y, a column matrix, having n 
rows. Each row in X, represent a sample, xi. The values in xi are the values of the m 
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features which determine the value of the dependent variable yi. Here, we assume 
that the linear combination of xi’s determine the value yi.

Let wi be the weight associated with a feature xi and b be the y-intercept. The 
expected value of the dependent variable would be ŷ , considering ŷ  to be the linear 
combination of the given features. That is:

1

ˆ
m

i i
i

xy w b
=

= +∑

The above equation can be re-written by considering, x0 = 1 and b = w0 as:

0

ˆ
m

i i
i

wy x
=

=∑

The difference between the predicted value ŷ  and the given value y should be 
minimum, and so should be its square and half of the resultant. The objective 
function therefore becomes:

21 ˆ( )
2

f y y= × −

To get the optimal weights, the gradient of f with respect to the weights must be 
found. The partial derivative of f with respect to the weight of the ith sample can be 
written as:
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It is because f depends on ŷ  and ŷ  depends on wi:
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The final value of the gradient becomes:
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The weights must be updated in a direction opposite to the gradient as the gradient 
tells us the direction for the positive growth of the function. That is:
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Or

( )ˆ
i i iw w y y x= − − ×

Which is the equation used to update the weights of the ith sample?

The process of learning weights is as follows:
1.	 Initialize	weights	by	small	random	numbers:
 w = List of random numbers conatining m values, where m is the number of features
2.	 Till	convergence,	change	weights	using	the	following	equation:

( )ˆ
i i iw w y y x= − − ×

3.	 Find	 the	mean	 square	 error	on	 the	 test	 set	using	 the	weights	 obtained	 in	 the	
above step.

Having seen the algorithm of regression, let us now implement the above algorithm.

Implementation
To understand the idea of linear regression, consider the following data (Table 3.2). 
The data has five features: X1, X2, X3, X4, and X5. The number of samples in the 
data is 21. Note that the last column depicts y, depends on the values in the first four 
columns. You can save the following data as a CSV file called DataRegression.csv:

X1 X2 X3 X4 X5 y
13 82 37 98 71 137.2167
87 89 87 68 98 138.9469
75 78 81 53 36 101.2451
87 74 26 51 47 100.9123
73 78 17 32 80 104.0818
43 97 87 63 33 118.059
99 59 24 71 71 109.5203
31 17 91 41 48 53.05253
33 37 18 84 61 94.39396
22 55 85 88 79 115.9572
36 35 28 91 93 107.8502
48 83 45 24 98 108.7555
92 51 75 25 35 66.94636
20 28 40 15 72 54.09701

Contd…
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15 37 58 43 75 76.71684
10 43 31 91 61 101.6789
48 38 32 81 69 97.00749
24 12 69 61 73 68.1979
26 38 54 47 36 66.75108
96 91 56 16 48 95.35608
62 63 94 14 45 72.02378

Table 3.2: Data for DataRegression.csv

This section will discuss the procedure to develop a model that learns w, the weights 
and w0, the bias to fit the data such that:

0 1 1 2 2 3 3 4 4 5 5y w w x w x w x w x w x= + + + + +

1.	 Read	the	CSV	file	and	extract	the	data	in	X and y. This task can be accomplished 
using	the	CSV	module	and	reading	the	file	using	the	reader	method.	The	extract	
Data() method fetches the data into the variables X and y. The code to read the 
file	is	as	follows:

 import numpy as np

 import matplotlib.pyplot as plt

 from numpy import genfromtxt

 import csv

	 with	open(‘F:\Machine	Learning\Regression\DataRegression.csv’,’r’)	as	
f:

  data = csv.reader(f)

2.	 Initialize	the	weights	by	random	numbers	between	0	and	1.	The	init_weights 
function accomplishes this task:

	 def	init_weights():

	 	 w=np.random.random(X.shape[1])

	 	 return	w

3.	 Normalize	the	data	by	using	the	following	formula:

x mx
s
−

=

	 Here,	s	is	the	standard	deviation	of	the	feature,	and	m	is	its	mean.	The	normalize	
function takes Data as the input and returns the Data,	the	mean	of	each	column,	
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and the standard deviation of each column. The last two can be used for 
converting the predicted value back to the same scale and to predict the error.

	 The	data	can	be	normalized	by	subtracting	mean	from	each	value	and	dividing	
the	difference	by	the	standard	deviation:

 def normalize(Data):

  mean_arr=[]

  std_arr=[]

  for i in range(Data.shape[1]):

   col=Data[:,i]

   s=np.std(col)

   m=np.mean(col)

   mean_arr.append(m)

   std_arr.append(s)

   #print(‘col ‘,i,’ mean ‘,m,’ std ‘,s)

   for j in range(Data.shape[0]):

    Data[j,i]=(Data[j,i]-m)/s

    #print(Data)

  return Data, mean_arr, std_arr

4. The gradient descent method can be used to train the model and learn the 
weights. Note that there is no need to learn the bias separately as it is treated as 
one	of	the	weights.	The	train	function	accomplishes	the	above	task.	It	takes	X,	y 
and w as input arguments and returns the weight w. Note that the value of the 
learning rate in the following is set as 0.01:

	 def	train(X,	y,	w):

  mse=0

  for i in range(X.shape[0]):

   x=X[i,:]

	 	 	 sum1=np.matmul(np.transpose(w),x)

   diff=(sum1-y[i])

   mse=(diff**2)

   mse=np.sqrt(mse)

   if(mse>0.01):



Regression      45

	 	 	 	 w=w-0.1*(diff)*x

	 	 	 	 #print(w)

	 	 return	w

5.	 The	mean	 squared	 error	mse	 can	 be	 calculated	using	 the	 following	 function,	
which takes X,	y and w as the input arguments and returns the mse:

	 def	calMSE(X,	y,	w):

 mse=0

 for i in range(len(y)):

  x=X[i,:]

	 	 sum1=np.matmul(np.transpose(w),x)

  diff=(sum1-y[i])    

  mse+=(diff**2)

  #print(mse)

  mse=np.sqrt(mse) 

  return(mse)

6.	 The	results	obtained	from	the	model,	can	be	converted	into	the	original	scale,	
using the verify	 function,	 which	 takes	 the	 predicted	 value,	 w,	 the	 mean	 of	
features and their standard deviation as input arguments and returns the 
predicted values by using the formula value=(value*s)+m:

 def verify(pred, mean_arr_y, std_arr_y):

  for j in range(pred.shape[0]):

   pred[j]=(pred[j]*std_arr[-1])+mean_arr[-1]

   #print(pred)

  return pred 

7.	 The	final	program	for	regression	is	as	follows:

 Data = genfromtxt(‘F:\Machine Learning\Regression\DataRegression.
csv’, delimiter=’,’)

 Data,mean_arr, std_arr=normalize(Data)

 X, y=extractData(Data)

	 w=init_weights()

	 w=train(X,	y,	w)
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	 mse=calMSE(X,	y,	w)

	 pred=np.matmul(X,w)

	 predicted=verify(pred,	w,mean_arr,	std_arr)

The reader is expected to implement the above technique and observe and analyze 
the results. The reader can also use other datasets and compare the performance of 
the algorithm on various datasets.

Linear regression using SKLearn
The module sklearn.linear_model.LinearRegression implements linear 
regression. The following discussion uses the model. The important parameters of 
the constructor of the method are as follows (Table 3.3):

Parameter Explanation
fit_intercept This parameter is used to find the intercept. If the value of this parameter 

is set as False, the data is deemed to be centered. The default value of 
this parameter is True. 

normalize The data is normalized by subtracting mean and dividing the data by 
L2 norm. The default value of this parameter is False. Also, note that 
this parameter is not important of the fit_intercept parameter is set 
to False. 

Table 3.3: The parameters of LinearRegression

Having seen the parameters of the function, let us now move to the attributes. The 
attributes of the sklearn.linear_model.LinearRegression are as follows (Table 3.4):

Attributes Explanation 
coef_ It returns the weights of the features. If there is a single target, a 1-D 

array is returned, whereas, in the case of multiple targets, the 2D array 
is returned. Here, the shape of the array would be (n_targets, n_
features).

intercept_ The independent term or the bias in the linear model is returned by this. 
Table 3.4: The attributes of LinearRegression

The module provides us with some functions. The fit and predict are the two most 
important functions. The fit function models the data X with y. The predict function 
predicts the output of the argument. Let us now use the above methods on some 
common datasets.
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Experiments
This section presents two experiments in which linear regression has been applied 
to the Boston Housing dataset. In the first experiment, K-Fold validation has been 
used with K=10, and in the second experiment, the train test split has been used with 
test-size=0.33. The reader is expected to vary the value of K and test_size to see the 
effect of variation of these parameters on the mean squared errors. (make a plot of 
variation in test size and accuracy).

Experiment 1: Boston Housing Dataset, Linear 
Regression, 10-Fold Validation
1.	 Import	requisite	modules:

 import numpy as np

 from sklearn.linear_model import LinearRegression

 from sklearn.datasets import load_boston

 from sklearn.model_selection import train_test_split

 from sklearn.model_selection import KFold

2. Load the data using the load_boston() function:

 boston=load_boston()

 X=boston.data

 y=boston.target

3.	 Use	the	following	code	to	split	the	data	into	train-test,	using	the	K-Fold	validation.	
Find	the	mean	squared	error	of	each	test	case	and	find	the	average	of	the	mse’s	
so obtained:

 kf=KFold(n_splits=5)

 kf.get_n_splits(X)

 mse_arr=[]

 for train_i,test_i in kf.split(X):

  X_train,X_test=X[train_i],X[test_i]

  y_train,y_test=y[train_i],y[test_i]

	 	 modal=	LinearRegression().fit(X_train,	y_train)

  mse=0
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  for l in range(len(y_test)):

   X_test_data=X_test[l,:]

   y1=modal.predict([X_test_data])

   d=y1-y_test[l]

   mse=mse+(d**2)

 mse=mse//(y_test.shape[0])

 mse=np.sqrt(mse)

 mse_arr.append(mse)

 print(np.mean(mse_arr))

Experiment 2: Boston Housing Dataset, Linear 
Regression, train-test split
1.	 Import	requisite	modules:
 import numpy as np
 from sklearn.linear_model import LinearRegression
 from sklearn.datasets import load_boston
 from sklearn.model_selection import train_test_split
 from sklearn.model_selection import KFold

2. Load the data using the load_boston() function:
 boston=load_boston()
 X=boston.data
 y=boston.target

3.	 Use	 the	 following	 code	 to	 split	 the	 data	 into	 the	 train-test,	 using	 the	 K-fold	
validation.	Find	the	mean	squared	error	of	each	test	case	and	find	the	average	of	
the	mse’s	so	obtained:

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.33, random_state=42)

	 modal=	LinearRegression().fit(X_train,	y_train)
 mse=0
 for l in range(len(y_test)):
  X_test_data=X_test[l,:]
  y1=modal.predict([X_test_data])
  d=y1-y_test[l]
  mse=mse+(d**2)



Regression      49

 mse=mse//(y_test.shape[0])
 mse=np.sqrt(mse)
 print(np.mean(mse))

The above experiment can be repeated by not providing the random state, repeating 
the experiment 10 times. Moreover, the nested validation can also be done to make 
the final result more reliable.

Finding weights without iteration
Let X and Y are two matrices of order n × m and n × 1,	then	the	dimensions	
of YTX is m × n.

X be the matrix representing the Data, where each row of X represents a sample, and 
each column represents a feature. The vector y gives the value of the real label. That 
is:

1
11 1

2

1

 and 
m

n nm
n

y
x x

y
X Y

x x
y

 
 

= = 
 
 



  





If W represents the weight matrix, of order 1 × m, W’ represents the transpose of 

W. Then (X × W’ – Y) should be minimized. It implies that , 21 ( )
2

X W Y× × −  is also 
minimized.

That is:
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Which is same as:
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To minimize the value of J, the derivative of J, with respect to W, should be equated 
to 0, to get the value of W, that is:
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The derivative after simplification becomes:

0T TX XW X Y− =

Which gives:
1( )T TW X X X Y−=

The following code implements the above algorithm:

from sklearn.datasets import load_iris

import numpy as np

from numpy import linalg

from sklearn import model_selection

Data=load_iris()

X=Data.data[:100,:]

y=Data.target[:100]

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, 
test_size=0.20, random_state=42)

W=np.matmul(np.matmul(linalg.inv(np.matmul(np.transpose(X_train),X_
train)),np.transpose(X_train)),y_train)

Let us now move to another technique of regression called K-nearest neighbors.

Regression using K-nearest neighbors
Suppose the salary of a person is to be guessed just by looking at the salaries of his 
five closest friends. What will you do? Probably take the average of the salaries of 
the five friends. It may appear very naïve, but it works most of the time.

In the above example, replace the friends with the train set, the salary with features, 
and the person whose salary is to be guessed with the test set. The salary, to be 
guessed, becomes the predicted value of the dependent variable. It is essential, 
K-nearest neighbors, for regression. The precise algorithm for this regression is as 
follows:
1. Divide the data into the train and the test set
2. For each test set:
 a. Find its distance from all the samples in the train set
 b. Arrange the distances in ascending order
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	 c.	 Take	the	indices	of	the	first	K	samples	in	2.	b
 d.  Find the average of the dependent variable of the test set for the above indices 

and declare the result

To ascertain the performance, you can find the root mean square error.

The implementation of the above algorithm is as follows:

Data=load_boston()

X=Data.data

y=Data.target

X_train,X_test,y_train,y_test=model_selection.train_test_split(X,y,test_
size=0.3)

y_pred=[]

for i in range(X_test.shape[0]):

 x=X_test[i]

 dist=[]

 for j in range(X_train.shape[0]):

  d=0

  for k in range(X_train.shape[1]):

   d+=((X_train[j,k]-X_test[i,k])**2)

  d=np.sqrt(d)

  dist.append(d)

 index=np.argsort(dist)

 mean=0

 for t in range(5):

  mean+=(y_train[index[t]])

 mean=mean/5

 y_pred.append(mean)

It may be stated that many classification algorithms described in the following 
chapters can be used for regression also.
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Conclusion
This chapter described a supervised learning approach called regression. The 
statistical method of fitting a line has been discussed in the first section. The 
gradient descent method is generally used to learn the weights by minimizing the 
least squared error. The method has been discussed in detail, and regression using 
this method has been implemented both by using Scikit learn and without using it. 
The learning of weights without iteration has also been discussed in this chapter. 
Regression can also be done using other methods like K-nearest neighbors, SVM, 
and neural networks. Some of these methods would be discussed in the following 
chapters.

Regression finds its applications in diverse fields like weather forecasting, stock 
market prediction, and so on. The technique is exciting, and there is a scope of 
research in this field. The exercises given at the end of the chapter would prompt 
you to explore the algorithms studied on various datasets. You will continue 
learning regression both in ML and outside as and when you grow, professionally 
and personally.

The next chapter introduces classification. The chapter discusses some simple 
algorithms like K-nearest neighbors, logistic regression, and so on. The concept of 
Linear Discriminant Analysis has also been explained in the chapter.

Exercises
Multiple Choice Questions
 1. Regression is?
 a. Supervised learning  b. Unsupervised learning
 c. Both   d. None of the above

 2. Gradient descent changes weights?
 a. In the direction of the gradient
 b. In the opposite direction of the gradient
 c. Both
 d. None of the above

 3. Which of the following can be used for regression?
 a. Single-layer perceptron b. Multi-layer perceptron
 c. Decision trees   d. All of the above
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 4. Which of the following can be used for regression?
 a. KNN   b. Support Vector Machines
 c. Decision trees   d. All of the above

 5. Which of the following can be used for regression?
 a. K means   b. Support Vector Machines
 c. PCA   d. All of the above

 6. What is multiplied with the gradient in the gradient Descent to change the 
weights?

 a. Learning rate   b. Accuracy
 c. Specificity   d. None of the above

 7. Which of the following can be used to ascertain the performance of a regression 
model? 

 a. Mean Squared Error  b. Accuracy
 c. Specificity   d. None of the above

 8. In which of the following regression can be used?
 a. Weather prediction  b. Stock market prediction
 c. To predict the growth of a sector d. All of the above

 9. Which of the following can be used to create a model of regression? 
 a. Gradient descent   b. Newton’s method
 c. Both   d. None of the above

 10. If the mse of your model is 0, then it is the case?
 a. Underfitting   b. Overfitting
 c. Insufficient information d. None of the above

Theory
 1. Define regression. Explain any three applications of regression.
 2. Differentiate between regression and classification.
 3. Derive the formula for gradient descent.
 4. Explain the statistical line fitting.
 5. What is multiple regression?
 6. How do you carry out regression using K-nearest neighbors?
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 7. Explain how you can accomplish the task of finding unknown values using the 
concept of Neural networks.

 8. Is feature selection important for regression?

Experiments
 1. Consider the 3D Road Network (North Jutland, Denmark) data set in the 

UCI data repository. The data is a text data, having 434874 instances and 
four attributes. Note that there are no missing values on the dataset. The data 
contains the following features:

	 	 •	 OSM_ID: OpenStreetMap ID for each road segment or edge in the graph
	 	 •	 Longitude
	 	 •	 Latitude
	 	 •	 Altitude
  As per the UCI machine learning repository.
	 	 •	 Check if the altitude can be found by using the longitude and latitude.
	 	 •	 	Accomplish the above task using the gradient descent method and find the 

mean squared error.
	 	 •	 Perform the above task using the KNN regression.
 2. Give reasons to justify why regression should not be applied to the above 

problem?
  Repeat the above (Q1 and Q2) experiments on the Airfoil self-noise data set 

and compute the mean squared error.
 3. The Alcohol QCM Sensor Dataset Data Set in the UCI repository has eight 

features. The data in the above question had six features and that in question 
1 had four features. Apply the linear regression of SKLearn to all of them and 
see if having more number of features improves the results.

 4. Now have a look at the Appliances energy prediction data set, having 29 
features, and see if the feature selection has an impact on the results. You can 
select the relevant features by any of the feature selection methods explained 
in Chapter 2.

 5. Based on the above experiments, write a note on whether having the optimal 
number of features enhances the performance of the regression models.



Introduction
Hari decided not to see the face of a particular person. So, he sought to automate the 
process of distinguishing the pictures having the face of the person from those which 
do not contain the face. To accomplish this task, he decided to develop a pipeline. 
He used various classification algorithms and compared the performance of the 
algorithms using accuracy, specificity, and sensitivity. Finally, he selected a feature 
extraction method, a feature section algorithm, and a classification algorithm. He 
was able to accomplish the task. This chapter presents some of the most common 
classification algorithms and will help you if you are stuck in the same situation.

This chapter introduces classification. It assigns one of the designated labels to a 
test sample and comes under supervised learning. The techniques like K-Nearest 
Neighbor, Logistic Regression, and Naïve Bayes have been discussed and 
implemented in the chapter. The first is based on the determination of the majority 
behavior, in the vicinity, to find the behavior of the unknown sample. The second 
and third use the concepts of probability.

The chapter presents some basic experiments and expects the reader to understand 
the importance of empirical analysis in machine learning. This chapter will form the 
basis of complex ML-based projects like face recognition, and so on.

Chapter 4
Classification



56      Machine Learning for Beginners

Structure
The main topics covered in this chapter are as follows:
	 •	 K- Nearest Neighbors
	 •	 Implementation of KNN
	 •	 Use of SKLearn to implement KNN
	 •	 Logistic Regression
	 •	 Implementation of Logistic Regression using SKLearn
	 •	 Naïve Bayes
	 •	 Implementation of Gaussian Naïve Bayes using SKLearn

Objective
After reading this chapter, the reader will be able to:
	 •	 Understand K-Nearest Neighbor algorithm
	 •	 Implement KNN
	 •	 Use SKLearn to implement KNN
	 •	 Understand the Logistic Regression algorithm
	 •	 Use SKLearn to implement Logistic Regression
	 •	 Understand the Naïve Bayes algorithm
	 •	 Use SKLearn to implement Gaussian Naïve Bayes

Basics
Classification is the process of assigning one of the designated classes to a given 
sample. It is preceded by feature extraction and feature selection. The feature 
extraction part of the system extracts the relevant features, which help us to 
distinguish a sample of a particular class from that of another class. This part is 
important and generally determines the performance of a system. In the case of an 
image or a video, since the number of features is colossal, the selection of relevant 
features using a good feature selection method is required. The feature extraction 
algorithms are discussed in the following chapters.

The performance of a classifier can be measured in terms of accuracy, specificity, and 
sensitivity. In a problem having just two classes, say Class 0 and Class 1, one of the 
following cases may occur (Table 4.1):
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The decision of the classifier Actual class Decision designated as

Class 0 Class 0 True Negative (TN)
Class 0 Class 1 False Negative (FN)
Class 1 Class 1 True Positive (TP)
Class 1 Class 0 False Positive (FP)

Table 4.1: Decisions of a classifier, in case of a two-class problem

The number of samples correctly classified by the classifier is termed as accuracy. 
The number of positive samples correctly classified is sensitivity, and the number 
of negative samples correctly classified is specificity. The formulae for accuracy, 
specificity, and sensitivity are as follows. The F-measure is the harmonic mean of 
sensitivity and specificity:

TP TNAccuracy
TP TN FP FN

+
=

+ + +

TNSpecificity
TN FP

=
+

( )TP
Senstivity

TP FN
=

+

2 Specificity SenstivityF measure
Specificity Senstivity
× ×

− =
+

It may be stated that there are many more ways of determining the performance of a 
model. However, this chapter uses the above performance measures.

Generally, the accuracy of a model is stated to show the performance of a model. 
However, the only accuracy does not always give the correct picture. For example, 
if you develop a system for segregating spam mails and your model gives 90% 
accuracy, it may not be a very good model. It is because more than 90% of the total 
emails are spam, and if your model classifies every sample as spam, even then, the 
accuracy can be 90%.

One may note that, most likely, there cannot be a model, which gives 100% 
performance. It is, therefore, desirable to find the probability of a sample belonging 
to a given class. This chapter introduces algorithms that help us to develop such 
models. Primarily, this chapter discusses K-nearest neighbors, Naïve Bayes, and 
logistic regression.
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Classification using K-nearest neighbors
A man is known by the company he keeps. Let us use this proverb to find the class of 
an unknown sample by finding the classes of its neighbors. The majority class can 
be deemed as the class of the sample. For example, if a sample is to be marked 
as left or right, the leaning of its k neighbors can be determined. If the majority of 
its neighbors are left-leaning, the sample would be deemed as left-leaning, else it 
would be deemed as right-leaning.

The above algorithm is referred to as the K-nearest neighbors. It can be easily 
implemented. The distance of a given sample can be found from all the data in the 
train set. This distance is then arranged in increasing order. The majority-label of the 
first K elements of this ordered distance array is then returned as the output label. 
The formal algorithm for this method is as follows.

Algorithm
1. Divide the data into the train and the test set.
2. For each test set:
 a. Find its distance from all the samples in the train set.
 b. Arrange the distances in ascending order.
	 c.	 Take	the	indices	of	the	first	K	samples	in	2.b
	 d.	 Find	the	class	of	the	neighbors	identified	in	2.c.
 e. The majority class in d. would be the class of the unknown sample.

To find the distances between the samples, any of the following formulae can be 
used. In the following formulae, the summation represents the addition of the values 
in the features. The three most common distances are as follows (Table 4.2):

Name of the distance Formula

Euclidean Distance
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Table 4.2: Distance used in KNN
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To ascertain the performance, you can find the accuracy, specificity, and sensitivity. 
The following section implements the above algorithm.

Implementation of K-nearest neighbors
The KNN algorithms explained in the above section can be easily implemented 
using NumPy. The implementation that follows constitutes four steps and uses the 
Euclidean Distance. The Fisher Iris dataset has been used in the following code:

1. To implement the algorithm, you need to import the following modules:

 from sklearn.datasets import load_iris

 import numpy as np

 from sklearn import model_selection

2.  This implementation divides the given data into train data and test data. This is 
done by creating the load_data() method:

 def load_data():

  Data=load_iris()

  X=Data.data[:100,:]

  y=Data.target[:100]

   X_train, X_test, y_train, y_test = model_selection.train_test_
split(X, y, test_size=0.30, random_state=42)

  return(X_train, X_test, y_train, y_test)

3.  The performance measures can be calculated by finding the number of True 
Positive, True Negative, False Positive and False Negative. This is done by 
crafting the following function:

 def cal_acc(y_pred, y_test):

  TP=0

  TN=0

  FP=0

  FN=0

  for i in range(len(y_test)):
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   if(y_test[i]==y_pred[i]):

    if(y_pred[i]==1):

     TP+=1

    else:

     TN+=1

   else:

    if(y_pred[i]==1):

     FP+=1

    else:

     FN+=1

  return(TP, TN, FP, FN)

4.  The classification is carried out using the following code. The following 
implementation uses Euclidean Distance:

 X_train, X_test, y_train, y_test = load_data()

 y_pred=[]

 for i in range(X_test.shape[0]):

  dist=[]

  for j in range(X_train.shape[0]):

   d=0

   for k in range(X_train.shape[1]):

    d+=(X_test[i,k]-X_train[j,k])**2

   d=np.sqrt(d)

   dist.append(d)

  ord_dist=np.sort(dist)

 index=np.argsort(dist)

 s=0
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for m in range(5):

 s+=y_train[index[m]]

 if(s>3):

  y_pred.append(1)

 else:

  y_pred.append(0)

TP, TN, FP, FN=cal_acc(y_pred, y_test)

accuracy=(TP+TN)/(TP+TN+FP+FN)

print(accuracy)  

Let us now have a look at the implementation of KNN using SKLearn.

The KNeighborsClassifier in SKLearn
This classifier implements the K-nearest neighbor algorithm. The important 
parameters and methods of the classifier are given in Table 4.3 and Table 4.4:

Parameter Explanation Details
n_neighbors It depicts the number of 

neighbors, that is K.
It is an optional parameter. The 
default value of this parameter is 5.

weights It depicts the functions 
of generating weights for 
prediction.

It is an optional parameter. The 
default value of this parameter is 
uniform. The value of weights can be 
distance, also, where the data points 
closer to the sample would have more 
weights.

algorithm It depicts the algorithm 
used to carry out K-Means

The values of this parameter can be 
auto, ball_tree, kd_tree, or brute. 
It is an optional parameter

Power parameter It is used in case of 
Minkowski metric

It is an optional parameter. Its default 
value is 2.

Table 4.3: Parameters of KNeighborsClassifier

The important methods of KNeighborsClassifier are given in Table 4.4. The reader 
may note that the fit and predict method of practically all the classifiers work in the 
same manner:
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Name of the method Purpose

fit(self, X_train, y_train) This method takes two parameters: the train data 
and the train labels.

kneighbors(self[, X, n_
neighbors, …])

This method finds the n-neighbors of a point.

kneighbors_graph(self[, X, n_
neighbors, mode])

This method computes the graph of k-Neighbors.

predict(self, X_test) This method predicts the class labels for X_test.

predict_proba(self, X_test) This method finds the probability estimates for 
X_test.

Table 4.4: Important methods of KNeighborsClassifier

Having seen the important attributes, parameters, and methods of the classifier, let 
us now move to the experiment part.

Experiments – K-nearest neighbors
The following codes show how to use the above methods to carry out classification. 
Code 1 uses the train_test_split to split the data into train and test data. Code 2 
uses the KFold to implement the KFold validation with k=10, and Code 3 repeats the 
task with K=20. The functions used in the following codes (load_data, cal_acc) are 
the same, as shown in the earlier sections.

Code 1: Breast Cancer; Train Test Split

X_train, X_test, y_train, y_test=load_data()

Model_Knn	=	KNeighborsClassifier(n_neighbors=5)

Model_Knn.fit(X_train,	y_train)

predicted=Model_Knn.predict(X_test)

TP, TN, FP, FN=cal_acc(predicted,y_test)

accuracy=(TP+TN)/(TP+TN+FP+FN)

print(accuracy)

The next experiment uses train_test_split to classify the Breast Cancer dataset.

Code 2: Breast Cancer; 10-Fold Cross Validation

acc_arr=[]
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Data=datasets.load_breast_cancer()

X=Data.data

y=Data.target

kf = KFold(n_splits=5)

KFold(n_splits=10, random_state=None)

for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

	 Model_Knn	=	KNeighborsClassifier(n_neighbors=5)

	 Model_Knn.fit(X_train,	y_train)

 predicted=Model_Knn.predict(X_test)

 TP, TN, FP, FN=cal_acc(predicted,y_test)

 acc=(TP+TN)/(TP+TN+FP+FN)

 acc_arr.append(acc)

acc_av=np.mean(acc_arr)

print(acc_av)

The next experiment uses ten-fold cross-validation to classify the Breast Cancer 
dataset.

Code 3: Breast Cancer; 10 Fold Cross Validation 

acc_arr=[]

Data=datasets.load_breast_cancer()

X=Data.data

y=Data.target

kf = KFold(n_splits=10, random_state=None)

Data=datasets.load_breast_cancer()

X=Data.data

y=Data.target
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for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

	 Model_Knn	=	KNeighborsClassifier(n_neighbors=5)

	 Model_Knn.fit(X_train,	y_train)

 predicted=Model_Knn.predict(X_test)

 TP, TN, FP, FN=cal_acc(predicted,y_test)

 acc=(TP+TN)/(TP+TN+FP+FN)

 acc_arr.append(acc)

acc_av=np.mean(acc_arr)

print(acc_av)

Having seen the working of K-nearest neighbor, let us now shift our focus to the 
logistic regression, which will also help us to determine the probability of a sample 
belonging to a class.

Logistic regression
Logistic regression is a statistical model, which helps in modeling probability. This 
model can also be extended for classification. This section gives a brief overview of 
logistic regression. Let us first have a look at the mathematical foundations of this 
model. In the discussion that follows, X is a matrix of order n × m and W is a matrix 
of order 1 × m. The former depicts the data having n samples and m features and the 
later depict the weights assigned to each feature. y denotes the target. In classification 
problems, the values of y are discrete. Specifically, for a two-class problem, y will be 
either 1 or 0. In such cases, the value of y can be predicted by finding WtX and then 
using a function which maps the obtained values to . The sigmoid function is one 
such function. The sigmoid function is:

( ) 1
1 Z

f z
e−

=
+

Note that the maximum value of the function is 1 when the value of Z is ∞, that is:

1( ) 1
1 Z

f z
e−

= =
+
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The minimum value of the function is 0, when the value of Z is – ∞, that is:

1( ) 0
1 Z

f z
e−

= =
+

This function not only smoothly maps (– ∞, ∞) to [0, 1], but also can be differentiated 
with ease. The derivative of s sigmoid function can be expressed in terms of itself as 
follows:

( ) ( ) ( )' (1 )f Z f Z f Z= × −

Here, f(Z) depicts the probability of the value of y being 1, given the data. That is:

( ) ( );P X W f x=

The probability of the value of y being 0, given the data, is therefore 1 – f(x). That is:

( ) ( ); 1P X W f x= −

The probability of y given X and W can, therefore, be written as follows:

( ) 1; ( ) (1 ( ))y yP X W f x f x −= −

Here we take the liberty of assuming that all the samples have independent features. 
The product of probabilities will give us the likelihood:
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Taking log, we get the log-likelihood:
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The derivative of the log-likelihood can be written in terms of itself as follows:
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In each iteration of training, the change in weights can thus be found as follows:

( )( )i i iw w y f x xα= + × −
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Having obtained the formula for updating the weights, let us now move to the 
formal algorithm.

Algorithm:

1. Split the given data into train data and test data.

2. Initialize the weights to random numbers.

3. Repeat the following steps for each training sample.
 a. Update the weights using the following formula:

( )( )i i i i iw w y f x xα= + × −

   Where, yi is the value of the target variable for the ith sample, xi is the data of 
the ith sample, and a is the learning rate.

4. For each test sample :

 a. Find j ju x w=∑

 b. Find ( ) 1
1 u

f u
e−

=
+

 c.  The value obtained above gives the probability of a given sample belonging 
to a class

 d.  Based on the value obtained above, decide whether the given sample belongs 
to the class or not

The reader is expected to implement the above using Numpy. The implementation 
of logistic regression using SKLearn has been explained in the next section.

Logistic regression using SKLearn
The LogisticRegression classifier implements the above algorithm is SKLearn. The 
parameters, attributes, and methods of LogisticRegression are as follows. Table 4.5 
shows the parameters of the classifier:

Parameter Explanation Details
penalty The norm used in penalization is 

specified using this parameter. 
The values of this parameter can 
be l1, l2, elasticnet, or none.

It is an optional parameter. The 
default value of this parameter is 
12.

Contd…
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tol This parameter specifies the 
tolerance for stopping criteria.

It is an optional parameter. The 
default value of this parameter is 
1e-4.

class_weight The weights associated with classes 
are specified using this parameter. 
The values of this parameter can 
be dict or balanced.

It is an optional parameter. The 
default value of this parameter is 
none.

solver This parameter is used to specify 
the algorithm. 

It is an optional parameter. The 
default value of this parameter is 
liblinear.

max_iter This parameter represents the 
number of iterations.

It is an optional parameter. The 
default value of this parameter is 
100.

multi_class It is chosen if there are more 
than two labels. It can have the 
following values ovr, auto, or 
multinomial.

It is an optional parameter. The 
default value of this parameter is 
ovr. 

Table 4.5: Important parameters of logistic regression

The attributes of the classifier have been shown in Table 4.6:

Attributes Details
classes_ This attribute gives the class labels of each sample.
coef_ This attribute gives the coefficients of the decision function.
intercept_ This attribute gives the intercept of the decision function.

Table 4.6: Important attributes of logistic regression

The important methods of the LogisticRegression classifier are as follows (Table 4.7):

Name of the method Purpose
fit(self,	X_train,	y_train) This method takes two parameters: the train data 

and the train labels.
predict(self, X_test) This method predicts the class labels for X_test.
predict_proba(self, X_test) This method finds the probability estimates for X_

test.
Table 4.7: Important methods of Logistic Regression

Having seen the important attributes, parameters, and methods of the classifier, let 
us now move to the experiment part.
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Experiments – Logistic regression
The following codes show how to use the above methods to carry out classification. 
It may be noted that the loading of data, finding accuracy, and so on, can be done in 
the same manner as shown in the previous implementations. To use the classifier, 
one needs to import the following modules:
from sklearn.datasets import load_iris

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

import numpy as np

The rest of the code is the same as that explained earlier. However, the classifier can 
be constructed using the LogisticRegression() method, shown as follows:
clf=LogisticRegression()

clf.fit(X_train,y_train)

y_pred=clf.predict(X_test)

The reader is advised to use these functions on the Breast Cancer dataset and the Iris 
dataset and find the accuracy using:
	 •	 train_test_split
	 •	 KFold

And compare the results. Another example of a probability-based model has been 
explained in the following section.

Naïve Bayes classifier
The ethos of the data is generally not known, and therefore modeling is required, 
which is a random process. It may also be stated that we do not know all the 
variables affecting the outcome. Therefore, even if the process is deterministic, it 
will be difficult to accomplish the above task. However, the model can be crafted by 
using the probability of observable variable P(x), which can be found easily. Using 
the above model, classification can be carried out. It can be done by finding the 
probability of a given sample belonging to a particular class. Bayes Theorem, which 
can be stated as follows, helps us to accomplish this task:

1

( / ) ( ( / ) ( ))/ ( ( / ) ( ))
C

i
i i i i iP B A P A B P B P A B P B

=

= × ×∑
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Where, P(Bi/A) is the conditional probability of Bi, provided A is given. Likewise, 
P(A/Bi) is the conditional probability A provided Bi is given. Also, if P(Bi/A) and 
P(Bi) are known, the above theorem can be applied.

In the case of classification if there are two classes we can find out the probability of 
sample belonging to a particular class, say for that matter, C1 and C2.

Since there are only two classes:

( )1 2( ) 1P C P C+ =

Where, P(C1) is the prior probability, and P(x/C) is called likelihood, and P(x) is the 
evidence, which can be found by using the law of total probability:

( ) 1 1 2 2( / ) ( ) ( / ) ( )P x P x C P C P x C P C= × + ×

The posterior probability is defined as the product of prior probability and the 
likelihood divided by the evidence. That is:

( / ) ( ( / ) ( ))/ ( )i i iP C x P x C P C P x= ×

The value of P(x) can be found using the above equation.

The final decision can be made by choosing the class Ci for which P(Ci/x) is maximum.

The decision can also be taken by minimizing the risk as there is always a loss 
incurred for taking the decision. We can define the risk for the action Ai as follows:

( ) ( )/ /i ik kR a x P C x= ∈∑
Where k varies from 1 to the number of classes, and the value of k is not the same as 
the correct class.

The discriminant function can, hence, be defined as the negative of the above risk. 
It is because the minimization of the risk would lead to the maximization of the 
discriminant function:

( ) ( / )if x R a x= −

The reader is expected to implement the above using Numpy. The in-built classifier 
has been explained in the next section.

The GaussianNB Classifier of SKLearn
SKLearn comes with various Naïve Bayes implementations. These include Gaussian 
Naïve Bayes, Bernoulli Naive Bayes, and Multinomial Naïve Bayes. The Gaussian 
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Naive Bayes is popular and simple. It assumes the Gaussian distribution of the data. 
The important parameters and methods of the classifier are given in Table 4.8 and 
Table 4.9:

Parameter Explanation Details
priors The prior probabilities of the 

classes can be found using this 
parameter. 

It is an optional parameter. 

var_smoothing The portion of the largest variance 
of all features can be seen using 
this parameter.

It is an optional parameter. The 
default value of this parameter is 
1e-9.

Table 4.8: Parameters of Gaussian Naïve Bayes

Attributes Details
class_prior_ This attribute provides the prior probability of each class.
theta_ This attribute provides the mean of each feature per class.
epsilon_ This parameter provides the absolute additive value to variances.

Table 4.9: Important attributes of GaussianNB

Some of the most important methods of Gaussian Naïve Bayes are as follows (Table 
4.10):

Name of the method Purpose
fit(self,	X_train,	y_train) This method takes two parameters: the train data 

and the train labels.
predict(self, X_test) This method predicts the class labels for X_test.
predict_proba(self, X_test) This method finds the probability estimates for X_

test.
Table 4.10: Important methods of GaussianNB

Having seen the important parameters, attributes, and methods of Gaussian Naïve 
Bayes, let us now move to the experiment part.

Implementation of Gaussian Naïve Bayes
The Gaussian Naïve Bayes explained in the above section can be easily implemented 
using SciPy. The implementation that follows constitutes four steps and uses the 
GaussianNB, explained in the previous section. Breast Cancer dataset has been used 
in the following code:
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1. To implement the algorithm, you need to import the following modules:
 from sklearn.datasets import load_breast_cancer

 from sklearn.naive_bayes import GaussianNB

 from sklearn.model_selection import KFold

 import numpy as np

2.  The performance measures can be calculated by finding the number of True 
Positive, True Negative, False Positive and False Negative. This is done by 
crafting the following function:

 def cal_acc(y_pred, y_test):

  TP=0

  TN=0

  FP=0

  FN=0

 for i in range(len(y_test)):

  if(y_test[i]==y_pred[i]):

   if(y_pred[i]==1):

    TP+=1

   else:

    TN+=1

  else:

   if(y_pred[i]==1):

    FP+=1

   else:

    FN+=1

 return(TP, TN, FP, FN)

The classification is carried out using the following code:
acc=[]

Data=load_breast_cancer()

X=Data.data

y=Data.target

kf = KFold(n_splits=5)

kf.get_n_splits(X)
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for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

 clf = GaussianNB()

	 clf.fit(X_train,y_train)

 y_pred=clf.predict(X_test)

 TP, TN, FP, FN=cal_acc(y_pred, y_test)

 accuracy=(TP+TN)/(TP+TN+FP+FN)

 acc.append(accuracy)

av_acc=np.mean(acc)

print(av_acc)

Having seen the use of the GaussianNB module, let us summarize the discussion.

Conclusion
This chapter discussed various classification algorithms, their implementation, 
and the use of pre-defined functions for the classification of standard datasets. The 
K-means algorithm finds the majority class of the neighbors of a given sample and 
declares the label. It is one of the simplest algorithms but performs exceptionally 
well not just in text data but also in images. The Naïve Bayes algorithm calculates 
the posterior probability of a sample belonging to a particular class and takes the 
decision accordingly. The algorithm makes some assumptions regarding the ethos of 
the sample and the dependence of features. Logistic regression also helps us to find 
the probability of a sample belonging to a given class.

The reader may note that it is important to choose the correct algorithm before 
finalizing the model for classification. Also, your model needs to be robust, so it is 
pointless to project the maximum accuracy in various experiments run. It is always 
good to run experiments many times and declare the average accuracy.

The next chapter introduces the reader to the fascinating world of neural networks. 
This world has not only empowered humans with the power of machine learning 
but also gave birth to a newer, better, and fascinating world of deep learning.
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Exercises
Multiple Choice Questions
 1. Which of the following finds the majority labels of the neighbors and declares 

the label of an unknown sample?
 a. KNN   b. Naïve Bayes
 c. Logistic Regression  d. None of the above

 2. Which of the following distances are used in KNN?
 a. Euclidean Distance  b. Manhattan Distance
 c. Minkowski Distance d. All of the above

 3. Which of the following is the default value of the number of neighbors in the 
K-Neighbors Classifier?

 a. 5   b. 3
 c. 1   d. None of the above

 4. Which function is generally used in the implementation of logistic regression?
 a. Sigmoid   b. Ramp
 c. Both   d. None of the above

 5. Which of the following is not true with reference to Logistic Regression?
 a. It uses a log of odds
 b. It generates a probability of a sample belonging to a class
 c. Both
 d. None of the above

 6. Logistic Regression is used for?
 a. Classification   b. Regression
 c. Both   d. None

 7. K-nearest neighbors are used for?
 a. Classification   b. Regression
 c. Both   d. None

 8. Naïve Bayes is used for?
 a. Classification   b. Regression
 c. Both   d. None
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 9. Which of the following should be true for applying Gaussian Naïve Bayes?
 a. The features should be independent
 b. The features should be dependent
 c.  The model does not make any assumption regarding the dependence of 

features on each other.
 d. The coefficient of correlation between the features should be less than 0.5

 10. Which of the following should be true for applying Gaussian Naïve Bayes?
 a. The data should follow Gaussian distribution
 b. The data should follow Binomial distribution
 c. None of the above
 d.  The model does not make any assumption regarding the distribution of 

data

Theory
 1. Write the algorithm for classification using K-Nearest Neighbors. Also, 

implement the algorithm using NumPy.
 2. Write the algorithm for classification using Naïve Bayes. Also, implement the 

algorithm using NumPy.
 3. Write the algorithm for classification using Logistic Regression. Also, 

implement the algorithm using NumPy.
 4. What are the various distance measures used in KNN?
 5. What are the assumptions regarding the data and features in Gaussian Naïve 

Bayes?
 6. The algorithm for KNN, given in the text, uses Brute Force. Suggest another 

algorithm which is better in terms of efficiency but preserves the essence of the 
algorithm.

 7. What is the difference between Single Layer Perceptron and Logistic 
Regression?

 8. Can we claim that the accuracy of a model is 100%? If not, why?

Numerical/Programs
 1. The coordinates of points and their respective classes have been shown in the 

following table. Use K-NN to find to which class the point (5,6) belongs?
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Point Class
(2, 2) 0
(2, 4) 0
(3, 2) 1
(3, 4) 1
(2, 5) 0
(6, 4) 1
(1, 2) 0
(1, 7) 0

 2. In the above question, use LDA to find the class of the unknown sample. 
 3. Generate 50 random numbers (Normal Distribution: Mean=10, variance =5). 

Let the label of these samples be 0. Now, generate another set of 50 random 
numbers (Normal Distribution: Mean=15 and variance=3). Let the label of 
these samples be 1. Use K-Fold validation to carry out classification and state 
the accuracy of the model which uses:

 a. KNN
 b. Naïve Bayes
 c. LDA
 d. Logistic Regression





Introduction
If you like music, your mind starts behaving like Alexa. When you see Phoebe Buffay 
in Friends, the song “Smelly Cat” comes to your mind; on seeing Sheldon Cooper, 
“Soft Kitty” starts playing, which immediately switches to “Jungle Jungle” on seeing 
Mowgli. Your mind drenches your thoughts with the melodious voices and takes 
you deep down, riding on the compositions by Faiz.

And there is a similarity between Alexa and your mind: both learn. While growing 
up, you listen to songs, memorize them, associate them with situations, characters, 
cartoons, and so on, and your mind becoming a Jukebox is the outcome of this 
process.

This chapter describes neural networks, which work similarly. They are inspired 
by the neurons in the brain, which is the most important and perhaps the most 
complex organ of the human body. It acts as the Central Processing System (CPU) 
of a computer system. Like a CPU, the brain receives information from the sense 
organs, integrates them, processes them, and takes decisions that are conveyed to the 
various parts of the body. It contains many nerves, connected by connections called 
neurons. The neural structure was proposed by Cajal in 1911. There are billions of 

Chapter 5
Neural Network I – 

The Perceptron
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neurons and trillions of synapses in our bodies. This structure inspired computer 
scientists, and the Narnia of machine learning was discovered.

This chapter starts with a brief description of the brain and the structure of neurons. 
The models, learning algorithms, and limitations of neural networks have been 
divided into two chapters. This chapter deals with the single layer perceptron, and 
the next chapter discusses the multi-layer perceptron. This chapter also presents the 
Delta Learning Rule and discusses the applicability of Perceptron in the classification 
of two different datasets.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 The brain
	 •	 The structure of a neuron
	 •	 The McCulloch Pitts model
	 •	 The Rosenblatt perceptron
	 •	 Activation functions
	 •	 Implementation of neural networks
	 •	 Learning rules
	 •	 Experiments with two datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Understand the basic structure of a neuron
	 •	 Understand the McCulloch Pitts Model
	 •	 Understand the principle of Rosenblatt perceptron
	 •	 Understand the idea behind learning
	 •	 Implement Rosenblatt perceptron
	 •	 Use perceptron to carry out classification

The brain
The brain is the most important and perhaps the most complex organ of the human 
body. It acts like a computer system. Like the Central Processing System or the 
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CPU of a computer system, the brain receives information from the sense organs, 
integrates them, processes them, and takes decisions that are conveyed to the various 
parts of the body. It contains many nerves connected by neurons. There are billions 
of neurons and trillions of synapses in the body, which forms the crux of the body’s 
neural network.

Before initiating the discussion on the neural network, let us briefly discuss the parts 
of the brain. The cerebrum, cortex, brain stem, basal ganglia, and cerebellum are 
some of the important parts of the brain. The largest part, cerebrum, is divided into 
two hemispheres. The cerebral cortex is an outer layer of grey matter. It covers the 
core of the white matter. The spontaneous moments are controlled by this layer. The 
cerebrum is connected to the spinal cord via the brainstem. It contains:
	 •	 The midbrain
	 •	 The pons
	 •	 The medulla oblongata

Breathing is controlled by the brain stem. The coordination between the brain areas 
is controlled by the basal ganglia, which is the cluster of structures at the center. The 
coordination and balance are controlled by the cerebellum, which is at the base and 
the back of the brain. The cerebellum is connected to the brainstem by pairs of tracts. 
The layer surrounding the brain is meninges, and the skull protects the brain.

Each hemisphere is divided into four lobes. These include the frontal lobes, the 
parietal lobes, the temporal lobes, and the occipital lobes. The prime functions of the 
lobes are as follows.

The frontal lobes take care of:
	 •	 Problem solving and judgment
	 •	 Motor function

The parietal lobes are primarily concerned with:
	 •	 Sensation
	 •	 Handwriting
	 •	 Body position

The temporal lobes take care of:
	 •	 Memory and hearing

Finally, the occipital lobes primarily deal with the:
	 •	 Visual processing system
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Having learned the basics of a human brain, let us now have a look at the structure 
of a neuron.

The neuron
The human brain and spinal cord constitute the Central Nervous System (CNS). 
The nerve impulses are responded by the release of neurotransmitters. The neurons 
connect to constitute the neural pathways, the neural circuits, and, ultimately, the 
network.

A neuron can be excited electrically and communicate with each other using synapse. 
We all have neurons, each one of us, except SpongeBob. It is because sponges do not 
have neurons neither do plants. Neurons can be classified as follows:
	 •	 Sensory neurons: Act in response to touch, sound, light
	 •	 Motor neurons: Get signals from the brain and spinal cord
	 •	 Interneurons: These neurons are known to connect neurons of the brain or 

spinal cord to other neurons within the same region

A neural circuit is a group of connected neurons. Figure 5.1 shows the structure of a 
neuron. The components of a neuron are:
	 •	 Cell body (soma)
	 •	 Dendrites
	 •	 Axon

Figure 5.1: A neuron
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Dendrites receive messages from other neurons. They have a large number of 
branches. The message is processed in the cell body. The axon takes the message 
to the other neuron. The process of sending a signal to another neuron is partially 
chemical and partially electrical.

Generally, neurons get input signals through the dendrites, process the signal, and 
send the output down the axon.

The structure of neuron inspired the first learning model, the McCulloch Pitts model.

The McCulloch Pitts model
An American Neuropsychologist Warren Sturgis McCulloch and Walter Harry Pitts, 
Jr., a logician, proposed the McCulloch Pitts model in 1943. The model mimicked the 
biological neuron and proposed an LTU or Linear Threshold Unit. The initial model 
had binary inputs and outputs and restrictions on weights. It is widely regarded by 
many as the first computational model based on neurons.

The Pitts model is perhaps one of the simplest models of learning. The model takes 
binary input xi and summates them. The binary output xi depends on whether the 
summation is greater than the threshold or not. So, the only thing that needs to be 
learned in the threshold. Figure 5.2 depicts the McCulloch Pitts model:

Figure 5.2: The McCulloch Pitts model

Here, x1, x2, …xn are the binary inputs (can be 0 or 1), and y is the binary output. The 
function g is the summation of xi’s and f is the result of applying threshold (Figure 
5.3). That is:
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Figure 5.3: Thresholding in McCulloch Pitts model

Let us understand the model by keeping the weights of each synapse as 1 or -1. If 
wi = 1, the input may be referred to as the excitatory input. If the value of wi = –1, 
the input is referred to as the inhibitory input. The later can be used to model the 
not gate. Note that, in the discussion that follows if wi = 1 ∀i the weight has not been 
shown in the model.
The model can be used to create logic gates as well. For example, for creating an AND 
gate, the inputs are x1 and x2 and the output is . The function g is the summation of xi’s:

2

1
i

i

g x
=

=∑

If both the inputs are 1, the output should be high. In all other cases, the output 
should be low. 
Therefore, the threshold of f should be 2.

( ) 1, 2
0, 2

g
f threshold g

g
 ≥= =  <

The model can be interpreted geometrically in Figure 5.4:

Figure 5.4: The AND gate
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Likewise, for creating an OR gate, the inputs are x1 and x2 and the output is y. The 
function g is the summation of xi’s. If both the inputs are 0, the output should be low. 
In all other cases, the output should be high. Therefore, the value of f should be 1:

2

1
i

i

g x
=

=∑

f = threshold(g)

Figure 5.5 presents the geometrical interpretation of the OR gate created using 
perceptron:

Figure 5.5: The OR gate

The above discussion can be extended to 3-dimensions also. That is, perceptron can 
be used to generate a three-input AND gate as well. Let the inputs to this gate be and 
the output be x1, x2 and x3 is the output. The function y is the summation of xi’s. If all 
the inputs are 1, the output should be high. In all other cases, the output should be 
low. Therefore, the value of f should be 3:
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In this case, the separating hyperplane is x1 + x2 + x3 = 3. Note that there can be many 
such hyperplanes which satisfy the condition that the output should be high when 
all the inputs are 1. Figure 5.6 shows one such hyperplane:
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Figure 5.6: The three input AND gate

Likewise, for creating a three-input OR gate, x1, x2 and x3 are the inputs, and y is the 
output. The function g is the summation of xi’s. If any of the inputs are 1, the output 
should be high. If all the inputs are low, the output should be low. Therefore, the 
value of f should be 1:
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In this case the separating hyperplane is x1 + x2 + x3 = 1. Again, there can be many 
such hyperplanes which satisfy the condition that the output should be high when 
any of the inputs are 1. Figure 5.7 shows one such hyperplane:
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Figure 5.7: The three input OR gate

In a NAND gate, the output becomes low if all its outputs are high. In all other cases, it 
is high. In a NOR gate, on the other hand, the output becomes high, when all its inputs 
are low. In all other cases, it remains low. One can create a NOR gate and a NAND gate 
using the above idea. A XOR gate produces one if inputs are alternate. Otherwise, 
it produces 0. It may be stressed that it is not possible to craft a XOR gate using the 
above model. However, it can be created by a multi-layer McCulloch Pitts model.

Limitations of the McCulloch Pitts
Despite being extremely useful, the model had its limitations. The notable ones were 
as follows:
	 •	 The inputs to a model are not always binary. The next section discusses a 

model, which considers the real-valued inputs.
	 •	 In the McCulloch Pitts model, the Heaviside step function (the unit step 

function) is used for thresholding. The following sections explores other 
activation functions.

	 •	 The model cannot deal with inputs that are not linearly separable.
Some of these limitations are handled in the Rosenblatt Perceptron, described in the 
next section.
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The Rosenblatt perceptron model
This model was proposed by Frank Rosenblatt, who was an American Psychologist. 
He created the first Perceptron device based on the principle discussed in the above 
section. The difference, however, was the ability of this model to deal with real 
inputs. Also, each input in this model can have different weights, which are initially 
random numbers and can change based on some learning rules. The model was 
simulated on IBM-704 in 1957.
It is a model, which takes input and develops a general linear model by learning 
the weights and using an activation function. The inputs are multiplied with the 
weights, and bias is added to the resultant, which acts as an input to the activation 
function. The weights and bias are initially random numbers and can be learned 
using the gradient descent method, explained in Chapter 2 of this book. The original 
data is divided into two parts: the train data and the test data. The learning is done 
using the train data, and the testing is done using the test data. The model is shown 
in Figure 5.8.
In the model, the input is [X1, X2, X3, …Xm], the weights are [w1, w2, w3, …wm] and 
the bias is b. The inputs are multiplied with weights, summated, and added with 
the bias to give u, as depicted in the following equation. It is then passed, as the 
argument to the activation function f, to generate v. For a classification problem, 
the threshold then determines the class. Note that the formula used to update the 
weights is the same as that derived in gradient descent:

Figure 5.8: Simple perceptron
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In the equations that follow, X is a matrix of order, n × m where n is the number of 
samples, and m is the number of features. The target y is a n × 1 row matrix. The 
inputs are fed one row at a time to the above network. So, a 1 × m vector is fed to the 
network. Since there are m features, the weight matrix of 1 × m is required:

m T
i ii

u X w b
=

= +∑
v = f(u)

1,
0,

ifv
output

ifv
θ
θ

 >=  <

If the output matches the expected output, weights would not be changed. Otherwise, 
they will be changed as per the following equation. The formula has been derived 
in the next section:

( ) ( ) ( )1 [ ]w t w t d i y i X i   + = + ∝ −   

The above discussion has been summarized in the algorithm that follows.

Algorithm
	 •	 Creating train test data: Divide the data into train and test sets.
	 •	 Network creation: If the data has n features, create a network with n input 

neurons and a bais. For the binary classification problem, there can be a 
single output neuron. 

	 •	 Initialization: Initialize the weight (matrix of order n×1) randomly. Also, 
initialize the bais randomly.

	 •	 Parameters: Decide the learning rate.
	 •	 Learning: Apply the formula to change weights. The weights can be changes 

by taking one sample at a time or a set of inputs. Repeat till the changes in 
weights are small enough.

Figure 5.9 shows the steps of the learning algorithm. Note that, the bais can also be 
considered as an input with xi = 1. It would save the model from learning the bais 
separately:
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Figure 5.9: Learning weights in perceptron

Since activation functions play an important part in the learning, the next section 
presents a brief overview of the activation functions and their attributes.

Activation functions
The summation of products of weights and inputs, added to the bias, is given as 
input to the activation function. Some of the important activation functions for 
learning are as follows.

Unit step
The function can be mathematically represented as follows:

( ) 1, 0
0, 0

ifx
f x

ifx
 >=  <

The graph of the function has been shown in Figure 5.10. The function simply allows 
the signal to pass through if it is positive. The derivative of the function is 0:

Figure 5.10: The unit step function
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The function, being simple, can be used as the activation function in single layer 
perceptron, if the binary output is desired.

sgn
The function can be mathematically represented as follows:

( ) 1, 0
1, 0

ifx
f x

ifx
 >= − <

The graph of the function has been shown in Figure 5.11. The function simply returns 
1; if the function is positive, else it returns a -1. The derivative of the function is 0:

Figure 5.11: The sgn function

The function, like the unit step function, is simple and can be used as the activation 
function in single layer perceptron, if output [-1, 1] is desired.

Sigmoid
The sigmoid function is one of the most important activation functions. The function 
can be stated as follows:

( ) 1/(1 )sxf x e−= +

The function is shown in Figure 5.12. The maximum and the minimum value of 
the function can be calculated as shown. The following derivation proves that the 
derivative of this function can be expressed in terms of itself, which is an added 
advantage of using this function for learning:
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Figure 5.12: The Sigmoid function
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Since the value of f(x) becomes 0 at x = –∞ and 1 at x = ∞, the value of f(x) lies between 
0 and 1.

Derivative
Also, the derivative of f(x) can be expressed in terms of itself:

( ) 1
1 sx

f x
e−

=
+

( )
( ) ( )

'
2 2

1 1 (1 )
11 1

sx

sxsx sx

s ef x s s f f
ee e

−

−
− −

 
×  = − = − × − = − × − + + + 



Neural Network I – The Perceptron      91

Table 5.1 shows the effect of the variation of the parameter s:

s Sigmoid
2

3

10

Table 5.1: Effect of variation of s on Sigmoid
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It can be seen from the table that, for higher values of s, the function behaves like 
the unit step. 

tan-hyperbolic
The tan-hyperbolic function is also one of the most important activation functions. 
The function can be stated as follows:

( ) (1 )/(1 )sx sxf x e e− −= − +

The function is shown in Figure 5.13. The maximum and the minimum value of the 
function can be calculated as follows. Table 5.2 shows the effect of the variation of the 
parameter s:

Figure 5.13: The tanh function
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When ( ), limlim (1 )/(1 ) 1sx sx

x x
x f x e e

∞ ∞
∞ − −

→ →
→ = − + =
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Hence, the value of f(x) lies between -1 and 1:

s tanh(x)
2

3

10

Table 5.2: Effect of variation of s on tanh

It can be observed from the table that, for higher values of s, the function behaves 
like the sgn function.
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Implementation
The following code presents the implementation of the Rosenblatt perceptron using 
Numpy. The reader may revisit Chapter 2 for the details of the methods for loading 
the data and carrying out matrix operations.

Code:
from sklearn.datasets import load_iris

import numpy as np

from	sklearn.utils	import	shuffle

#Loading the data

Data=load_iris()

X=Data.data

Y=Data.target

#Train test split

x=X[:100,:]

y=Y[:100]

x,	y	=	shuffle(x,	y,	random_state=0)

x_train=x[:80,:]

y_train=y[:80]

x_test=x[80:,:]

y_test=y[80:]

#Setting parameters 

alpha=0.01

s=X.shape

#Initial	weights	and	bais

w=np.random.rand(1,s[1])

b=np.random.rand()

n=(x_train.shape)

#Learning: The Rosenblatt Perceptron 

for i in range(n):



Neural Network I – The Perceptron      95

 x1=x_train[i,:]

	 u=np.matmul(x1,np.transpose(w))

 v=1/(1+np.exp(-1*u))

 if (v>0.5):

  o1=1

 else:

  o1=0

 #print(v,’ ‘,y_train[i])

 y1=y_train[i]

	 w=w-alpha*(o1-y1)*x1

 b=b-alpha*(o1-y1)

#Finding	accuracy,	specificity	and	senstivity

tp=0 

tn=0

fp=0

fn=0

 for i in range(20):

  x1=x_test[i,:]

	 	 u=np.matmul(x1,np.transpose(w))+b

  v=1/(1+np.exp(-1*u))

  if (v>0.5):

   o1=1

  else:

   o1=0

  y1=y_test[i]

  if(o1==1 & y1==1):

   tp+=1

  elif(o1==0 & y1==0):

   tn+=1

  elif(o1==1 & y1==0):

   fp+=1

  else:

   fn+=1
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acc=(tp+tn)/(tp+tn+fp+fn)*100

Output:
y_test: [0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0]

Accuracy: 100.0

Having seen the results, let us spend some time deliberating on why this model can 
classify the IRIS data with such good accuracy. The data has four features. The pairs 
of features have been shown in Table 5.3. One may note that the data seems linearly 
separable and hence can be classified using the perceptron:

Feature 1 Feature 2 Figure showing Feature 1 on the X-axis and 
Feature 2 on the Y-axis

1 2

1 3

1 4

Contd…
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2 3

2 4

3 4

Table 5.3: Features of Fisher IRIS data

If we only use two features for classification: 1 and 2, 1 and 4, or 2 and 4, for 
classification, a linear decision boundary can be formed. The Iris data is, as such, 
linearly separable and hence can be easily classified using the perceptron model.

Learning
Neural networks can perform many sophisticated tasks. These models find the 
relationship between the input and the output. The raw input is generally converted 
into feature space. And the model learns the weight of each feature, which is the 
same as learning the importance of a feature. For the time being, let us not go into 
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the conversion of raw input to feature space and assume that the model learns the 
weights of inputs. This learning can be understood as follows.

The sum of products of the inputs and the corresponding weights is fed into an 
activation function, which produces some output. The difference between what is 
being produced by the model and the desired output should be as low as possible. 
Therefore, the square of this difference should also be as low as possible.

That is, Ej = (Dj – Oj)2 should be minimized, where Ej is the squared error, Dj is the 
desired output and Oj is the output produced by the model. Note that Oj = f(uj) and 
uj = xj wj, for each input xj having weight wj, f being the activation function.

The gradient of E is given by:

2( )j j
j j

E D O
w w

δ
δ δ
∂

= −

( )2 ( )j j j
j

D O O
w
δ

δ
= − −

( )2 ( )j j j j
j

D O x w
w
δ

δ
= − −

( )2 ( )j j j j
j

D O x w
w
δ

δ
= − −

( )2 j j jD O x= − −

The weights can be changed by adding the negative of this gradient to the previous 
weight, that is:

( ) ( )1j j
j

Ew t w t
wδ
∂

= − −

Or:

( ) ( ) ( )1j j j j jw t w t D O xη= − + −

Here η is the learning rate. The value of η, should neither be too high or too low. If 
the value of η is large, we may overshoot the optimal solution. The small value of η 
poses the danger of learning too slow.

The above learning rule was proposed by Bernard Widrow and his doctoral student 
Ted Hoff in 1949 and is hence referred to as the Widrow-Hoff learning rule. This 
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rule was instrumental in the advances in neural networks. It is also called the Delta 
learning rule. Rosenblatt model uses the perceptron learning rule, which, though 
different in origin, is similar to the above. If a linearly separable pattern is presented 
to the perceptron, the perceptron is guaranteed to learn the weights, if they can be 
learned. As per Rosenblatt:

The perceptron learning rule is guaranteed to converge in a finite number of steps for all 
problems that can be solved by a perceptron. That is linearly separable classification problems.

It may be stated here that though we will use this rule in our models, this was 
certainly not the first learning rule. The first learning rule was proposed by Canadian 
Psychologist Donald Olding Hebb, who is considered as the father of neural 
networks. Hebb, in his book The Organization of Behaviour, stated that the synaptic 
efficiency of a cell increases by repeated and persistent stimulation of a cell. The rule 
can be loosely stated as follows:

“Neurons that fire together wire together.”

It is not difficult to understand the rule. For example, team B is given a job, which 
was being done by another team, say A. The team members have no idea of what is 
to be done and hence fail in whatever they do in successive attempts. Since they are 
not very competent, owing up is simply out of the question. Few of them try to learn 
the job, and the rest start blaming the previous team for their failures. What happens 
after that is anyone’s guess. In B, the learners bind together, and so does the other 
ones. The rule can be stated as follows:

wj (t) = wj (t – 1) + η(Oj) xj

Where the symbols have usual meanings. The interested readers can explore the 
references at the end of this chapter for a detailed discussion on Hebbian Learning.

Perceptron using sklearn
The module sklearn.linear_model implements a few general linear models, 
including the perceptron. The important parameters of the constructor of the 
perceptron class have been presented in Table 5.4:

Parameter Type Explanation
fit_intercept Boolean This parameter determines whether the bais term 

should be estimated or not. The default value of this 
parameter is True.

max_iter Integer This parameter determines the epochs. It is an optional 
parameter, and its default value is 1000.

Contd…
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tol Float or None This parameter determines the stopping criteria based 
on loss. It is an optional parameter, and its default 
value is 1e-3.

shuffle Boolean This parameter determines if the input should 
be shuffled after each iteration. It is an optional 
parameter, and its default value is True. 

random_state Integer If you want the model to produce the same result 
every time it runs, this parameter can be used. It is an 
optional parameter, and its default value is None.

n _ i t e r _ n o _
change

Integer This parameter sets the number of iterations after no 
change. The default value of this parameter is 5. 

class_weight Dictionary or 
“balanced” or 
None

It is an optional parameter. The absence of this 
parameter assumes each class to be of weight 1. As 
per the official site: “The “balanced” mode uses the 
values of y to automatically adjust weights inversely 
proportional to class frequencies in the input data as 
n_samples / (n_classes * np.bincount(y)).

Table 5.4: Parameters of perceptron

Table 5.5 presents the attributes of the model:

Attribute Explanation
coef_ It gives the weights assigned to the features.
intercept_ It shows the constants in decision function.
n_iter_ It gives the number of iterations to reach the stopping criteria.

Table 5.4: Attributes of the model

The above functions have been exemplified in the following experiments.

Experiments
To understand the usage of the above methods, consider the following experiments:
	 •	 Experiment 1 uses the first 100 samples of the Fisher IRIS data, normalizes 

the data, and carries out classification using the SLP.
	 •	 Experiment 2 uses the first 100 samples of the IRIS data and uses the train-

test-split to classify the data using the SLP.
	 •	 Experiments 3 use the Breast Cancer data, normalize it, and carry out 

classification using the SLP.
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	 •	 Experiment 4 uses the Breast Cancer data and applies K-Fold validation 
(K=10) to classify the data using the SLP.

Note that K-Fold and train-test-split have been discussed in Chapter 1.

Experiment 1: Classification of Fisher Iris Data
from sklearn.datasets import load_digits

from sklearn.linear_model import Perceptron

from sklearn.datasets import load_iris

import numpy as np

import math

#Load Data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalize

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Prepare test train data 

arr=np.random.permutation(100)

X=IRIS.data[arr,:]

y=np.vstack((np.zeros((50,1)),np.ones((50,1))))

y=y[arr]

X_train=X[:40,:]
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X_test=X[40:50,:]

y_train=y[:40]

y_test=y[40:50]

X_train1=X[50:90,:]

X_test1=X[90:100,:]

y_train1=y[50:90]

y_test1=y[90:100]

X_train=np.vstack((X_train,X_train1))

y_train=np.vstack((y_train,y_train1))

X_test=np.vstack((X_test,X_test1))

y_test=np.vstack((y_test,y_test1))

#Classify using SLP

clf=Perceptron(random_state=0)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy
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sens=TP/(TP+FN)    #sensitivity

spec=TN/(TN+FP)	 	 	 	 #specificity

Experiment 2: Classification of Fisher Iris Data, 
train-test split
from sklearn.linear_model import Perceptron

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

import numpy as np

import math

#Load Data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalize 

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Train test split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_
state=4)

#Predict using SLP

clf=Perceptron(random_state=0)
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clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy

sens=TP/(TP+FN)    #sensitivity

spec=TN/(TN+FP)	 	 	 	 #specificity

Experiment 3: Classification of Breast Cancer 
Data
from sklearn.linear_model import Perceptron

from sklearn.datasets import load_breast_cancer

import numpy as np

import math

#Load Data

dataset=load_breast_cancer()       #constructor called

X=dataset.data

y=dataset.target
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#Normalize 

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Train test data

X_train=X[:400,:]

X_test=X[400:,:]

y_train=y[:400]

y_test=y[400:]

#Classify using Perceptron 

clf=Perceptron(random_state=0)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:
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  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy

sens=TP/(TP+FN)    #sensitivity

spec=TN/(TN+FP)	 	 	 	 #specificity

Experiment 4: Classification of Breast Cancer 
Data, 10 Fold Validation
from sklearn.linear_model import Perceptron

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import KFold

import numpy as np

import math

#Load dataset

dataset=load_breast_cancer()

X=dataset.data

y=dataset.target

#K Fold 

kf=KFold(n_splits=10,random_state=None,shuffle=True)

kf.get_n_splits(X)

#Classification	Using	Perceptron	

accur=[]

specificity=[]

senstivity=[]

for train_index, test_index in kf.split(X):

print(“TRAIN:”, train_index.shape, “TEST:”, test_index.shape)
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X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

clf=Perceptron(random_state=0)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1 

acc=(TP+TN)/(TP+TN+FP+FN)    

accur.append(acc)

sens=TP/(TP+FN)

senstivity.append(sens)

spec=TN/(TN+FP)

specificity.append(spec)

#Performance

print(np.mean(accur))

print(np.mean(senstivity))

print(np.mean(specificity))
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The accuracy, specificity, and sensitivity obtained in the four experiments is shown 
in Table 5.6:

Experiment Accuracy Sensitivity Specificity

1 0.95 1.0 0.93
2 0.76 1.0 0.67
3 0.69 0.6 1.0
4 0.96 0.98 0.94

Table 5.6: Results of Experiments

Conclusion
This chapter discussed the structure of a neuron and explained how the neural 
network of the body inspired the Artificial Neural Networks. The so-called first-
generation neural networks have been introduced in this chapter. Right from the 
simplicity of the Mc-Culloch-Pitts model to the elegance of Rosenblatt perceptron 
has been talked about. The mechanism of learning has also been covered in this 
chapter.

The implementation of a single layer perceptron (SLP) and important functions in 
SciPy have also been discussed. One must note that experimentation and empirical 
analysis are involved tasks, the pre-requisites to which is a sound foundation of the 
related concepts. The reader is expected to analyze the outputs with various datasets 
and reason out the differences in the performance measures.

The discussion continues in the next chapter, where multi-layer perceptrons (MLP) 
and the backpropagation algorithm are discussed. The limitation of the models, 
given in this chapter, can be handled elegantly by the MLP’s. MLP’s can thus classify 
the inputs that are not linearly separable.

Exercises
Multiple Choice Questions
 1. Which of the following is the derivative of Sigmoid function 1( )

1 sx
x

e−
=

+
?

 a. –s × f × (1 – f)   b. –s × (1 – f)
 c. f × (1 – f)   d. None of the above
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 2. For larger values of s, the sigmoid function behaves like?
 a. Unit Impulse   b. Unit Step 
 c. Ramp   d. None of the above

 3. For larger values of s, the tanh function behaves like?
 a. Unit Impulse   b. Unit Step
 c. sgn   d. None of the above

 4. Which of the following can be used if the probability of a test sample belonging 
to a particular class is to be determined?

 a. Sigmoid   b. Tanh
 c. Unit step   d. None of the above

 5. Which of the following is used in the McCulloch Pitts model?
 a. Unit step   b. Sigmoid
 c. tanh   d. None of the above

 6. The Rosenblatt Perceptron can learn the weights of?
 a. Linear separable inputs
 b. Any inputs
 c. Input with a limited number of features
 d. None of the above

 7. In delta learning, which of the following can be avoided?
 a. Learning of w’s   b. Learning of bais
 c. None   d. Both

 8. Which of the following cannot be handled by the McCulloch Pitts model?
 a. AND gate   b. OR gate
 c. XOR gate   d. None of the above

 9. Who is considered the father of neural networks?
 a. Hebb b. McCulloch c. Rosenblatt d. Justin Trudeau

 10. Which of the following learning rules can be used to train a Perceptron?
 a. Delta   b. Hebbian
 c. Both    d. None of the above
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Theory
 1. What is a neuron? Explain the structure of a neuron.
 2. State the types of neurons.
 3. Explain the McCulloch Pitts Model.
 4. Implement the following using the McCulloch Pitts model.
 a. 2 Input AND gate 
 b. 2 Input OR gate
 c. 3 Input AND gate 
 d. 3 Input AND gate
 e. 2 Input NAND gate 
 f. 2 Input NOR gate
 g. 3 Input NAND gate 
 h. 3 Input NOR gate
 i. 4 Input AND gate

 5. Implement the above using Rosenblatt perceptron, starting from random 
weights between 0 and 1.

 6. Derive the formula for the change in weights using the Delta Learning Rule.
 7. Explain the Hebbian Learning Rule.
 8. Find the maximum and minimum value of the following. Also, analyze the 

effect of changing the value of parameter s.
 a. Sigmoid   b. tanh

 9. Prove that the derivative of sigmoid can be expressed in terms of itself.
 10. Explain why the XOR gate cannot be handled by a single layer perceptron.

Programming/Experiments
 1. Implement Rosenblatt Perceptron.
 2. Analyze the effect of replacing random weights by zeros on the number of 

iterations, in which convergence is achieved.
 3. Analyze the effect of replacing delta learning rule by Hebbian on the number 

of iterations, in which convergence is achieved. What do you observe about 
the weights if the number of iterations becomes large?

 4. On the Breast Cancer Data set:
 a. Use train-test split (60% Train data and 40% test data) 
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 b. Use train-test split (80% tarin data and 20% test data)
 c. Use K-Fold (K=20)
 d. Use K-Fold (K=10)
 e. Use K-Fold(K=5)

 5. Compare the specificity, selectivity, and sensitivity in each case.
 6. Perform the above experiment on the Autism Screening Adult dataset (https://

archive.ics.uci.edu/ml/datasets/Autism+Screening+Adult) and compare the 
accuracy in each case.





Introduction
You have been asked to develop a model capable of segregating the pictures of 
faces of Dr. Heinz Doofenshmirtz and Major Monogram of Phineas and Ferb fame. 
You will classify the pictures into the above classes by looking at the higher-level 
features like nose, eyes, hair, and so on. These features, in turn, can be constructed 
using various lines (horizontal, vertical, inclined) and curves. So, your model should 
probably:
	 •	 Take a given picture as input
	 •	 Find various lines and curves in the picture
	 •	 Construct higher-level features from the above features
	 •	 Classify the given picture based on the above features

The process can be perceived as a concatenation of layers, each performing some 
task. The first being the input layer, which takes the input and the last being the 
output layer, which declares whether the input image is of Dr. Doofenshmirtz or 
Major Monogram. Everything in between is not visible to the world and hence are 
hidden layers. These layers extract features. Just for the record, Dr. Doofenshmirtz is 
not a real doctor; he purchased his degree.

Chapter 6
Neural Network II – 

The Multi-Layer 
Perceptron
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Now, consider each layer as being a single layer perceptron and the concatenation of 
these Perceptrons as being the multi-layer perceptron. This chapter briefly explores 
the fascinating world of multi-layer perceptrons and presents the feed-forward model 
and the back-propagation algorithm for learning. MLP’s are capable of handling 
data that is not linearly separable. This chapter also presents an implementation of 
the multi-layer perceptrons and its applicability to some of the publically available 
datasets.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 History of neural networks
	 •	 The architecture of the feed-forward neural network
	 •	 Back-propagation algorithm
	 •	 Feed-forward algorithm
	 •	 Implementation of MLP
	 •	 Experiments with two datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the need of multi-layer perceptrons
	 •	 Understand the back-propagation algorithm
	 •	 Understand the feed-forward model
	 •	 Implement MLP
	 •	 Use MLP to carry out classification

History
Knowing the history helps us to deal with the present in a better way. We learn 
from the mistakes made in the past and ascertain the factors behind our successful 
endeavors. Also, creating history is fun but inconsequential. So, let us dwell on the 
history of neural networks, which is as exciting as each episode of Duck Tales. There 
was initial enthusiasm, followed by a period of dismay, which followed an influx 
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of funds bringing happiness along-with. Table 6.1 shows the brief history of neural 
networks:

Year Researcher/Group What was proposed?

1943 Warren McCulloch and Walter 
Pitts

The proposed model, which takes inputs 
(excitatory or inhibitory), summates them 
and make decision-based on the summation

1949 Donald Hebb He authored the organization of Behavior, 
which argued, “Neurons that fire together, 
wire together.”

1950 Nathanial Rochester from the 
IBM research laboratories

It was the first Neural network to be 
simulated

1959 Bernard Widrow and Marcian 
Hoff 

They developed Adaline and Madaline 
model. Adaline could predict a binary 
pattern. Madaline pioneered the application 
of Neural Network to a practical problem.

1962 Bernard Widrow and Marcian 
Hoff

They developed a learning paradigm, 
which adjusts weights after scrutinizing 
the input. 

Problems _ A paper suggested that the SLP could not 
be extended to a multilayer. The learning 
functions used at that time were problematic 
as they could not be differentiated at each 
point. The potential of Neural Networks 
was embroidered after initial success

1975 _ The first multilayer network was created.

1982 John Hopfield He presented a work in the National 
Academy of Science, in which he used 
bidirectional lines in the networks.

1982 US-Japan Conference on 
Cooperative Neural Network.

Fear of being left behind increased funding.

1986 Three groups of researchers, 
including David Rumelhart.

Back-propagation networks introduced.

Table 6.1: History of neural networks

The table shows the important events in the history of Neural Networks. Figure 6.1 
summarizes the above discussion:
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Figure 6.1: The important events in the life of neural networks

The discussion continues in the chapter on deep learning.

Introduction to multi-layer perceptrons
The single layer perceptron (SLP), discussed in the previous chapter, can handle 
patterns, which can be separated linearly but cannot handle the ones which behave 
otherwise and, therefore, cannot solve the XOR problem.

This chapter introduces the multi-layer perceptron (MLP), which does not suffer 
from the above limitations and hence can act as a universal approximator. In an 
MLP, each layer is a perceptron whose output acts as the input to the next layer. The 
sum of products of weights and inputs of a layer ( )1

n
i ij iw x
=

Σ  added together with the 
bias (bi0) is fed to the activation function and produce the value (vi), which becomes 
the input to the next layer:

0
1

n

j ij i i
i

u w x b
=

= +∑

vi = f(uj)

Here, wij is the synaptic weight of the connection between the ith neuron in the first 
layer to the jth in the next. Figure 6.2 depicts the above equations:
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Figure 6.2: The sum of weights and inputs, added with  
the bias is fed to the activation function to produce vj

So, an MLP contains input layers, hidden layers, and output layers. The network 
contains at least one hidden layer. It may be noted that theoretically there is no limit 
on the number of the hidden layers, though more hidden layers make the output 
unexplainable. Hence, it is better to have a small number of hidden layers.

Moreover, if the hidden layers outputs a linear function, the purpose of having many 
layers is defeated as the combination of linear combinations is linear. Hence the 
activation functions in the hidden layer are generally the sigmoid or tanh functions, 
owing to their non-linearity and also because any function can be expressed in terms 
of basis functions like an exponential function. So, these functions can generate any 
function. Though, recently the relu function has become popular.

Architecture
MLP has an input layer, an output layer, and at least one hidden layer. The number 
of neurons in the input layer can be:
	 •	 Same as the number of features of the given data, in which case bias is needed
	 •	 Number of features in the given data + 1, the last one for the bais, this extra 

input would always be one, and its weight would be equivalent to the bias 
in the above model

The number of neurons in the output layer is the same as the number of outputs. 
For example, if the given data has m features and n samples and a single response, 
then X = {x1, x2, x3, …, xm}, where xi is n × 1 vector, and y is 1 × n vector. In this case, 
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the number of neurons in the input layer would be m + 1 and that in the output layer 
would be 1. In the figure that follows, the neural network contains a single hidden 
layer which has p neurons (Figure 6.3):

Figure 6.3: Architecture of the feed-forward model

The learning of weights, in the above network, is slightly tricky. It is because the input 
and the expected output is known to us. The network learns the weights between 
the hidden layer and output layer and uses these updated weights to update the 
weights between the input and the hidden layer. The algorithm for changing the 
weights has been discussed in the next section.

Backpropagation algorithm
Consider the weight of the synapse connecting the jth neuron in a layer to the ith in 
the previous layer. This weight determines the outcome yj. The difference between 
the desired output and the output obtained, for the nth input and jth neuron is:

e(n) = di (n) – yj (n)

The value of yj is obtained by giving to the activation function :

yj (n) = f(uj)

And uj is the summation of xi and wij:
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The square of this error multiplied ½, henceforth referred to as the loss function, 
needs to be minimized, to attain dj(x):

( ) ( ) ( ) 21 ( )
2 i jE n d n y n= −

To do so, the weights would have to be changed as per the delta rule. The weight of 
the synapse connecting the ith neuron of the previous layer to the jth neuron in the 
layer, wij would change as per the following equation:

Ä ( )/ji jiw E n wδ δ= −

Now, E(n) depends on yj(n). This quantity is obtained by feeding uj(n) to the activation 
function f. Therefore:
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The partial derivative of E with respect to yj is found as follows:
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The partial derivative of yj for uj is found as follows:
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In the case of the sigmoid function, this becomes f × (1 – f).

Finally, the partial derivative of uj for wij is:
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And finally, the change in the weights would be:
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First of all, start by changing the weights of the outermost layer and then move 
inward, using the new weights obtained in the previous step.

Learning
The data in the neural network, being discussed, travels from the input layer to the 
output layer. It is the reason why it is referred to as the feed-forward model. The 
feed-forward backpropagation model works as follows:
	 •	 The neural network can have one more than the number of features neurons 

in the input layer (for the bias). Likewise, the number of neurons of the 
output layer generally is one less than the number of predictors.

	 •	 Initialize the weights by small random numbers.
	 •	 Feed input data to the input layer and calculate the output.
	 •	 Update the weights using the back-propagation algorithm. The change of 

weights starts from the output layer, and the weights of the inner layers are 
changed in the successive steps.

	 •	 Stop changing the weights when the change becomes less than the threshold 
or the maximum number of iterations is reached.

The process has been depicted in the figure below:

Figure 6.4: Feed-forward, backpropagation model

The next section discusses the implementation of MLP.

Implementation
The above algorithm has been implemented from scratch using NumPy. The 
implementation creates a network of a single hidden layer. The hidden layer 
contains two neurons. The value of the learning rate has been taken as 0.1 for the 
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bias. The code follows. The reader is expected to change the learning rate and the 
number of neurons in the hidden layer to analyze the effect of these parameters on 
the performance of the network. The MLP has been implemented in the following 
code:

from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

import numpy as np

import math

#Loading Data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalization 

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

arr=np.random.permutation(100)

X=IRIS.data[arr,:]

y=np.vstack((np.zeros((50,1)),np.ones((50,1))))

y=y[arr]   

#Train test split

X_train=X[:40,:]

X_test=X[40:50,:]

y_train=y[:40]



122      Machine Learning for Beginners

y_test=y[40:50]

X_train1=X[50:90,:]

X_test1=X[90:100,:]

y_train1=y[50:90]

y_test1=y[90:100]

X_train=np.vstack((X_train,X_train1))
y_train=np.vstack((y_train,y_train1))

X_test=np.vstack((X_test,X_test1))

y_test=np.vstack((y_test,y_test1))

print(X_train.shape)

print(X_test.shape)

#Initialize	weights	and	bias	

W1=np.random.random((4,2))

W2=np.random.random((2,1))

b1=np.random.random((1,2))

b2=np.random.random((1,1))

#Activation 

def f(u):

 ans=1/(1+np.exp(-1*u))  #s=1

 return ans

#Learning 

y_pred=np.zeros(y_train.shape[0])

for i in range(X_train.shape[0]):

 input_sample=X_train[i,:]

 u1=np.matmul(input_sample,W1)+b1      #1X2

 v1=f(u1)   #1X2

 u2=np.matmul(v1,W2)+b2  #1X1

 v2=f(u2)   #1X1

 if(v2>0.5):       #threshold=0.5

  y_pred[i]=1

 else:
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  y_pred[i]=0

 W 2 = n p . t r a n s p o s e ( n p . t r a n s p o s e ( W 2 ) + 0 . 9 5 * ( y _ t r a i n [ i ] - y _
pred[i])*(v2)*(1-v2)*v1)   #s=1,learning rate=0.475

 a=np.transpose(input_sample)  #4X1

 b=(y_train[i]-y_pred[i])*(v2)*(1-v2)  #1X1

 c=np.matmul(np.transpose(W2),np.matmul((np.transpose(v1)),(1-v1)))   
#1X2

e=np.matmul(b,c)  #1X2

inp=np.zeros((4,1))

for j in range(a.shape[0]):

 inp[j]=a[j]

 delta=np.matmul(inp,e) 

 W1=W1+0.95*delta               

 b2=b2-0.1*y_pred[i]  #learning rate=0.1

 b1=b1-0.1*y_pred[i]  #learning rate=0.1

print(W2)  #2X1

print(W1)  #4X2

#Testing 

corr=0

for i in range(X_test.shape[0]):

 input_sample=X_test[i,:]

 u1=np.matmul(input_sample,W1)+b1      #1X2

 v1=f(u1)   #1X2

 u2=np.matmul(v1,W2)+b2  #1X1

 v2=f(u2)   #1X1

 if(v2>0.5):       #threshold=0.5

  y_pred[i]=1

 else:

  y_pred[i]=0

 if(y_test[i]==y_pred[i]):

  corr+=1

 acc=corr/(y_test.shape[0])   #accuracy
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 print(acc)

#Performance Measures 

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==y_pred[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(y_pred[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy

print(acc)

sens=TP/(TP+FN)    #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

The next section discusses the in-built sklearn function for the implementation of 
MLP.

Multilayer perceptron using sklearn
The module sklearn.neural_network implements a few neural network models, 
including the forward backpropagation model. The following discussion uses 
the sklearn.neural_network.MLPClassifier. The important parameters of the 
constructor of the MLPClassifier have been presented in Table 6.2:
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Parameter Type Explanation
hidden_layer_
sizes

tuple, length The tuple depicts the number of hidden 
layers, and the length depicts the number of 
neurons. The default value is (100,).

activation One of the values 
from {‘identity’, 
‘ l o g i s t i c ’ , 
‘tanh’, ‘relu’}

It represents the activation function. The 
default value is relu.
‘identity’ returns f(x) = x
‘logistic’ returns f(x) = 1 / (1 + 
exp(-x))
‘tanh’ returns f(x) = tanh(x)
‘relu’ returns f(x) = max(0, x)

solver One of the values 
from {‘lbfgs’, 
‘sgd’, ‘adam’}.

It represents the solver used in the model. 
The default value is ‘adam’.
‘lbfgs’: Optimizer in the family of quasi-
Newton methods.
‘sgd’: Stochastic gradient descent.
‘adam’: Stochastic gradient-based optimizer 
proposed by Kingma, Diederik, and Jimmy 
Ba.

alpha float It represents the learning rate. This parameter 
is optional, and its default value is 0.0001.

batch_size int It represents the size of the batches in 
stochastic optimizers. It is also an optional 
parameter, and its default value is ‘auto’.

learning_rate One of the values 
from {‘constant’, 
‘ i n v s c a l i n g ’ , 
‘adaptive’}

The default value of this parameter is 
‘constant’.

max_iter int It represents the maximum number of 
iterations. It is an optional parameter whose 
default value is 200.

random_state int The random_state is the seed used by the 
random number generator.

Tol float It represents the tolerance. It is an optional 
parameter whose default value is 1e-4.

Table 6.2: Parameters of MLPClassifier

Having seen the parameters of the function, let us now move to the attributes. Table 
6.3 presents the attributes of MLPClassifier:
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Attribute Type Explanation
classes_ Array or List It gives the class label for each attribute.
loss_ Float It gives the current loss.
intercepts_ List The elements represent the bias vectors.
n_iter_ int It represents the number of iterations run.

Table 6.3: The attributes of MLPClassifier

The module provides us with some functions. The fit, predict, predict_log_probas, 
predict_probas are some of the most important such functions.

The fit function models the data X with y. The predict function predicts the output 
of the argument. The predict_log_prob returns the logarithms of the probability 
estimates. Likewise, the predict_prob provides us with the probabilities.

Experiments
To understand the usage of the above parameters, attributes, and methods, consider 
the following experiments. The first experiment uses the first 100 samples of the IRIS 
dataset. The data has been normalized, divided into the test and the train data, and 
classified using the MLPClassifier. The size of the network is (3,2), and the value of 
alpha is 10-3.

Experiment 1: IRIS DATA, Two classes, Normalization, MLP
from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

import numpy as np

import math

# Loading the data 

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalization

max=[]

min=[]
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S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#	shuffling	and	creating	test	and	train	data	

arr=np.random.permutation(100)

X=IRIS.data[arr,:]

y=np.vstack((np.zeros((50,1)),np.ones((50,1))))

y=y[arr]                                

X_train=X[:40,:]

X_test=X[40:50,:]

y_train=y[:40]

y_test=y[40:50]

X_train1=X[50:90,:]

X_test1=X[90:100,:]

y_train1=y[50:90]

y_test1=y[90:100]

X_train=np.vstack((X_train,X_train1))

y_train=np.vstack((y_train,y_train1))

X_test=np.vstack((X_test,X_test1))

y_test=np.vstack((y_test,y_test1))

#print(X_train.shape)

#Classification	

clf=MLPClassifier(solver=’lbfgs’,alpha=1e-3,hidden_layer_sizes=(3,	 2),	
random_state=1)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)
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#Performance evaluation 

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy

print(acc)

sens=TP/(TP+FN)    #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

Output:
1.0

1.0

1.0

The second experiment uses the first 100 samples of the Fisher IRIS dataset. The data 
has been normalized to numbers between 0 and 1. It has been divided into the test 
and the train data using the train-test split, and the MLPClassifier has been used 
to classify the data. The size of hidden layers, in the network, is (3,2). The value of 
alpha is 10-3.
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Experiment 2: IRIS DATA, two classes, Normalization, Train-test split, MLP
from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

from sklearn.model_selection import train_test_split

import numpy as np

import math

#Loading the data 

IRIS=load_iris()

X=IRIS.data[:100,:]

y=IRIS.target[:100]

#Normalization 

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Train test split 

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_
state=4)

#Classification	

clf=MLPClassifier(solver=’lbfgs’,alpha=1e-3,hidden_layer_sizes=(3, 
2),random_state=1)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)
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#Performance measures 

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy

print(acc)

sens=TP/(TP+FN)    #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

Output:
1.0

1.0

1.0

The third experiment deals with the Breast Cancer dataset. The given data has been 
normalized remove. The data has been divided into the test, and the train data and 
the MLPClassifier have been applied to classify the data. The size of hidden layers, 
in the network, is (10,2). The value of alpha is 10-3.

Experiment 3: Breast Cancer Dataset, Two classes, Normalization, MLP
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from sklearn.datasets import load_breast_cancer

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

import numpy as np

import math

#Load Data 

dataset=load_breast_cancer()       

X=dataset.data

y=dataset.target

#Normalization 

max=[]                                                 

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

  X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

# Train Test Split 

X_train=X[:400,:]

X_test=X[400:,:]

y_train=y[:400]

y_test=y[400:]

#Classify 

clf=MLPClassifier(solver=’lbfgs’,alpha=1e-5,hidden_layer_sizes=(5, 
2),random_state=1)

clf.fit(X_train,y_train)
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#Performance Measures 

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(predicted[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)  #accuracy

print(acc)

sens=TP/(TP+FN)    #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

Output:
0.93

0.96

0.89

The fourth experiment uses the Breast Cancer dataset. The data has been normalized, 
divided into the test, and the train data using the K fold validation and classified 
using the MLPClassifier. The size of hidden layers, in the network, is (3,2). The value 
of alpha is 10-3.
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Experiment 4: Breast Cancer Dataset, Two classes, Normalization, K-Fold Split, MLP
from sklearn.datasets import load_breast_cancer

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

import numpy as np

fromsklearn.model_selection import KFold

import math

#Load Data 

dataset=load_breast_cancer()       

X=dataset.data
y=dataset.target

#K Fold Validation 

kf=KFold(n_splits=10,random_state=None,shuffle=False)

kf.get_n_splits(X)

accur=[]

specificity=[]

senstivity=[]

for train_index, test_index in kf.split(X):

 #print(“TRAIN:”, train_index.shape, “TEST:”, test_index.shape)

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

	 	clf=MLPClassifier(solver=’lbfgs’,alpha=1e-3,hidden_layer_sizes=(8,	
2))

	 clf.fit(X_train,y_train)

 predicted=clf.predict(X_test)

 TP=0

 TN=0

 FN=0

 FP=0

 for i in range(len(y_test)):

  if(y_test[i]==predicted[i]):
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   if(y_test[i]==1):

    TP+=1

   else:

    TN+=1

  else:

   if(predicted[i]==1):

    FP+=1

   else:

    FN+=1

 acc=(TP+TN)/(TP+TN+FP+FN)    

 accur.append(acc)

 if((TP+FN)!=0):

  sens=TP/(TP+FN)                

 else:

  sens=0

 senstivity.append(sens)

 if((TN+FP)!=0):      

  spec=TN/(TN+FP)                

 else:

  spec=0

	 specificity.append(spec)

print(np.mean(accur))

print(np.mean(senstivity))

print(np.mean(specificity))

The results of the above experiments are shown in the following table (Table 6.4):

Experiment Accuracy Sensitivity Specificity

1 1.0 1.0 1.0
2 1.0 1.0 1.0
3 0.93 0.96 0.89
4 0.71 0.89 0.18

Table 6.4: Results of Experiments 1, 2, 3 and 4
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Conclusion
The single layer neural networks, discussed in the last chapter, were able to perform 
many tasks, but not all. Therefore, the interest in neural networks waned after 
an initial surge. One of the reasons for this was the inability of the single layer 
perceptrons to classify data, which was not linearly separable. This lead to the advent 
of the multi-layer neural networks, which could handle the non-linearly separable 
data and could learn any function.

This chapter presented a brief overview of multi-layer perceptrons. The history and 
architecture of the neural networks have also been discussed in this chapter. The last 
chapter discussed the activation functions, which can be discrete or continuous. The 
unit step function is an example of a discrete activation function. The examples of 
continuous activation functions are sigmoid and the hyperbolic tangent function. 
The later helps to develop a model capable of predicting a continuous function. This 
chapter introduced the feed-forward models, which used continuous activation 
functions.

It may also be noted that initially, the number of layers in the network could not be 
increased as there was no way of learning the weights since the output of the hidden 
layer was not known. The back-propagation model proposed in 1986 changed the 
discourse and set the bells ringing. The model helped to learn the weights of the output 
layer, after which the weights of the hidden layer can be learned. It is one of the most 
used algorithms for learning the weights in neural networks. It may be stated that 
this algorithm was certainly not the first to be proposed. Firstly, Rosenblatt proposed 
the random initialization of weights, followed by the learning of the weights of the 
outer layer. This chapter discussed the backpropagation algorithm and presented 
arguments in favor of multi-layer perceptrons as Universal Approximators.

The next chapter discusses the support vector machines, which is much better in 
classifying the patterns as it uses only some of the inputs (called support vectors) 
for classification. Also, the idea behind classification is markedly different from 
neural networks. The reader is expected to attempt the exercises to develop a better 
understanding of the chapter.

Exercises
Multiple Choice Questions
 1. Generally, the initial weights in a Neural Network are small random numbers. 

Why?
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 a.  So that the learning algorithm does not lead to large random numbers and 
hence saturate the network

 b. So that computation time is saved
 c. The given statement is not true
 d. None of the above

 2. Which of the two initializations of weights is generally better?
 a. All the initial weights are equal
 b. They are not equal
 c. Both the above situations are equivalent
 d. Cannot determine

 3. Training of a network can be done using?
 a. Single input at a time b. Set of inputs
 c. All the inputs together d. All of the above

 4. In backpropagation, the weights of which layer are modified first?
 a. Last Layer   b. First Layer
 c. Hidden Layer   d. All of the above

 5. Which of the following activation functions can be used in MLP?
 a. Relu   b. Sigmoid
 c. tanh   d. All of the above

 6. Which of the following activation functions cannot be used in MLP?
 a. Relu   b. Sigmoid 
 c. Unit step   d. All of the above

 7. Which of the following cannot handle the XOR problem?
 a. MLP   b. SLP
 c. Both    d. None of the above

 8. What is the minimum number of hidden layers in MLP?
 a. 0   b. 1
 c. 2   d. None of the above

 9. Which of the following can be classified using MLP?
 a. Two class problem  b. Multi-class problem
 c. Both   d. None of the above
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 10. A neural network can have?
 a. Different activation functions at each neuron
 b. Any number of hidden layers
 c. Any number of neurons in a layer
 d. All of the above

Theory
 1. Explain the backpropagation algorithm and derive the formula for change in 

weights.
 2. Examine the problems in SLP and argue in favor of MLP.
 3. Prove that MLP can act as a universal approximator.
 4. Write the algorithm for classification using a feed-forward back-propagation 

model.
 5. Which activation functions can be used in MLP?
 6. What is the importance of the learning rate?
 7. Explore research papers, given in the reference at the end of this book, and 

write a note on deciding the number of hidden layers and neurons in each 
layer.

 8. Write a short note on the history of neural networks.

Practical/Coding
 1. Implement a neural network using numpy for classifying any classification 

dataset from the UCI machine learning Repository.
 a.  Analyze the effect of replacing random weights by zeros on the number of 

iterations. In which of the two convergence is achieved?
 b.  Analyze the effect of replacing delta learning rule by Hebbian on the 

number of iterations. In which convergence is achieved? What do you 
observe about the weights if the number of iterations becomes large?

 2. On the Breast Cancer Data set:
 a. Normalize the data
 b. Use K-Fold (K=10)
 Change the number of hidden layers and the number of neurons in each layer.
 Report the average accuracy, selectivity, and sensitivity in each case.
 3. Perform the above experiment on the Autism Screening Adult dataset (https://

archive.ics.uci.edu/ml/datasets/Autism+Screening+Adult) and compare the 
accuracy in each case.





Introduction
The discussion so far leads to the conclusion that if a test sample is far away from 
the decision boundary, its probability of belonging to a particular class is more, 
as compared to a sample which is near to the decision boundary. It is because the 
decision boundary is crafted using the train data, and we intend to classify the test 
data. Therefore, the assignment of a label to a test sample, very near to the decision 
boundary, may not be correct. The above premise suggests that the samples further 
from the decision boundary are more likely to be correctly classified. The reader 
is requested to appreciate this idea before proceeding any further. This chapter 
introduces the reader to support vector machines. The classifier explained in this 
chapter is based on the idea of the Maximum Margin Classifier.

Support vector machines are perhaps one of the best machine learning algorithms. 
They are elegant, effective, and even work for data having very large dimensions. 
These machines, therefore, handle the curse of dimensionality gracefully. These 
machines do not use the whole data to craft the separating hyperplane, but only a 
small subset of the training data called the support vectors. It makes these machines’ 
memory efficient. Though the algorithm is based on the creation of hyperplane for 
linearly separable data, the model can be extended to non-linearly separable data 
using the kernel trick. Also, the concept of cost has been explained in the chapter, 

Chapter 7
Support Vector 

Machines
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which allows the misclassification of the train data to achieve a better performance 
on the test data.

The following sections also explain the implementation of SVM using sklearn.svm. 
The reader will be able to appreciate the mathematical basis of SVM, use SVM for 
classifying the numeric data and the images using the experiments explained in this 
chapter. The discussion continues in the Appendix of this book, which introduces 
regression using the support vector machines.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 The Maximum Margin Classifier
	 •	 Maximizing the margins
	 •	 The cost parameter
	 •	 The kernel trick
	 •	 Implementation of SVM
	 •	 Experiments with two datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the importance of Maximum Margin Classifiers
	 •	 Understand the derivation of maximum margin
	 •	 Understand the cost parameter and kernel trick
	 •	 Implement SVM
	 •	 Use SVM to carry out classification

The Maximum Margin Classifier
The samples of the data, shown in Figure 7.1, belong to two classes, and it is desired 
to find a line that separates the space. The symbol X represents the samples of class 
I, and the symbol * represents the samples of class II. For the sake of mathematical 
convenience, we take the labels of the samples belonging to class I as -1 and of those 
belonging to class II as 1. Assume that the classifier used to accomplish the task 
comes up with the line shown in Figure 7.1, which is very near to class II. Another 
classifier comes up with that shown in Figure 7.2, which is very near to class I. Both 
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the lines can classify the samples into two classes but may not give good results for 
the test data. The above analysis takes into consideration only two features of the 
data. However, the concept developed in the following discussion can be extended to 
multiple features, in which case a hyper-plane instead of a line would be generated 
by the classifier:

Figure 7.1: The classifier gives a line very near to class II

Figure 7.2: The classifier gives a line very near to class I

If we can maximize the width of the gutter shown in Figure 7.3 and the classifier 
generates a line in the middle of the gutter, the chances of enhanced performance of 
the classifier with the test data would increase:
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Figure 7.3: It is desired to maximize the width of the gutter between the two classes

To do so, we find a vector representing the width of this gutter. Let any point ( )1x  
belonging to class I satisfy:

 1. 1x w b+ ≤ −  …(1)

And any point () belonging to class II satisfy:

 2 . 1x w b+ ≥  …(2)

That is:

 1. 1,   1ix w b if y+ ≤ − = −  …(3)

And

 2 . 1,   1ix w b if y+ ≥ =  …(4)

The above two equations can be written as:

 ( . ) 1iy x w bι + ≥  …(5)

And xi for, the samples in the gutter satisfies:

 ( . ) 1iy x w bι + =  …(6)

The hyperplane, in this case, would be represented by:

 ( . ) 0i x w bι + =  …(7)
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If the vectors 1x  and 2x  represent those to the two lines passing through the 
endpoints of the two classes (Figure 7.4), then 1 2( )x x−  represents the width of the 
gutter (Figure 7.5):

Figure 7.4: The gutter between the two samples needs to be maximized

Figure 7.5: 1 2( )x x−  represents the width of the gutter

The magnitude of this vector is 
1 2( ).x

w
wx− , which becomes 2

w
 by equation (6). 

Having found the width of the gutter, let us move to maximize this width. The next 
section uses Lagrange’s method to accomplish this task.
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Maximizing the margins
In the following discussion, the labels y ∈{-1, 1} and the classifier is represented 
by f = g(X × W T). The weights W are to be determined. For a given sample xi, the 
weight and the value of g determine whether a sample belongs to a particular class. 
The discussion in the previous section suggests that in this case, a linear function 
represents the classifier.

The distance between two samples is proportional to:

 1/d w∝  …(8)

To maximize this distance, we can minimize w  or for that matter 
21

2
w  subject to 

constraint:

 ( )1 0t
i iy x w b− + =  …(9)

Note that in the above equation both xi and w are one-dimensional matrices. The 
problem can thus be solved using Lagrange’s method. The Lagrange’s would, 
therefore be:

 ( )( )2

1

1 1
2

m t
i i ii

L w y x w bα
=

= + − +∑  …(10)

To minimize L, we find its partial derivative for w and b:

 ( )( )2

1

1 1
2

m t
i i ii

L w y x w b
w w

δ δ α
δ δ =

 
= + − + 

 
∑  …(11)

 
1

m

i i ii

L w y x
w

δ α
δ =

= −∑  …(12)

Putting:

 0L
w

δ
δ

=  …(13)

We get:

 
1

m

i i ii
w y xα

=
=∑  …(14)

Similarly, differentiating L with respect to b, we get:

 ( )( )2

1

1 1
2

m t
i i ii

L w y x w b
b b

δ δ α
δ δ =

 
= + − + 

 
∑  …(15)

 
1

m

i ii

L y
b

δ α
δ =

= −∑  …(16)
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Putting:

 0L
b

δ
δ

=  …(17)

We get:

 
1

0
m

i ii
yα

=
=∑  …(18)

For all positive ai’s:

We can substitute 
1

m
i i ii

w y xα
=

=∑  in L, we get:

 ( )( )2

1

1 1
2

t
i i i

m

i
L w y x w bα

=
= + − +∑  …(19)

 ( )( )1

1 1
2

mT t
i i ii

L ww y x w bα
=

= + − +∑  …(20)

 ( )1 1 1 1

1 (1 )
2

m m m mT T
i j i j i j i i j j ji j i j

L y y x x y y x bα α α α
= = = =

= + − +∑ ∑ ∑ ∑  …(21)

 
1 1 1

1
2

m m mT
i j i j i j ii j j

L y y x xα α α
= = =

= − +∑ ∑ ∑  …(22)

Subject to:

 
1

0
m

i ii
yα

=
=∑  and 0iα ≥  …(23)

Note that the values of yi, yj, xi and xi are known. Hence the above system of 
equations can be solved. However, some of the ai’s will be zeros. The non-zero 
ai’s will determine the decision boundary. The following function represents the  
decision:

 
1

0,  1
m

i i ii i iy x b tx hen yα
=

+ ≥ =∑  …(24)

 elseyi = –1 …(25)

Having discussed the mathematics, let us now move to the importance of the cost 
parameter and how to handle a non-linearly separable case using the cost parameter.

The non-separable patterns and the cost 
parameter
The above theory works if there is a wide margin between two linearly separable 
data. Now consider a situation where it is not the case. For example, in Figure 7.6, if 
the * and the X in the gutter can be ignored, the above theory can be applied:
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Figure 7.6: The case of non-separable data and the importance of cost function

Let us reframe the optimization problem so that a small amount of misclassification 
may be allowed if instead of that, the margins so formed are far apart. As per Haykin 
[2], the definition of hyperplane can be derived by introducing an error term in 
equation (5). That is:

 ( ). 1i ixy w b ξ+ ≥ −  …(26)

If the value of the new variable introduced is between 0 and 1, the test sample will be 
in the gutter, on the correct side of the hyperplane. To find the hyperplane for which 
misclassification is minimized, we need to minimize:

 ( )
1

( 1)
m

i
f gξ ξ

=
= −∑  …(27)

where m is the number of training samples, and g is a function defined by 

 ( ) 0,  0
1,  0

if
g

if
ξ

ξ
ξ

 ≤=  >
 …(28)

Interestingly, the above problem is NP-complete. So, to solve this, we relax the 
constraint in equation (28) to:

 ( )
1

( )
m

i
f gξ ξ

=
=∑  …(29)

The problem then reduces to:

 1 1 1

1
2

m m mT
i j i j i j ii j j

L y y x xα α α
= = =

= − +∑ ∑ ∑  …(30)
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Subject to:

 
1

0
m

i ii
yα

=
=∑  and i Cα ≤  …(31)

The large value of C allows the misclassification of training examples. One can vary 
the value of C and analyze the performance of the model so formed on the test data.

The kernel trick
Let ( )xφ  be a function that transforms the feature space from the input space. The 
decision surface, in terms of ( )xφ  can be defined as ( )

1
0ii

w xφ
∞

=
=∑ . In this case, the 

weights can be found by modifying the equation (14) as:

 
1

( )
m

i i ii
w y xα φ

=
=∑  …(32)

And the output decision function of the output space can be expressed as:

 
1

( ) ( ) 0
m T

i i i ii
y x x bα φ φ

=
+ =∑  …(33)

Which contains , called the inner product:

( , ) ( ) ( )T
i iK x x x xφ φ=

This K represents a function that finds the inner product feature space under φ of the 
two data points in the space [2]. This function must be symmetric, that is K(x, xi) = 
K(xi, x), and the total volume under the surface represented by K must be constant. 
The kernel trick allows us to transform the input data into space where non-linearly 
separable data points become linearly separable, find the hyperplane, and then 
transform the result back to the original space.

The kernel functions provided by sklearn.svm are as follows:
	 •	 linear: <x, xT>
	 •	 polynomial: (γ < x, xT > + r)d, where d is the degree of the polynomial, r is 

specified by coef0 and gamma is specified by the gamma parameter

	 •	 rbf: 
2Tx x

e
γ− −

, Where the value of gamma must be greater than 0.
	 •	 sigmoid: tanh (γ < x, xT > + r), where r is specified by coef0 and gamma is 

specified by the gamma parameter

Moreover, one can define his/her kernel by defining a method and setting the kernel 
parameter as the name of that method.
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SKLEARN.SVM.SVC
The SVC class of the sklearn.svm provides a libsvm based implementation of Support 
Vector Machine. Table 7.1 shows the parameters of the sklearn.svm.svc method:

Parameter name Data Type Optional/Default value Description
C float It is an optional parameter. 

The default value of this 
parameter is 10

This is the Regularization 
parameter, which must be 
positive. 

kernel string It is an optional parameter. 
The default value of this 
parameter is ’rbf’.

This parameter specifies 
the kernel. It can have the 
following values: ‘linear’, 
‘poly’, ‘rbf’, ‘sigmoid’, 
‘precomputed’ or a callable.

degree int It is an optional parameter. 
The default value of this 
parameter is 3.

This parameter depicts the 
degree of the polynomial 
kernel function. 

gamma {‘scale’, 
‘auto’} or 
float

It is an optional parameter. 
The default value of this 
parameter is ’scale’.

This parameter depicts the 
kernel coefficient for ‘rbf’, 
‘poly’ and ‘sigmoid’.

coef0 float It is an optional parameter. 
The default value of this 
parameter is 0.0.

This parameter represents 
the independent term in 
kernel function. 

tol float It is an optional parameter. 
The default value of this 
parameter is 1e-3.

This parameter represents 
the tolerance for stopping 
criterion.

max_iter int It is an optional parameter. 
The default value of this 
parameter is -1. 

This parameter signifies 
the maximum number of 
iterations.  

random_state int It is an optional parameter. 
The default value of this 
parameter is None. 

This parameter states the 
random state used in the 
pseudo random number 
generator. 

Table 7.1: Parameters of sklearn.svm.svc

The fit method crafts the SVM. The attributes of the method are presented in Table 7.2:

Attribute Description
support This attribute gives the indices of the support vectors.
support_vectors This attribute gives the support vectors.
n_support This attribute gives the number of support vectors for each class.

Contd…
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coef_array This attribute gives the weights assigned to the features.
intercept This attribute gives the constants in decision function.
classes This attribute gives the class labels.

Table 7.2: Attributes of sklearn.svm.svc

The methods of the SVC class are shown in Table 7.3. Note that, like other classifiers, 
the fit method is used to craft the model, and the predict method is used to predict 
the test data, and other methods help us to see the support vectors, labels, and so on:

Method Description

decision_function This method finds the decision function for the data passed as 
the argument.

fit This method fits the SVM model as per the training data.
predict This method is used for the classification of the test data.
score This method returns the mean accuracy.

Table 7.3: Methods of sklearn.svm.svc

Having seen the parameters, attributes, and methods of sklearn.svm, let us now 
move to the next section, which presents some experiments using the above methods.

Experiments
The following experiments demonstrate the application of sklearn.svm for 
classification. The first experiment classifies the Breast Cancer dataset using the 
linear kernel of SVM, by dividing the dataset into train and test set using train_
test_split. The second experiment uses K-Fold validation to accomplish the same 
task.

Experiment 1: Classification of Breast Cancer Dataset using SVM, Linear Kernel.

Specifications:
	 •	 Dataset: Breast Cancer
	 •	 Classifier: SVM
	 •	 Kernel: Linear
	 •	 Split: 70% train data, 30% test data

The following steps will take you through the process of classifying the Breast Cancer 
dataset using the SVC of sklearn.svc:

Step 1: Import modules
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The following modules need to be imported to classify the Breast Cancer dataset 
using SVM:
import numpy as np

from sklearn.svm import SVC

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

Step 2: Load data

The load_data function returns the data and the labels:
def load_data():

 Data=load_breast_cancer()

 X=Data.data

 y=Data.target

 return (X, y)

Step 3: Evaluate performance
The cal_acc function calculates the accuracy by comparing the predicted values of 
the labels and the values of the labels of the test data:
defcal_acc(y_test, y_predict):

  tp=0 

  tn=0

  fp=0

  fn=0

  s=np.shape(y_test)

  for i in range (s[0]):

    o1=y_predict[i]

    y1=y_test[i]

    if(o1==1 and y1==1):

      tp+=1

    elif(o1==0 and y1==0):

      tn+=1

    elif(o1==1 and y1==0):

      fp+=1

    else:
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      fn+=1

  acc=(tp+tn)/(tp+tn+fp+fn)*100

  return(acc)

Step 4: The model

The following code makes use of the above functions to classify the data:
X, y=load_data()

X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, 
random_state=4)

clf=SVC(kernel=’linear’) #gamma=’auto’

clf.fit(X_train,	y_train)

y_predict=clf.predict(X_test)

accuracy=cal_acc(y_test, y_predict)

The accuracy, in this case, comes out to be 94.7368.

Experiment 2: Classification of Breast Cancer Dataset using SVM, Linear Kernel, 
K-Fold

Specifications:
	 •	 Dataset: Breast Cancer
	 •	 Classifier: SVM 
	 •	 Kernel: Linear
	 •	 Split: K-Fold, K=5

The load_data and cal_acc functions of Experiment 1 are used in the following 
code. The reader is expected to write the functions again. The code that uses K-Fold 
split and calculates the average accuracy is as follows:
kf=KFold(n_splits=5)

kf

kf.get_n_splits(X)

acc=[]

for train_i,test_i in kf.split(X):

 X_train,X_test=X[train_i],X[test_i]

 y_train,y_test=y[train_i],y[test_i]

 clf=SVC(kernel=’linear’) #gamma=’auto’

	 clf.fit(X_train,	y_train)
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 y_predict=clf.predict(X_test)

 accuracy=cal_acc(y_test, y_predict)

 acc.append(accuracy)

print(np.mean(acc))

The average accuracy, in this case, comes out to be 95.25384257102935. Note that other 
conditions remaining the same, the accuracy in the case of K=10 is 95.25689223057643 
and in the case of K=20 is 95.09852216748767. In this case, the variation of K does not 
have a great impact on the performance of the system. The accuracies in the 20 folds 
of 20-Fold cross-validation are as follows:

[96.55172413793103, 86.20689655172413, 93.10344827586206, 
93.10344827586206, 96.55172413793103, 93.10344827586206, 96.55172413793103, 
96.55172413793103, 93.10344827586206, 96.42857142857143, 92.85714285714286, 
100.0, 100.0, 96.42857142857143, 92.85714285714286, 96.42857142857143, 
89.28571428571429, 100.0, 96.42857142857143, 96.42857142857143]

The accuracies in the ten folds of 10-Fold cross-validation are as follows:

[91.22807017543859, 92.98245614035088, 94.73684210526315, 
96.49122807017544, 96.49122807017544, 96.49122807017544, 98.24561403508771, 
94.73684210526315, 94.73684210526315, 96.42857142857143]

Experiment 3: The following code classifies two sets of images using SVM. The 
required modules can be imported using the following code:
from matplotlib import pyplot as plt
import matplotlib.image as mpimg

import numpy as np

from sklearn import svm

from sklearn.model_selection import train_test_split

The images can be converted to grayscale using the following function:
def rgb2gray(rgb):

return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])

The perf_measure function finds the performance of the model. It takes test_y and 
y_predicted as parameters:
def perf_measure(test_y,y_predicted):

tp=0
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tn=0

fp=0

fn=0

for i in range(len(test_y)):

 predicted=y_predicted[i]

 actual=test_y[i]

 if(predicted==actual):

  if(predicted==1):

   tp+=1

  else:

   tn+=1

 else:

  if(predicted==1):

   fp+=1

  else:

   fn+=1

acc=(tp+tn)/  (tp+tn+fp+fn)

sens=(tp)/(tp+fn)

spec=(tn)/(tn+fp)

return (acc,sens,spec)

Suppose you have 20 images of class I and 20 images of class II, the following code 
would help you to classify the images, assuming that you have saved the image data 
in final_data. Note that the following code uses a linear kernel:
y1=np.zeros((20,1))

y2=np.ones((20,1))

y=np.vstack((y1,y2))

train_X,test_X,train_y,test_y=train_test_split(final_data,	 y,	 test_
size=0.3)

clf = svm.SVC(kernel=”linear”)

clf.fit(train_X,train_y)

y_predicted=clf.predict(test_X)

acc,sens,spec=perf_measure(test_y,y_predicted)
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The exercises, given at the end of this chapter, take this experiment further. The 
reader is expected to carry out all the steps given in the Experiment section of the 
exercises to get a better hold of the working of SVM.

Conclusion
The Support Vector Machines, introduced in this chapter are like a thread for the 
tailor, rose for a floweriest and wheat for a cook. They are essential, very essential. 
They are good both in terms of computation time and memory. They do not use the 
whole training set for classification but only its subset for the crafting of separating 
hyperplane. The derivation of the separating hyperplane, presented in this chapter, 
is for linearly separable data. However, the kernel trick allows us to separate non-
linearly separable data as well. This chapter explains the idea behind the Support 
Vector Machines, presents the derivation of the hyperplane, discusses the cost 
parameter, and finally discusses the importance of kernels.

The experiments presented in this chapter will help the reader in analyzing the 
performance of SVM with various datasets. The reader is also expected to take note 
of the variation of the performance of the classifier on changing the parameters.

It may be stated here that there are certain disadvantages to these machines. They 
include the problem in choosing the kernel and the regularization parameters. 
Also, the sklearn.svm uses 5-Fold CV for the estimation of probabilities, which is 
expensive.

Nevertheless, the reader will be able to carry out the classification of numeric, 
imaging data, optimize cost and choose kernel using the concepts introduced in this 
chapter. The next chapter introduces some of the most important feature extraction 
methods and presents its implementation. These include Fast Fourier Transform, 
STFT, patches, HOG, and transformation techniques like PCA. The knowledge 
of these feature extraction methods will help the reader to develop a robust and 
efficient decision model.

Exercises
Multiple Choice Questions
 1. Which of the following is based on the principle of maximum margin?
 a. Support Vector Machine b. Single Layer Perceptron
 c. Multi-Layer Perceptron d. None of the above
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 2. Which of the following helps us to classify non-linearly separable data using 
SVM?

 a. Kernel trick   b. Train test split
 c. Both   d. None of the above

 3. How is SVM better than MLP?
 a. It uses lesser data points for the creation of hyperplane
 b. It uses the idea of Maximum Margin Classifier 
 c. Both
 d. None of the above

 4. The data points used by SVM for the creation of separating hyperplane are?
 a. Support vectors   b. All the data samples
 c. Cannot say   d. Depends on the situation

 5. The cost parameter?
 a. Helps to improve testing performance
 b. May allow misclassification
 c. Both
 d. None of the above

 6. The Support Vector Machines are used for
 a. Classification   b. Regression
 c. Finding outliers   d. All of the above

 7. Consider the derivation of the creation of hyperplane. The problem reduces 
to?

 a. Quadratic Optimization Problem b. Linear Optimization
 c. None of the above  d. Both

 8. The data points having non-zero  are?
 a. Support vectors   b. Non-support vectors
 c. Uber   d. None of the above

 9. Why are the labels in SVM taken as 1 and -1? 
 a. Mathematical convenience
 b. It is necessary for Lagrange’s method
 c. Both
 d. None of the above
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 10. While classifying data, which of the following should be the first preference?
 a. Linear kernel   b. Polynomial kernel
 c. rbf   d. None of the above

Theory
 1. Explain the concept of Maximum Margin Classifier.
 2. Derive the separating hyperplane in the case of Support Vector Machine.
 3. Explain the cost parameter in SVM.
 4. What is a kernel? Which functions can be used as kernels in SVM?
 5. Explain the advantages and disadvantages of Support Vector Machines.
 6. State various kernels provided by sklearn.
 7. Write an algorithm to classify data using SVM.

Experiment
 1. Take 20 images of the face of a person and 20 images of the face of another 

person. The images should have the same dimensions.
 a. Convert the above to grayscale.
 b. Divide the data into train and test samples.
 c. Apply the following to find accuracy, specificity, and sensitivity:
  i. Linear
  ii. Polynomial, degree 3
  iii. rbf
  iv. Sigmoid
 d.  Vary the cost parameter in (4) to find the cost at which maximum accuracy 

is obtained.
 e. Does the change in the value of , change results in 4(b).
 f. Does the change in the value of , change results in 4(b).
 g. Does the change in the value of , change results in 4(c).
 h. Does the change in the value of , change results in 4(c).

 2. Repeat the experiment by features extracted using PCA.



Introduction
So far, classification algorithms like K-nearest neighbors, neural networks, and 
support vector machines have been discussed. These algorithms perform well. 
However, a major problem with these algorithms is that the assignment of a label to 
a test sample cannot be explained in terms of decision rules.

Duda et al. points to the applicability of algorithms, that use some distance metric, 
in the problems related to nominal data [3]. The algorithms like K-nearest neighbors 
can be used if the “closeness” amongst the samples can be defined. However, 
this closeness does not make sense in many situations. For example, in the case of 
nominal data, the distance between two samples may not make sense, and hence 
such algorithms should not be applied. In such cases, decision trees come to our 
rescue.

Decision trees contain decision nodes and leaf nodes. The decision nodes lead us 
to one of the possible branches, depending upon the answer to the question asked 
at the node. The leaf nodes, on the other hand, represent labels. In deciding the 
class of a test sample, we start with the decision node and move towards the leaf, 
which declares the class of the sample. The first section introduces the reader with 
the basics of decision trees.

Chapter 8
Decision Trees
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The formation of these trees requires a feature to be chosen at each level. This feature 
is chosen using information gain or Gini index. The algorithms for choosing a 
feature at each level are explained in the following sections. The number of branches 
originating out of each node depends on the number of discrete values in the feature 
represented by the node. If the data is continuous, algorithms for discretization can 
be used. This chapter also revisits discretization.

A node can be declared as a leaf if it is pure; that is, it contains only one type of label. 
If the decision tree becomes too large, procedures explained in this chapter can be 
used to curtail the depth of the tree. In such cases, the node, to be declared as a leaf, 
is assigned a label, which is the same as the majority of samples at that node.

Finally, this chapter presents the implementation of decision trees using SKLearn. 
The reader will be able to deal with the data containing nominal values after reading 
this chapter. This chapter will also help the reader to explain the answer obtained 
using a sum of product of the rules represented by each node.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 Basics
	 •	 Discretization
	 •	 Information gain and Gini index
	 •	 Implementation

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the importance of decision trees
	 •	 Understand the concept of information gain and the formation of a tree using 

the concept of information gain
	 •	 Understand Gini index
	 •	 Implement decision trees using SKLearn
	 •	 Understand the procedures to stop splitting
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Basics
In Computer Science, a tree is a non-linear data structure having nodes and branches. 
It does not have a cycle or isolated edges/branches. A rooted tree has a root, from 
which other nodes originate. Other nodes, in a rooted tree, may have children, and 
the leaf nodes do not have any children.

A decision tree (DT) is a classifier in the form of a tree where each node, except 
for the leaves, is a decision node. The leaf nodes in these trees represent labels or 
probability of belonging to a label.

A DT is created from the train data. Once it is created, the label of the test data is found 
by starting from the root and traversing till a leaf node by evaluating conditions on 
each decision node, using the feature set of the test data.

To understand this concept, consider a decision tree to decide the Category of a 
composition, which has 7 or 14 beats. The train data consist of two features Beats 
and Sections and a label called Category. If the composition has 7 Beats, we check 
the Sections. If the composition has 223 as the value in the Sections, the Category 
is A; otherwise, it is B. Likewise, in the case of a composition having 14 Beats, the 
Category is C irrespective of the value in the field Sections (Table 8.1):

Beats Sections Category

7 223 A
7 322 B
14 5234 C
14 3434 C

Table 8.1: Category of a composition having 7 or 14 beats

The corresponding DT is shown in Figure 8.1. Note that the root node and the nodes 
at the next level are decision nodes and the leaf nodes are labels. So, for a test sample, 
{Beats=7, Sections=322}, the first node checks whether the number of Beats in 
the composition is 7 or 14. Since the test sample has 7 beats, the next decision node 
checks the value of Sections. Since the sample has 322 as the value of Sections, it 
belongs to the Category B:
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Figure 8.1: Decision tree for Table 8.1

The above tree has two decision nodes and three leaf nodes. The following rules can 
be inferred using this DT:

Rule 1: If((Beats == 7) and (Sections = 223) ), thenCategory = A

Rule 2: If((Beats == 7) and (Sections = 322) ), thenCategory = B

Rule 3: If((Beats == 14) ), thenCategory = C

The above tree had discrete values in the columns Beats and Sections. The sections 
that follow explain the formation of a decision tree from data having discrete values. 
However, often the given data contain continuous values. The following section 
gives an idea of what to do in case of continuous values.

Discretization
Many algorithms require the values of data to be discrete. However, in most cases, 
the given data is continuous. The process of converting a continuous data into 
discrete values is called discretization. Generally, the given data is discretized into 
parts of equal length. Dichotomization is a type of discretization which involves 
splitting the measured variable at some fixed value to form two categories that can 
be described as Low and High. This splitting can be done along the sample median, 
called the median split, or along the midpoint of the measured range of the variable.

One of the algorithms used for converting the data into a discrete one is as follow:

Algorithm: 
Discretization(Data, n)

 for each column
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  min1 = minimum value in the column 

  max1 = maximum value in the feature 

  step = (max1 – min1)/n 

  for k in range (n)

   a=min1+(step*k)

   b=min1+(step*(k+1))

   for each value in the column 

    if ((value>=a) and (value<=b)):

     value=k

    end 

   end 

  end

 end 

The following code discretizes the Iris dataset having four features:
Code:
X=data.data[:100,:]

X=np.array(X)

y=data.target[:100]

y=np.array(y)

n=int(input(‘Enter the value of n \t:’))

for i in range (X.shape[1]):

 x1=X[:,i]

 max1=np.max(x1)

 min1=np.min(x1)

 step=(max1-min1)/n

 #print(max1, ‘ ‘,min1, ‘ ‘,step)

 for k in range (n):

  a=min1+(step*k)

  b=min1+(step*(k+1))

  for j in range(x.shape[0]):

  if ((X[j,i]>=a) and (X[j,i]<=b)):

   X[j,i]=k
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X=pd.DataFrame(X)

print(X)

Output:

0 1 2 3
0 1.0 3.0 0.0 0.0
1 1.0 2.0 0.0 0.0
2 0.0 2.0 0.0 0.0
3 0.0 2.0 0.0 0.0
4 1.0 3.0 0.0 0.0
               
95 2.0 2.0 3.0 3.0
96 2.0 1.0 3.0 3.0
97 3.0 1.0 4.0 3.0
98 1.0 1.0 2.0 2.0
99 2.0 1.0 3.0 3.0

100	rows	×	4	columns

Having seen one of the ways to discretize data let us now come back to the creation 
of a decision tree.

Coming back
In creating a DT node at each level is to be selected, and each child of this node will 
deal with a smaller subset of the data. At each node, the process of selecting a feature 
at this level and dividing the data is repeated. The testing of a smaller DT will take 
less time as compared to a deep one. However, from all trees possible, selecting the 
one with minimum depth is a computationally hard problem. So, we may use the 
Greedy approach to find the optimal DT. This chapter discusses one such approach.

Step 1: The first step of this algorithm requires us to calculate the entropy of the 
target (Entropy_orig). This entropy is defined as follows:

Nmberofclasses

i 2 2 i
i 1

Entropy_orig p log log p
=

= − ×∑

So, if the target contains two classes, then p1 is the probability of a sample belonging 
to the first class, and p2 is the probability of a sample belonging to the second class.
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Step 2: This is followed by the division of the dataset on the different attributes. It can 
be done by calculating the entropy for each branch and adding them proportionally, 
to get the total entropy for the split.

Step 3: The above entropy is then subtracted from the entropy before the split 
(Entropy_orig). It results in the information gain. The attribute with the maximum 
information gain is then selected.

Step 4: Repeat the above steps for each of the so formed branches.

To understand the above algorithm, consider the following dataset having four 
features F1, F2, F3, and F4. The dataset has ten samples, and the Labels belong to  
{Y, N}:

F1 F2 F3 F4 Label
0 1 3 1 Y
1 2 2 2 N
1 2 0 1 Y
0 1 1 2 N
0 0 3 2 Y
0 0 0 2 Y
1 1 2 2 Y
1 2 2 1 N
1 1 0 1 N
0 1 1 1 Y

The number of Y in the Label is 6, and that of N is 4. The probabilities of Y and N are, 
therefore, as follows:

( ) 6 3
10 5

P Y = =

( ) 4 2
10 5

P N = =

Step 1: Find Entropy_orig by using the formula:

2 2
1

_ log log
Nmberofvalue

i i
i

Entropy orig p p
=

= − ×∑

In this case, it comes out to be:

( ) ( ) ( ) ( )( )_ 1 ( log log ( ) log log ) 0.9709Entropy orig P Y P Y P N P N= − × × + × =
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(Note that the base of the logarithm in the above calculation is 2).

To calculate the Information Gain by splitting the data, take one feature at a time as 
the root and perform the following steps.

Step 2 a: Find the probability of each discrete value in the column.

The first column consists of two discrete values: 0 and 1 (say). 5 rows of this column 
have 0’s and 5 rows having 1’s. So, the probabilities are:

1
5 1

10 2
p = =

2
5 1

10 2
p = =

Step 2 b: Now, consider the values of labels for each of the discrete values in the 
column. 

For	 0’s	 in	 the	 first	 field,	 there	 are	 four	 ‘Y’s	 and	 one	 ‘N’s	 in	 Label.	 The	
corresponding entropy is:

2 2 2 2
4 4 1 11 ( log log log log )
5 5 5 5

E = − × + ×

F1 Label1
0 Y
0 N
0 Y
0 Y
0 Y

For 1’s in the first field, there are two ‘Y’s and three ‘N’s in the label. The corresponding 
entropy is:

2 2 2 2
2 2 3 31 ( log log log log )
5 5 5 5

E = − × + ×

F1 Label1
1 N
1 Y
1 Y
1 N
1 N
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Step 2 c: For each field find 
number of values

i ii 1
p E

=
×∑ .

2 2 2 2 2 2 2 2
1 4 4 1 1 1 2 2 3 3( log log log log ) ( log log log log ) 0.8464
2 5 5 5 5 2 5 5 5 5

= − × × + × − × × + × =

Step 2 d: Find the information gain by subtracting the value obtained in 2 c) from 
Entropy_orig:

Information Gain = 0.9709 – 0.8464 = 0.1244

Likewise, the calculation of information gain for the second field will be as follows:

F2 Label1
1 Y
1 N
1 Y
1 N
1 Y

F2 Label1
2 N 
2 Y 
2 N 

F2 Label1
0 Y
0 Y

The probabilities of individual discrete values are 5 1 3 21 2 3
10 2 10 10

p p p
= = = =

The individual Ei’s are 
1 2 2 2 2

2 2 3 3( log log log log )
5 5 5 5

E == − × + ×

2 2 2 2 2
1 1 2 2( log log log log )
3 3 3 3

E == − × + ×

3 2 2 2 2
2 2( log log 0 log log ()) 0
2 2

E == − × + × =

The value of weighted entropy is:
  

1

0.8360
number of values

i i
i

p E
=

× =∑
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And the corresponding information gain is 0.1349. For the third feature, the 
information gain is 0.2168, and for the fourth feature, it is 0. The maximum 
information gain is for the third feature. This feature would, therefore, be the root 
node of the decision tree. Figure 8.2 shows the root and row number of the data to be 
used by each of the branches, in the next step:

Figure 8.2: Selection of Root of a Decision Tree in the given dataset

Now, repeat the steps for the first, second, and third branches. While doing this, do 
not consider F3. Also note that for the fourth branch. The labels are Y, so there is no 
need to proceed in this branch.

The reader is expected to repeat the steps in the next level and verify the tree obtained 
is the same as that shown in Figure 8.3:

Figure 8.3: Decision tree creation using information gain

It may be noted that the Gini index can also be used to create a decision tree.
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Containing the depth of a tree
Ideally, we continue spitting the tree until the nodes are pure. That is, all the samples 
at that node belong to the same class. However, in many cases, this may lead to a 
situation wherein the leaf corresponds to a single sample. It also leads to overfitting. 
On the other hand, if the number of levels in the tree is deliberately kept very low, the 
performance of the tree is affected. We may apply one of the following approaches 
to stop splitting:
	 •	 Using the validation set: In this approach, we continue spitting until the 

error in the validation set is minimized [3]. While creating a model, the 
data is divided into train and test set. The train data is further divided into 
training and validation sets. While developing the model, the validation 
error is considered. Once we have reached the point of minimum error in the 
validation set, the tree can be used for testing.

	 •	 Thresholding: In this technique, splitting is stopped when the reduction in 
impurity is less than the pre-decided threshold. In this technique, the tree 
is created using the whole data and not just the training data. Also, here 
the leaves can be at different levels. In the case of decision trees, this is 
considered good. The major problem with this technique is the decision to 
find the threshold. As per the literature, this can be done when the leaves 
have fewer than a certain percentage of training samples. 

	 •	 Objective function minimization: Another method is to create an objective 
function, consisting of size and the sum of impurities of the leaves. As per 
Duda et al. [3], the following objective function can be used to accomplish 
this task:

( )
leafnodes

f size i Nα= × +∑
  We can stop spitting when the global minimum is reached.
	 •	 Using statistical tests: as per the literature, statistical tests like chi-square 

can be used to find the stopping criteria.
	 •	 Pruning: Another way to contain the depth of a tree is to craft a complete 

tree and then start from leaves. The sibling leaves, in this approach, maybe 
merged, if their merging creates only a very marginal increase in the impurity.

Implementation of a decision tree using 
sklearn
The decision tree in sklearn can be implemented using the class sklearn.tree.
DecisionTree.
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To instantiate this class, the constructor DecisionTreeClassifier is used. This 
method takes the following parameters (Table 8.2):

Parameter Explanation

Criterion This parameter specifies the function with the help of which splitting 
is done. This parameter can take the following values i) Gini and ii) 
entropy. The default value of this parameter is Gini.

max_depth This parameter specifies the depth. Its default value is None, which 
means that the nodes are split till the leaves are pure.

min_samples_
split

This parameter specifies the minimum number of samples required to 
split. The default value of this parameter is 2.

min_samples_
leaf

This parameter specifies the minimum number of samples at the leaf. 
The default value of this parameter is 1.

max_features This parameter represents the number of features to consider when 
looking for the best split. Its default value is None. The possible values 
of this parameter are auto, sqrt and log2.

random_state The algorithm uses the random_state as the seed used by the random 
number generator. So giving a particular number of results is getting 
the same results. The default value of this parameter is None. 

Table 8.2: Parameters in decision tree classifier

The attributes of the decision tree classifier have been presented in Table 8.3:

Attributes Explanation
n_classes This parameter represents the number of classes in cases of single 

output problems. In the case of multiple output problem, this parameter 
represents a list containing the number of classes for each output.

n_features This parameter represents the number of features used for constructing 
the tree when the fit is performed.

tree_ This parameter denotes the underlying Tree object.
Table 8.3: Attributes of a decision tree classifier

The next section uses the above methods to implement decision trees.

Experiments
This section presents two experimenters on two different datasets. The first 
experiment uses the Iris dataset, and the second uses the Breast Cancer dataset. The 
models have been developed, and accuracies have been reported.
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Experiment 1 – Iris Dataset, three classes
Step 1: The Iris dataset is loaded, and the data and labels are saved in df and target, 
respectively. It is followed by the creation of the train and the test data using the 
train_test_split module. The classifier is trained using the X_train and y_train.
Code:
data = datasets.load_iris()

df = pd.DataFrame(data.data, columns = data.feature_names)

target = data.target

X_train, X_test, y_train, y_test =train_test_split(df, target, test_
size=0.33, random_state=42)

clf	=	DecisionTreeClassifier(max_depth=3)	#max_depthis	maximum	number	of	
levels in the tree

clf.fit(X_train,	y_train)

The decision tree so formed is shown in Figure 8.4. The tree is created using 
GraphViz():

Figure 8.4: Decision tree for the Iris dataset, using 66 percent of the data with random_state=42
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Step 2: The following code finds the accuracy of the test data using the above model. 
Note that a maximum accuracy of 98.00 is achieved using this classifier.
Code:
y_pred=clf.predict(X_test)

TP=0

TN=0

FP=0

FN=0

for i in range(X_test.shape[0]):

 if(y_test[i]==y_pred[i]):

  if(y_test[i]==1):

   TP+=1

  else:

   TN+=1

 else:

  if(y_pred[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)

print(acc)

Output:
0.98

It may be noted that the tree shown in Figure 8.4 is not created using the entire data, 
but only the train data. The tree crafted using the entire data is shown in Figure 8.5. 
The tree is created using GraphViz:
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Figure 8.5: Decision tree for the Iris dataset, using the entire data

The reader may note the difference in trees in Figure 8.4 and Figure 8.5. The idea 
here is to create the decision tree using only the train data and not the entire data. 
The second tree has been shown just to reinforce the fact that the tree formed by the 
entire data may be different from that formed by using the train data.

Experiment 2 – Breast Cancer dataset, two 
classes
Step 1: The breast cancer dataset is loaded, and the data and labels are saved in df 
and target, respectively. It is followed by the creation of the train and the test data 
using the train_test_split module. The classifier is trained using the X_train and 
y_train.

Code:
breast_cancer = datasets.load_breast_cancer()

df = pd.DataFrame(breast_cancer.data, columns = breast_cancer.feature_
names)

target = breast_cancer.target
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X_train, X_test, y_train, y_test =train_test_split(df, target, test_
size=0.33, random_state=42)

clf	=	DecisionTreeClassifier(max_depth=3)	#max_depth	is	maximum	number	of	
levels in the tree

clf.fit(X_train,	y_train)

The decision tree so formed is shown in Figure 8.6. The tree is created using GraphViz:

Figure 8.6: Decision Tree for the Breast Cancer dataset, using 66 percent of  
the data with random_state=42

Step 2: The following code finds the accuracy of the test data using the above model. 
Note that a maximum accuracy of 92.02 is achieved using this classifier.

Code:
y_pred=clf.predict(X_test)

TP=0

TN=0

FP=0

FN=0

for i in range(X_test.shape[0]):

 if(y_test[i]==y_pred[i]):

  if(y_test[i]==1):
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   TP+=1

  else:

   TN+=1

 else:

  if(y_pred[i]==1):

   FP+=1

  else:

   FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)

print(acc)

Output:
0.9202127659574468

It may be noted that the tree shown in Figure 8.6 is not created using the entire data, 
but only the train data. The tree crafted using the entire data is shown in Figure 8.7. 
The tree is created using GraphViz ().

Figure 8.7: Decision tree for the complete Breast Cancer dataset

Again, the reader should consider the difference between the two trees (Figure 8.6 
and Figure 8.7) and keep in mind that the tree is formed using the train data and not 
the entire data.
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Conclusion
This chapter introduced the decision tree classifier. The creation of a tree using the 
concept of information gain has been discussed in detail. The chapter also discusses 
the ways to prepare data for applying the decision tree algorithms. A brief discussion 
on the splitting has also been included in the chapter.

The reader will be able to implement the decision tree using sklearn and set 
parameters as per the requirement. Also, these classifiers will help the reader to 
handle multiple class problems as well.

The decision trees are good, can classify multi-class problems, and generally perform 
well. However, there are some unresolved issues. The problems are gracefully 
handled by the Random Forests, which makes use of many decision trees and comes 
under the category of ensemble methods. DT can also be used to perform regression. 
The next chapter introduces clustering, which is an unsupervised learning technique. 
Let us now hit the exercises to get hold of the concepts studied.

Exercises
Multiple Choice Questions
 1. Which of the following can be used to create a decision tree?
 a. Information gain   b. Gini index
 c. Both    d. None of the above

 2. Which of the following is an algorithm for creating a decision tree?
 a. C 4.5 b. CART c. ID3 d. All of the above
 3. Which of the following can be used for nominal data?
 a. K-nearest neighbors  b. Decision trees
 c. Both   d. None of the above

 4. Which of the following can be used to split a tree?
 a. Statistical measures  b. Least reduction in purity
 c. Both   d. None of the above

 5. Which of the following can be done using decision trees?
 a. Classification of 2-class problems
 b. Classification of multi-class problems
 c. Finding outliers
 d. All of the above
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Theory
 1. What is a decision tree? How are the different types of nodes in a decision tree?
 2. Explain the idea of information gain. How does it help in choosing a feature 

for the root node?
 3. Explain the Gini index. How does it help in choosing a feature for the root 

node?
 4. Explain the various procedures to split a tree.
 5. Explain the advantages of using the decision tree as a classifier.
 6. Explain the disadvantages of using the decision tree as a classifier.
 7. Explain how both information gain and Gini index techniques come under the 

preview of Greedy algorithms?

Numerical/Programming
 1. Explain the procedure to select the root node in the following dataset:

Feat1 Feat2 Feat3 Feat4
2 1 1 3
1 2 1 1
2 1 2 3
1 1 2 2
2 2 1 1
1 2 1 1
3 2 2 2
3 1 2 3
1 1 1 3
2 2 1 1

 2. Perform the task using information gain.
 3. Perform the above task using the Gini index. Repeat the process for the 

selection of nodes at the succeeding levels and complete the tree.
 4. How will you curtail the depth of the tree to three?
 5. Discretize the Breast Cancer dataset using any of the procedures explained in 

the chapter. Divide the data into the train (70% data) and test set (30% data). 
Create the decision tree using the train data and evaluate the performance 
using the test data.

 6. Lung Cancer Dataset.
  This dataset is available at https://archive.ics.uci.edu/ml/datasets/

Lung+Cancer. It is a multivariate dataset, having 32 instances and 56 attributes. 
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The data contains missing values. Hence the samples that contain missing 
values need to be dealt with. The reader may replace the “?” with np.nan and 
then remove the rows with NaN by issuing the following commands. Note 
that each feature contains discrete values, which is good as this saves the extra 
effort of converting the data into a discrete one.

  A portion of the modified data is shown as follows:

1 2 3 4 5 6 7 8 9 10 47 48 49 50 51 52 53 54 55 56
0 3 3 1 0 3 1 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 3 3 2 0 3 3 3 1 1 ... 2 2 2 2 2 2 2 2 1 2
0 2 3 2 1 3 3 3 1 2 ... 2 2 2 2 2 2 2 2 2 2
0 3 2 1 1 3 3 3 2 2 ... 2 2 2 2 2 2 2 1 2 2
0 3 3 2 0 3 3 3 1 2 ... 2 2 2 2 2 2 2 2 1 2
0 3 2 1 0 3 3 3 1 2 ... 2 2 2 2 1 2 2 2 1 2
0 2 2 1 0 3 1 3 3 3 ... 2 2 1 2 2 2 2 1 2 2
0 3 1 1 0 3 1 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 2 3 2 0 2 2 2 1 2 ... 2 2 2 1 3 2 1 1 2 2
0 2 2 0 0 3 2 3 1 1 ... 2 2 2 2 2 2 2 2 2 2
0 2 3 2 0 1 2 1 1 2 ... 2 2 2 2 2 1 1 2 2 1
0 2 1 1 0 1 2 2 1 2 ... 2 2 2 2 2 2 2 1 2 2
0 2 2 1 1 2 3 3 1 1 ... 2 2 2 2 2 1 1 1 2 2
1 3 0 NaN 1 1 2 2 1 1 ... 2 2 2 2 2 2 2 1 2 1
0 3 2 2 1 2 2 2 1 1 ... 2 2 2 2 2 2 2 2 2 2
0 3 2 2 0 1 1 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 2 1 1 0 2 1 3 1 1 ... 2 2 2 2 2 1 1 1 2 2
0 2 0 NaN 0 2 3 3 3 2 ... 2 2 2 2 2 2 2 2 1 2
0 1 2 1 0 3 3 3 1 2 ... 2 2 2 2 2 1 1 2 2 1
0 2 0 NaN 1 3 3 3 1 2 ... 2 2 2 2 1 2 2 1 2 2
0 3 3 2 0 2 1 3 1 1 ... 2 2 1 2 2 2 2 2 1 2
0 2 3 1 1 2 2 1 1 1 ... 3 3 3 3 1 3 3 2 2 1
0 2 3 1 1 1 2 1 1 1 ... 2 2 2 2 2 2 2 2 2 1
0 3 3 1 0 3 3 1 1 1 ... 2 2 2 2 3 2 2 2 2 1
0 2 3 2 0 1 2 2 1 2 ... 2 2 2 1 3 1 2 2 1 2
0 2 2 2 0 2 1 2 1 1 ... 2 2 2 2 2 2 2 1 2 1
0 2 2 1 0 2 2 2 1 1 ... 3 3 2 2 3 2 2 2 2 1
0 3 2 2 0 2 2 2 1 1 ... 2 2 2 3 1 2 2 2 2 2
0 2 1 1 0 2 2 1 1 1 ... 2 2 3 2 2 2 2 2 2 1
0 2 3 2 1 2 2 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 2 3 1 0 2 3 3 1 1 ... 2 2 2 2 2 2 2 2 2 2

  The label of the dataset contains two values 0 and 1. Write the steps in creating 
a decision tree from the above data.



Introduction
The previous chapters discussed various supervised learning algorithms. In these 
algorithms, the data (X) and corresponding labels (Y) are given. The objective is to 
find a function that maps X to Y. The mapping is found using the training dataset. 
This mapping is then used to find the value of yi for an unknown xi. In unsupervised 
learning, X is given, and the aim is to extract the hidden patterns in the data. This 
chapter introduces clustering, which comes under unsupervised learning. To 
understand the meaning of clustering, consider the following examples.

Let us consider the task of segregating two types of flowers. This task is relatively 
easy. Even if you do not know about the two types of flowers, you can segregate 
them considering features like sepal length, sepal width, and so on. Note that labels 
are not provided to us, and we need to accomplish the task of dividing the flowers 
into two groups. This task, therefore, comes under the preview of unsupervised 
learning.

The second example is even more interesting. In the Kerala assembly elections in 
2011, the two fronts polled 45.83% and 44.94% percent of the total votes polled. The 
difference in the percent was very less, and the results could have been different 
had the undecided voters had voted for the other front. It would have been possible 

Chapter 9
Clustering
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if there was a way out to detect the undecided voters and present your roadmap 
of improving economy, education, and healthcare facilities, assuming elections are 
fought on these issues.

If you are burdened with the responsibility of identifying undecided voters using 
machine learning methods, what will you do? You are only provided with the 
relevant data and cannot identify them by their appearance, or other features for 
that matter. In such cases, the unsupervised learning methods like clustering may be 
used to segregate the group into various clusters. Unsupervised learning does not 
use labels.

The creation of groups from unorganized data is referred to as clustering. Ideally, 
the items in a cluster should be as similar to each other as possible and should be 
distinct from items of other groups. This similarity can be found by any standard 
similarity measure like Euclidian distance, Manhattan distance, and so on. To carry 
out clustering, one needs to decide the measure of similarity, figure out the way of 
evaluating a cluster, and an algorithm for clustering. The evaluation of a cluster 
requires finding inter-cluster separation and intra-cluster cohesion. This chapter 
discusses the above issues. This chapter also addresses the question of finding the 
number of clusters.

One of the most important applications of clustering is segmentation. It is exciting 
and has been widely used in diverse applications. The technique has been used for 
detecting objects, identifying the regions of the brain affected by the tumor, and so 
on.

Structure
The main topics covered in this chapter are as follows:
	 •	 K-means
	 •	 Spectral clustering
	 •	 Agglomerative clustering
	 •	 Experiments with datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the importance of clustering
	 •	 Understand the working of K-means
	 •	 Understand the limitations of K-means
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	 •	 Understand spectral clustering
	 •	 Understand agglomerative clustering

K-means
Supervised learning techniques have been discussed in detail in the previous 
chapters. In supervised learning, we are provided with the training data, which 
contains feature vectors and the corresponding labels. The task is to predict the labels 
of the test data, which has only a feature vector. It is accomplished by constructing 
a function which takes a feature vector as its input and generates the label. The 
goodness of this function can be determined by the methods discussed in the second 
chapter of this book. Tasks like classification and regression come under the ambit 
of supervised learning.

Unsupervised	learning,	on	the	other	hand,	only	deals	with	the	feature	vectors.	
Tasks	like	grouping	data	and	some	techniques	of	reducing	dimensionality	
come	under	unsupervised	 learning.	To	understand	 the	concept,	 consider	
the points shown in Figure 9.1:

Figure 9.1: The points shown in the figure needs to be grouped into two clusters

The most intuitive way to create two groups out of the above points would be, as 
shown in Figure 9.2:
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Figure 9.2: The clusters are formed by taking the points near to each other in one group

This section presents one of the simplest algorithms to accomplish this task. This 
algorithm is called K-means clustering. This algorithm requires the number of 
clusters as it’s input. Say this number is K. The first step is to take K random samples 
and consider them as the centers of the K clusters. It is followed by finding the 
distances of each sample from each of these K centroids. The sample is put in the 
group from whose centroid it is nearest to. The new groups are formed, and their 
mean is found. These means would act as the new centroids. This process is repeated 
until there is no change as far as the creation of new centroids is concerned. The 
algorithm is as follows.

Algorithm: K Means
Input: The number of clusters, K:
1.	 Randomly	select	K	random	data	points	as	the	centroids.
2. Repeat the following steps until there is no change to the centroids:
	 •	 Find the distance between each data point and all centroids
	 •	 Allocate each data point to the closest cluster
	 •	 Find the average of all data points that belong to each cluster and take this 

average as the new centroids for the clusters

The sklearn implementation of K-means has been discussed in the following 
sections. This algorithm works well in many cases. However, if the data is not 
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linearly separable, the algorithm does not work. Figure 9.3 shows K-means applied 
to a non-linearly placed points:

Figure 9.3: The K-Means algorithm does not work well on such data

In such cases, spectral clustering comes to our rescue. The next section discusses the 
algorithm and implementation of spectral clustering.

Spectral clustering
Clustering aims to assign data points to some groups with the intent of assigning 
the same group to similar data points and different groups to the different ones. 
The measure of similarity and the choice of algorithm to segregate the data into 
groups, therefore, becomes important. The algorithm that follows finds the distance 
between the data points, creates a graph, and finds a Laplacian matrix. It is followed 
by finding the Eigenvalues and Eigenvectors of this matrix to determine the groups.

This method aims to create a similarity graph, wherein each vertex represents a 
data point, and each edge represents the distance between them. The technique 
proves better than the existing techniques. The first step in the algorithm is the 
construction of an adjacency matrix. The adjacency matrix of a graph can be found 
by finding all possible distances and placing the distance between xi and xj at Aij of 
the corresponding matrix. It is followed by the creation of the degree matrix, which 
can be found as follows:

1

n

ii ij
j

D A
=

=∑

The difference between the adjacency matrix and the degree matrix is called the 
normal Laplacian. That is:

L = A – D

The eigenvalues and eigenvectors of the Laplacian matrix is significant. The second 
eigen vector of the matrix gives us the graph cut needed to separate the graph into 
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two components. The vector corresponding to the value here gives the direction 
along which the graph can be divided to split it into two components. The algorithm 
for spectral clustering is as follows.

Algorithm – Spectral clustering
1. Create a similarity graph
2.	 Find	the	first	k	eigenvectors	of	the	Laplacian	matrix
3.	 The	above	matrix	is	subjected	to	k-means	to	create	k classes

This algorithm is computationally expensive and hence cannot be easily applied to 
datasets having a very large number of features. Let us now move to another type of 
clustering called hierarchical clustering.

Hierarchical clustering
The methods like K-means, despite being simple, are limited in the sense that they 
need the number of clusters as the input to the procedure. It may work if you know 
the data. However, in most cases, you will not know the number of groups and hence 
will not be able to use these algorithms. The algorithm discussed in this section does 
not need this information.

Hierarchical clustering can be classified as top-down or bottom-up. Let us start with 
the bottom-up approach. In this approach, we start with each sample as a separate 
cluster and use some similarity measure to find the two nearest samples. The group 
formed would now act as one of the samples, and the above process is repeated 
until a single group is created. To accomplish this task if the distance between the 
two samples a and b is d, then the distance between (a,b) and a new sample c can be 
calculated using either of the following methods:
	 •	 SingleLinkdistance((a,b),c) = minimum(distance(a,c), distance(b,c))
	 •	 ComplexLinkdistance((a,b),c) = maximum(distance(a,c), distance(b,c) )
	 •	 AverageLinkdistance((a,b),c) = average(distance(a,c), distance(b,c))

To understand the above, consider the following example. The number of features 
in the Iris dataset is four. The first five samples of the data are given by the matrix A:

5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5 3.6 1.4 0.2

A =
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The distance amongst samples xi and xj can be found by using the following formula 
(assuming that the number of features is k):

2
, , ,

1

( )
k

i j i k j k
k

d x x
=

= −∑

The following matrix shows the distance between the two points. Note that Wij 
represent the distance between the ith and the jth the sample:

W =

_ 1 2 3 4 5
1 0.0 0.29 0.26 0.42 0.02
2 0.29 0.0 0.09 0.11 0.37
3 0.26 0.09 0. 0.06 0.26
4 0.42 0.11 0.06 0. 0.42
5 0.02 0.37 0.26 0.42 0.

Note that the sec0ond minimum distance amongst the points is 0.02 (the minimum 
distance is 0). It is the distance between the first and the fifth sample. Let us club 
together these two samples into one group and compute the distance of (1, 5) from 
all other points using the complex link:
 • Distance of (1, 5) from Sample 2: 0.37
 • Distance of (1, 5) from Sample 3: 0.26
 • Distance of (1, 5) from Sample 4: 0.42

The matrix now becomes:

_ (1,5) 2 3 4
(1,5) 0.0 0.29 0.26 0.42

2 0.37 0.0 0.09 0.11
3 0.26 0.09 0. 0.06
4 0.42 0.11 0.06 0.

Repeat the above procedure with the new matrix. We can see that the second 
minimum distance is that between (3, 4):

(1, 5) 2 (3, 4)
(1, 5) 0.0 0.29 0.42

2 0.37 0.0 0.11
(3, 4) 0.42 0.011 0.0
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From the above matrix, it is evident that (3, 4) will now be clubbed with 2, thereby 
making ((3, 4), 2). In the last step, the item (1, 5) is clubbed with ((3, 4), 2), therefore 
creating ((1, 5), ((3, 4), 2)). The corresponding dendrogram is shown in Figure 9.4:

Result: ((1, 5), ((3, 4), 2))

Figure 9.4: Dendrogram – furthest distance clustering algorithm

The above process is also referred to as the furthest distance clustering algorithm. 
Instead of creating the complete dendrogram, we can also stop when this distance 
exceeds a threshold. In this case, the algorithm becomes the complete linkage 
algorithm.

If the clubbing of samples is done by taking the minimum of the two distances, that 
is:
 • distance((a,b),c) = minimum(distance(a,c), distance(b,c))

The algorithm is referred to as the minimum distance clustering algorithm. The steps 
involved in the application of this algorithm are shown as follows.

In the following matrix W, Wij represents the distance between the ith and the jth the 
sample. 

_ 1 2 3 4 5
1 0.0 0.29 0.26 0.42 0.02
2 0.29 0.0 0.09 0.11 0.37
3 0.26 0.09 0. 0.06 0.26
4 0.42 0.11 0.06 0.0 0.42
5 0.02 0.37 0.26 0.42 0.0

Note that the second minimum distance amongst the points is 0.02 (the minimum 
distance is 0). It is the distance between the first and the fifth sample. Let us club 
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together these two samples into one group and compute the distance of (1,5) from 
all other points:
 • Distance of (1,5) from Sample 2: 0.29
 • Distance of (1,5) from Sample 3: 0.26
 • Distance of (1,5) from Sample 4: 0.42

The matrix now becomes:

_ (1,5) 2 3 4
(1,5) 0.0 0.29 0.26 0.42

2 0.29 0.0 0.09 0.11
3 0.26 0.09 0.0 0.06
4 0.42 0.11 0.06 0.0

Repeat the above procedure with the new matrix. We can see that the second 
minimum distance is that between (3, 4):

(1, 5) 2 (3, 4)
(1, 5) 0.0 0.29 0.26

2 0.37 0.0 0.09
(3, 4) 0.26 0.09 0.0

From the above matrix, it is evident that (3, 4) will now be clubbed with 2, thereby 
making ((3, 4), 2). In the last step, the item (1, 5) is clubbed with ((3, 4), 2), therefore 
creating ((1, 5), ((3, 4), 2)). The corresponding dendrogram is shown in Figure 9.5.

Result: ((1, 5), ((3, 4), 2))

Figure 9.5: Dendrogram – A minimum distance clustering algorithm
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The grouping of samples can also be done by taking the average of the two distances, 
that is:
 • distance((a,b),c) = average(distance(a,c),distance(b,c))

The algorithm is referred to as the average distance clustering algorithm. The reader 
is expected to create a dendrogram using the above formula for the matrix A.

Implementation
This section consists of a few experiments. For each of the four methods:
 • K-means
 • Spectral clustering
 • Agglomerative clustering
 • DBSCAN

Three experiments have been designed. These experiments have been designed to 
ascertain the goodness of a method on data having three clusters with the same 
variances, different variances, and different numbers of samples. The first nine 
experiments have been presented, and the last three experiments are left for the 
reader.

K-means
The theory of K-means has already been discussed in the second section. This section 
presents the implementation of the algorithm using the methods provided by the 
sklearn. Note that the data is generated using make_blobs, which takes the number 
of samples and the random state as the input. The clustering is carried out using the 
fit_predict method of KMeans. The predicted values are stored in y_predicted.

In the first experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an almost equal number of samples. Note that since 
no input is provided for setting the variance of the data of the three clusters, all of 
them will have the same variance.

Experiment 1
1.	 Importing	the	modules:
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.cluster import KMeans
 from sklearn.datasets import make_blobs
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2. Generating data for clustering:
 n_samples = 200
 random_state = 10
 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

3. Applying sklearn.KMeans to predict the clusters:
	 y_predicted	 =	 KMeans(n_clusters=3,	 random_state=random_state).fit_

predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_predicted)
 plt.title(“K Means Clustering I”)
	 plt.show()

The output is shown in Figure 9.6:

Figure 9.6: Applying sklearn.KMeans for clustering on the data generated by make_blobs

In the second experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an almost equal number of samples. Note that input 
is provided for setting the variance of the data of the three clusters as 1, 0.5, and 3.0.

Experiment 2
Step 1 and Step 2 of Experiment 1 to be used on as-it-is basis:
X_1, y_1 = make_blobs(n_samples=n_samples, cluster_std=[1, 0.5, 3.0], 
random_state=random_state)

y_predicted	 =	 KMeans(n_clusters=3,	 random_state=random_state).fit_
predict(X_1)
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plt.scatter(X_1[:, 0], X_1[:, 1], c=y_predicted)

plt.title(“K Means II”)

plt.show()

The output is shown in Figure 9.7:

Figure 9.7: Applying sklearn for clustering on the data generated by make_blobs. The three 
clusters have different values of variances

In the third experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an odd number of samples. Note that since no input is 
provided for setting the variance of the data, all the three groups will have the same 
variance.

Experiment 3
Step 1 and Step 2 of Experiment 1 to be used on as-it-is basis:
X_not_balanced = np.vstack((X[y == 0][:500], X[y == 1][:200], X[y == 2]
[:10]))

y_predicted	 =	 KMeans(n_clusters=3,random_state=random_state).fit_
predict(X_not_balanced)

plt.scatter(X_not_balanced[:, 0], X_not_balanced[:, 1], c=y_pred)

plt.title(“Blobs having differnt number of elements”)

plt.show()

The output is shown in Figure 9.8:
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Figure 9.8: Applying sklearn.KMeans for clustering on the data generated by make_blobs. The 
three clusters have a different number of samples

The above experiments bring forth the following points:
 • KMeans works well for balanced data wherein each block has the same variance
 • The performance of KMeans is fairly good even in balanced data wherein 

each block has a different variance, provided that this value is not too large
 • The algorithm works well even for data in which different clusters have a 

varying number of samples
However, the algorithm does not produce good results for clusters having non-
linear shapes. The reader is expected to refer to the exercises given at the end of the 
chapter to appreciate this point.

Spectral clustering
In sklearn, spectral clustering finds the affinity matrix, which represents the 
similarity amongst the samples. The Laplacian of this matrix is quite informative, 
and the second eigenvector of this Laplacian is used to find the cut which divides 
the graph corresponding to the affinity matrix. It is followed by the application of 
K-means to the groups so formed. It may be stated that the implementation provided 
by sklearn “amgsolver” is used for solving the eigenvalue problem, which makes 
it rather efficient.
The spectral clustering finds the normalized cut in the similarity graph, which works 
appealingly well in the case of images wherein weights of the edges are computed as 
the gradient of an image. As per the official documentation in sklearn the similarity 
is given by the following formula:

similarity = np.exp(-beta * distance / distance.std())



190      Machine Learning for Beginners

[https://scikit-learn.org/stable/modules/clustering.html]. The following code 
uses the sklearn implementation of the algorithm.
In the fourth experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an almost equal number of samples. Note that since 
no input is provided for setting the variance of the data of the three clusters, all of 
them will have the same variance.

Experiment 4
1.	 Importing	the	modules:
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.cluster import SpectralClustering
 from sklearn.datasets import make_blobs

2. Generating data for clustering
 n_samples = 200
 random_state = 10
 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

3. Applying sklearn. SpectralClustering to predict the clusters:
 y_predicted = SpectralClustering(n_clusters=3, random_state=random_

state).fit_predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_predicted)
 plt.title(“Spectral Clustering”)
plt.show()

The output is shown in Figure 9.9:

Figure 9.9: Applying sklearn.SpectralClustering for clustering data generated by make_blobs
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In the fifth experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an almost equal number of samples. Note that input is 
provided for setting the variance of the data as of the three clusters as 1, 0.5, and 3.0.

Experiment 5
Step 1 and Step 2 of Experiment 4 to be used on as-it-is basis:
X_1, y_1 = make_blobs(n_samples=n_samples, cluster_std=[1, 0.5, 3.0], 
random_state=random_state)

y_predicted = SpectralClustering(n_clusters=3, random_state=random_
state).fit_predict(X_1)

plt.scatter(X_1[:, 0], X_1[:, 1], c=y_predicted)

plt.title(“Spectral Clustering II”)

plt.show()

The output is shown in Figure 9.10:

Figure 9.10: Applying sklearn.SpectralClustering for clustering data generated by make_blobs. 
The three clusters have different values of variance

In the sixth experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an odd number of samples. Note that since no input is 
provided for setting the variance of the data, all the three groups will have the same 
variance.

Experiment 6
Step 1 and Step 2 of Experiment 4 to be used on as-it-is basis:



192      Machine Learning for Beginners

X_not_balanced = np.vstack((X[y == 0][:500], X[y == 1][:200], X[y == 2]
[:10]))

y_predicted= SpectralClustering(n_clusters=3,random_state=random_state).
fit_predict(X_not_balanced)

plt.scatter(X_not_balanced[:, 0], X_not_balanced[:, 1], c=y_predicted)

plt.title(“Blobs having unequal number of elements in each cluster”)

plt.show()

The output is shown in Figure 9.11:

Figure 9.11: Applying sklearn.SpectralClustering for clustering on the data generated  
by make_blobs. The three clusters have a different number of samples

Experiments 4, 5, and 6 bring forth the following points:
 • Spectral Clusterin works well for balanced data wherein each block has the 

same variance.
 • The performance of Spectral Clusterin is fairly good even in balanced data 

wherein each block has a different variance, provided this value is not very 
large.

 • The algorithm works well even for data in which different clusters have a 
varying number of samples.

 • The algorithm also produces good results for clusters having non-linear 
shapes. The reader is expected to refer to the exercises given at the end of the 
chapter to appreciate this point.
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Agglomerative clustering
As explained in the previous section, the agglomerative clustering is a type of 
clustering which crafts nested clusters by repeatedly combining or splitting the 
samples. The agglomerative clustering of sklearn uses the bottom-up approach in 
which the samples are merged. This merging uses any one of the following criteria:
 • WARD
 • Maximum
 • Average
 • Single

In the WARD criterion, the sum of squares within all clusters is minimized. The rest 
of the algorithms have been explained in the previous section. The following code 
uses the sklearn implementation of the algorithm.

In the seventh experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an almost equal number of samples. Note that since 
no input is provided for setting the variance of the data of the three clusters, all of 
them will have the same variance.

Experiment 7
1.	 Importing	the	modules:
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.cluster import AgglomerativeClustering
 from sklearn.datasets import make_blobs

2. Generating data for clustering:
 n_samples = 200
 random_state = 10
 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

3. Applying sklearn. AgglomerativeClustering to predict the clusters
	 y_predicted	=	AgglomerativeClustering(n_clusters=3).fit_predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_predicted)
 plt.title(“Agglomerative Clustering”)
	 plt.show()
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The output is shown in Figure 9.12:

Figure 9.12: Applying sklearn.AgglomerativeClustering for clustering on the data generated by 
make_blobs

In the eighth experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an almost equal number of samples. Note that the 
input is provided for setting the variance of the data as of the three clusters as 1, 0.5, 
and 3.0.

Experiment 8
Step 1 and Step 2 of Experiment 7 to be used on as-it-is basis 
X_1, y_1 = make_blobs(n_samples=n_samples, cluster_std=[1,0.5,3.0], 
random_state=random_state)

y_predicted	=	AgglomerativeClustering(n_clusters=3).fit_predict(X_1)

plt.scatter(X_1[:, 0], X_1[:, 1], c=y_predicted)

plt.title(“Agglomerative Clustering II”)

plt.show()
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The output is shown in Figure 9.13:

Figure 9.13: Applying sklearn.AgglomerativeClustering for clustering on the data generated by 
make_blobs. The three clusters have different values of variance.

In the ninth experiment, 200 samples are generated using make_blobs. The data 
contains three clusters having an odd number of samples. Note that since no input is 
provided for setting the variance of the data, all the three groups will have the same 
variance.

Experiment 9
Step 1 and Step 2 of Experiment 1 to be used on as-it-is basis:
X_not_balanced = np.vstack((X[y == 0][:500], X[y == 1][:200], X[y == 2]
[:10]))

y_predicted	 =	 AgglomerativeClustering(n_clusters=3).fit_predict(X_not_
balanced)

plt.scatter(X_not_balanced[:, 0], X_not_balanced[:, 1], c=y_predicted)

plt.title(“Blobs having differnt number of elements”)

plt.show()
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The output is shown in Figure 9.14:

Figure 9.14: Applying sklearn.AgglomerativeClustering for clustering on the data generated by 
make_blobs. The three clusters have a different number of samples.

The above discussion brings forth the following points:
 • AgglomerativeClustering works well for balanced data wherein each block 

has the same variance.
 • The performance of AgglomerativeClustering is fairly good even in 

balanced data wherein each block has a different variance, provided this 
value is not very large.

 • The algorithm works well even for data in which different clusters have a 
varying number of samples.

DBSCAN
In this algorithm, the clusters are formed by identifying the areas with low density. 
This concept makes it computationally expensive, but it can find clusters with any 
shape. This algorithm takes two parameters:
 • minimum samples
 • eps

As per the official documentation:

“We define a core sample as being a sample in the dataset such that there exist min_samples 
and other samples within a distance of eps, which are defined as neighbors of the core sample. 
This tells us that the core sample is in a dense area of the vector space.
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A cluster is a set of core samples that can be built by recursively taking a core sample, 
finding all of its neighbors that are core samples, finding all of their neighbors that 
are core samples, and so on. A cluster also has a set of non-core samples, which are 
samples that are neighbors of a core sample in the cluster but are not themselves core 
samples. Intuitively, these samples are on the fringes of a cluster.”

[2.3. Clustering — scikit-learn 0.22.1 documentation].

The DBSCAN(eps=<value>, min_samples=<value>) method is used for accomplishing 
the task using this algorithm. The reader is expected to carry out experiments similar 
to experiments 1, 2, and 3 using the DBSCAN function of sklearn.

Conclusion
As per Shimon Ullman et al., “Clustering is the organization of unlabeled data into 
similarity groups called clusters.[4]” A clustering algorithm aims to come up with 
clusters that are similar to each other and dissimilar to elements in the other clusters. 
The technique finds its applications in diverse fields. It was first used to analyze the 
location of cholera deaths on a map. It not only helped to find that these locations 
had dirty wells but also helped the doctors to control the spread of disease. You 
can use this technique to suggest the causes of various problems by identifying the 
locations and analyzing the data about these locations. This technique is useful for 
the segmentation of images, finding patterns, finding target groups for analysis, and 
so on.

To form clusters, we need to decide the similarity measure, the way to evaluate 
clusters, and the algorithm for clustering. Euclidean and Manhattan distances, which 
special cases of Minslowski distance, have already been discussed in the book. To 
evaluate clusters, the sum of squared errors can be used. This chapter discusses two 
types of clustering:
 • Hierarchical
 • Partitional

The hierarchical clustering can be segregated as divisive and agglomerative. The 
partitional clustering can be segregated as centroid based and model-based. This 
chapter discusses the above algorithms and compares them.

The next chapter discusses various feature extraction techniques. These would help 
the reader not only to improve the performance but also to analyze the results. Let 
us now hit the exercises.
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Exercises
Multiple Choice Questions
 1. Clustering comes under the ambit of?
 a. Supervised Learning b. Unsupervised Learning
 c. Semi-supervised Learning d. None of the above

 2. Which of the following initially identifies K centroids and then allocates 
samples to each cluster based on its similarity from it?

 a. K-means   b. Spectral clustering
 c. Both   d. None of the above

 3. Which of the following uses Laplacian in finding clusters?
 a. K-means   b. Spectral clustering
 c. Both   d. None of the above

 4. In the above question, what is done after finding the Laplacian?
 a. Finding eigenvalues Aand vectors
 b. Finding the shortest distance path in the graph
 c. Both
 d. None of the above

 5. Which of the following is not a type of hierarchical clustering?
 a. Top-down   b. Bottom-up
 c. Depth First Search  d. None of the above

 6. Which of the following term is generally not associated with hierarchical 
clustering?

 a. Single Link
 b. Complex Link
 c. Average Link
 d. All the terms are associated with hierarchical clustering

 7. Which of the following can be used if the shapes of the two clusters are non-
linearly embedded?

 a. K-means   b. Spectral clustering
 c. Both   d. None of the above
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 8. Which of the following can be used to find the number of clusters?
 a. K_means b. W c. Both    d. None of the above
 9. Which of the following is sensitive to the number of clusters?
 a. K-means   b. Spectral clustering
 c. Both    d. None of the above

 10. Which of the following can be used for segmentation?
 a. Clustering   b. Classification
 c. Both   d. None of the above

Theory
 1. What is clustering? What are the types of clustering?
 2. Explain the K-means algorithm. Write the pseudo-code for the same. What are 

the limitations of this algorithm?
 3. Explain the spectral clustering algorithm. Write the pseudo-code for the same. 

What are the limitations of this algorithm?
 4. Explain the hierarchical clustering algorithm. Write the pseudo-code for the 

same. What are the limitations of this algorithm?
 5. Explain the process of finding the number of clusters for clustering.
 6. Write some applications of clustering.

Numerical
 1. The following data contains six samples and four features. Write the steps of 

finding clusters using hierarchical clustering for this data:

x1 12 4 3 2
x2 2 23 2 1
x3 1 12 7 3
x4 3 9 4 3
x5 1 6 7 2
x6 8 9 4 5

 2. In question number 1, draw dendrogram for each of the following technique:
 a. Single link b. Average link c. Complex link
 3. For the above question, apply K-means for K=2.
 4. For the above question, apply K-means for K=3.
 5. Create a Laplacian matrix for the matrix provided in Question 1.
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Programming
Consider the following code:
Step 1: Include the modules:
import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import AgglomerativeClustering

from sklearn.datasets import make_moons

Step 2: Apply AgglomerativeClustering:
n= 200

random_state = 10

X, y = make_moons(n_samples=n, random_state=random_state)

y_pred	=	AgglomerativeClustering(n_clusters=2).fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_pred)

plt.title(“Agglomerative Clustering applied to make_moons”)

plt.show()

The output is shown in Figure 9.15:

Figure 9.15: Applying Agglomerative Clustering to make_moons

Based on the above, perform the following task:
a.	 Apply	K-means	to	the	data
b. Apply spectral clustering to the data
c.	 Analyze	the	above	results	and	state	why	spectral	clustering	works	wonders	here
d.	 Apply	 various	methods	 in	 agglomerative	 clustering	 (like	 a	ward,	 single	 link,	

complex	link,	and	average	link)	to	the	above	data	and	analyze	the	output



Introduction
So far, we have learned the preprocessing of data, selection of features, and basic 
machine learning tasks like classification and regression. Let us shift our focus to 
improving the performance of the model. It can be done by a) varying the parameters 
of the classifier, b) selecting the relevant features, or c) taking the data into an 
altogether different dimension(s), in which data becomes better for the required 
tasks. To understand this, consider a boy called Hari, who is a good poet but writes 
technical books as a profession. It is because the latter pays more in this world as 
compared to the former. If he is transferred to another dimension in which poetry 
pays more than academic writing or teaching, he may peruse poetry as his career and 
academic writing as his hobby as he is good in poetry. The absence of any pressure 
may improve his academic writing skills. So Hari, in the transformed dimension, is 
a more useful person for the society. Alas, we cannot shift him to new dimensions, 
but at least we can shift the data in some other dimensions to make it more useful.

If the number of features in the given dataset is large, then the machine learning 
model may suffer from overfitting. To handle this problem, feature selection and 
feature extraction can be used. Feature selection places the features in order of their 
relevance to the labels. The second chapter of this book introduced some of the 
most important feature selection methods. This problem can also be handled using 

Chapter 10
Feature Extraction
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feature extraction, which extracts features from the given data and hence takes the 
given data to a new set of dimensions where the data becomes more suitable for a 
given machine learning task. It may also result in improved performance with a 
reduced number of features. The reduction in the number of features will lead to 
faster training and may also result in improved visualization.

Feature extraction aims to create new features from the existing ones. This chapter 
introduces the reader to some of the most important feature extraction methods. 
These include:
 • The frequency-based methods
 • Finding patches in an image
 • Histogram of orientated gradients
 • Principal component analysis

These feature extraction methods have been explained and implemented in the 
sections that follow. These methods can be used for text data, images, and even 
sound. The reader is expected to use these methods and apply classification methods 
learned in the previous chapters to analyze the effect of these methods.

Structure
The main topics covered in this chapter are as follows:
 • Introduction
 • Fourier Transform and Short Term Fourier Transform
 • Patches
 • Histogram of orientations
 • Principal Component Analysis
 • Experiments with datasets

Objective
After reading the chapter, the reader will be able to:
 • Appreciate the importance of feature extraction
 • Understand the use of Fourier Transform
 • Understand the shortcomings of Fourier Transform
 • Understand feature extraction using patches
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 • Understand the implementation of the histogram of oriented gradients
 • Use principal component analysis

Fourier Transform
Fourier analysis helps us to express a given function as a sum of periodic signals. The 
Fourier Transform of a signal takes it from the time domain to the frequency domain. 
Moreover, the inverse Fourier Transform helps us to recover the original signal from 
the components obtained by the Fourier Transform of a signal. The corresponding 
discrete counterpart is referred to as the Discrete Fourier Transform (DFT). However, 
the complexity of the most common method of finding the transform is O(n2). The 
Fast Fourier Transform (FFT) is an efficient implementation of DFT. The input to 
FFT is in the time domain, and the output is in the frequency domain. The FFT finds 
its applications in numerous domains.

The np.fft uses the following implementation of FFT:

1

0
exp 2

n

K m
n

mkA a i
n

π
−

=

  
= −     
∑

Input is {a0, a1, …, am} and k varies from 0 to (n – 1).

The output of np.fft follows a standard order. The first half of the output contains 
positive frequencies, and the second half from (n+1)/2 to the last term contains 
negative frequencies. You can find the modulus of the output using np.mod and the 
phase spectrum by np.angle. The inverse DFT is given by the expression:
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Where m varies from 0 to (n – 1). The parameters of the np.fft function are as follows 
(Table 10.1):

Parameter Type Explanation
a array_like This parameter represents the input array. 
n int It is an optional parameter. It represents the length of the 

transformed axis of the output. The input is truncated or 
padded with zeros if the value of n is not the same as the 
input.

axis int It is an optional parameter. It represents the axis over which 
to compute the FFT

Table 10.1: The parameters of np.fft
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The attributes of the function are as follows (Table 10.2):

Attribute Type Explanation
out complex It is the truncated or zero-padded input.

Table 10.2: The attributes of np.fft

This function raises the IndexError exception. One can find out the most prominent 
frequency (or frequencies) by using the fft. The following steps take the reader 
through the implementation of fft using np.fft:

Step 1: Import the following modules:
import matplotlib.pyplot as plt

import numpy as np

from scipy import signal

Step 2: Ask the user to enter the amplitude and frequency of  and plot the signal:
A=float(input(‘Enter	amplitude\t:’))

f=int(input(‘Enter frequency\t:’))

t=np.linspace(-np.pi, np.pi,256)

y=A*np.sin(2*np.pi*f*t)

plt.plot(t,y)

plt.show()

Output: The output of the above code is as follows (Figure 10.1):

Figure 10.1: The sin signal
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Step 3: Find the Fast Fourier Transform of the signal using np.fft:
sp = np.fft.fft(y)

freq = np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

Output: The output of the above code is as follows (Figure 10.2):

Figure 10.2: Fourier Transform of the sin signal

We can also find the magnitude of this complex Fourier Transform thus generated. 
The plot of the magnitude of FFT of the sin signal is shown in Figure 10.3:

Figure 10.3: Magnitude of the complex Fourier Transform of sin signal

Note that the graph is symmetric about the y-axis. In the positive direction, there is 
a single frequency. Now consider the following signal (Figure 10.4):
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( ) ( )1 1 2 2sinsin 2 sinsin 2y A f t A f tπ π= +

The FFT of this signal would generate two frequencies and hence would help us to 
see what frequencies (and how many) constitute the signal. The following code asks 
the user to enter two frequencies and generates the sin signal. The FFT of this signal 
is then calculated. The FFT and corresponding magnitude are shown in figures that 
follow.

Code:
A1=float(input(‘Enter	amplitude\t:’))

f1=int(input(‘Enter frequency\t:’))

t=np.linspace(-np.pi,np.pi,256)

y1=A1*np.sin(2*np.pi*f1*t)

A2=float(input(‘Enter	amplitude\t:’))

f2=int(input(‘Enter frequency\t:’))

y2=A2*np.sin(2*np.pi*f2*t)

y=y1+y2

plt.plot(t,y)

plt.show()

Output: The output of the above code is as follows:
Enter amplitude :10

Enter frequency :2

Enter amplitude :10

Enter frequency :4

Figure 10.4: y = A1 sin(2πf1 t) + A2 sin(2πf2 t)
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The FFT of the above signal can be found as follows. The output is shown in Figure 
10.5:
Code:
sp=np.fft.fft(y)

freq=np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f,mod2)

Output: The output of the above code is as follows (Figure 10.5):

Figure 10.5: The FFT of 

The magnitude of the complex Fourier Transform of  is shown in Figure 10.6:

Figure 10.6: Magnitude of the complex Fourier Transform of 
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Likewise, the FFT of a signal containing three frequencies would generate three 
frequencies. The following code asks the user to enter three frequencies and generates 
the sin signal (Figure 10.7). The FFT of this signal is then calculated. The FFT and 
corresponding magnitude are shown in Figure 10.8 and Figure 10.9.

Code:
A1=float(input(‘Enter	amplitude\t:’))

f1=int(input(‘Enter frequency\t:’))

t=np.linspace(-np.pi,np.pi,256)

y1=A1*np.sin(2*np.pi*f1*t)

A2=float(input(‘Enter	amplitude\t:’))

f2=int(input(‘Enter frequency\t:’))

y2=A2*np.sin(2*np.pi*f2*t)

A3=float(input(‘Enter	amplitude\t:’))

f3=int(input(‘Enter frequency\t:’))

y3=A3*np.sin(2*np.pi*f3*t)

y=y1+y2+y3

plt.plot(t,y)

plt.show()

Output: The output of the above code is as follows:
Enter amplitude :10

Enter frequency :2

Enter amplitude :10

Enter frequency :4

Enter amplitude :10

Enter frequency :8

Figure 10.7: y = A1 sin(2πf1 t) + A2 sin(2πf2 t) + A3 sin(2πf3 t)
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The following code finds the Fourier Transform of this signal.

Code:
sp = np.fft.fft(y)

freq = np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f,mod2)

The output of the above code is shown in Figure 10.8:

Figure 10.8: The FFT of y = A1 sin(2πf1 t) + A2 sin(2πf2 t) + A3 sin(2πf3 t)

The magnitude of the signal is as follows (Figure 10.9):

Figure 10.9: The magnitude of FFT of y = A1 sin(2πf1 t) + A2 sin(2πf2 t) + A3 sin(2πf3 t)
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So far, we have seen that the Fourier Transform can extract frequencies of simple 
signals. These frequencies may help us to distinguish between two signals. However, 
this method does not give desirable results with non-stationary signals. Although 
the FFT of a signal composed of two parts having different frequencies can also 
extract the various frequencies, the Fourier Transform of signals shown in Figure 
10.10 and Figure 10.13 generate the same Fourier Transforms.

Code:
A=float(input(‘Enter	amplitude\t:’))

f1=int(input(‘Enter frequency 1\t:’))

f2=int(input(‘Enter frequency 2\t:’))

t=np.linspace(-np.pi, np.pi,256)

y=np.zeros(256)

for i in range(128):

y[i]=A*np.sin(2*np.pi*f1*t[i])

for i in range(128,256):

y[i]=A*np.sin(2*np.pi*f2*t[i])

plt.plot(t,y)

plt.show()

#print(t)

Output: The output of the above code is as follows:
Enter amplitude :10

Enter frequency 1 :2

Enter frequency 2 :4

Figure 10.10: A non-stationary signal
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The following code finds the FFT of this signal.
Code:
sp = np.fft.fft(y)

freq = np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f,mod2)

Output: The output of the above code is shown in Figure 10.11:

Figure 10.11: The FFT of the signal shown in Figure 10.10

The magnitude of the output is shown in Figure 10.12:

Figure 10.12: The magnitude of the FFT of the signal shown in Figure 10.10
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Now, if the signal is changed so that the first part contains the higher frequency and 
the second part contains the lower one (Figure 10.13), the FFT of the signal remains 
the same (Figure 10.14 and Figure 10.15).

The output of the re-run:
Enter amplitude :10

Enter frequency 1 :2 

Enter frequency 2 :4

Figure 10.13: Another example of a non-stationary signal

The Fourier Transform of Figure 10.13 is shown in Figure 10.14:

Figure 10.14: The FFT of the signal shown in Figure 10.13

The magnitude of the Fourier Transform of the Figure 10.13 is shown in Figure 10.15:
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Figure 10.15: The magnitude of the FFT of the signal shown in Figure 10.13

The implementation and use of FFT have been elaborately explained. However, it 
has its shortcomings. The FFT cannot find the order of frequencies or the positions 
at which a particular frequency occurred. To find this, we use Short Term Fourier 
Transform (STFT). The STFT can be used for determining changes in the frequency 
and phases of non-stationary signals. The scipy.signal module can be used to find 
the stft of a given signal. Table 10.3 presents the parameters of the stft function of 
the signal module of scipy:

Parameter Type Explanation
x array_like This parameter denotes the time series of measurement 

values
fs float It is an optional parameter. This parameter represents 

the sampling frequency of the x time series. The default 
value of this parameter is 1.0.

window str or tuple or 
array_like

It is an optional parameter. The default value of this 
parameter is the Hann window. The get_window can be 
seen for a list of windows.

nperseg int It is an optional parameter. This parameter represents 
the length of each segment. The default value of this 
parameter is 256.

boundary str or None It is an optional parameter. This parameter specifies 
whether the input signal is extended at both ends.

axis int It is an optional parameter. It represents the axis along 
which the STFT is computed. The default is axis=-1.

Table 10.3: The parameters of scipy.signal.stft
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The following table (Table 10.4) shows the attributes of the stft function:

Attribute Type Explanation
f ndarray This attribute represents the array of sample frequencies.
t ndarray This attribute represents the array of segment times.
Zxx ndarray This attribute represents the STFT of x.

Table 10.4: The attributes of scipy.signal.stft

The following code finds the stft of the given signal.

Code:
f, t,sp = signal.stft(y, 1000, nperseg=1000)

#plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f[127:],mod2[:,0])

plt.show()

plt.plot(f[127:],mod2[:,1])

plt.show()

plt.plot(f[127:],mod2[:,2])

plt.show()

Output: The output of the code is shown in figures (Figure 10.16(a), Figure 10.16(b) 
and Figure 10.16(c):

Figure 10.16 (a): The STFT of the signal shown in Figure 10.13
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Figure 10.16 (b): The STFT of the signal shown in Figure 10.13

Figure 10.16 (c): The STFT of the signal shown in Figure 10.13

The frequency-based feature extraction is useful in the case of audio signals. The 
next section introduces patches, which can be used in the case of images.

Patches
Consider an image of size . A naïve way of extracting information from this image is 
to consider all the pixels as features, thus making an array containing 25 elements. 
This array will act as a feature vector. 

One can also extract local information from the given image using patches. If we 
consider a  patch, which moves 1 pixel at a time, as shown in Figure 10.17, 16 sub-
arrays are generated for a image. Assume that we find the mean and the standard 
deviation of each of these 16 patches and consider the 32 values so obtained as the 
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features of the given image. Although the number of features will increase, but the 
features vector will become more informative.

Figure 10.17: A  patch moves on a image

Scipy provides an in-build function for extracting patches in sklearn. The details of 
the function are presented in the next section.

sklearn.feature_extraction.image.extract_
patches_2d
This function reshapes a 2D image into a collection of patches. The resulting patches 
are allocated in a dedicated array. The parameters of the function are shown in  
Table 10.5:

Parameter Type Explanation

image array This parameter represents the original image data.
patch_size tuple of integers This parameter represents the dimension of each 

patch.
max_patches integer It is an optional parameter. The default value of 

the parameter is none. it denotes the maximum 
number of patches to extract.

Contd…
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random_state int This parameter denotes the RandomState. It is an 
optional parameter, and its default value is None.

Table 10.5: Parameters of extract_patches_2d

The parameters and attributes of the function are as follows (Table 10.6):

Attribute Type Explanation
patches array It is the collection of patches extracted from the image.

Table 10.6: Attributes of extract_patches_2d

The following code extracts patches from the given image using the above function.

Code:
from sklearn.datasets import load_sample_image

from sklearn.feature_extraction import image

from matplotlib import pyplot as plt

import numpy as np

from skimage.color import rgb2gray

img1=load_sample_image(‘flower.jpg’)

img1=rgb2gray(img1)

plt.imshow(img1)

plt.show()

patches=image.extract_patches_2d(img1,(2,2))

plt.imshow(patches[10000,:,:])

plt.show()

The above code results in a set of patches, from which relevant features can be 
extracted and used as features in classification or regression. The next section 
introduces a Histogram of oriented gradients, which can be used to represent an image 
compactly.

Histogram of oriented gradients
The Histograms of Oriented Gradients (HOG) is a popular feature descriptor. This 
technique finds the frequency of orientations in a localized portion of a given image. 
To calculate features using HOG, sliding window traverses over the whole image 
and gradients from a block are calculated from the change in intensities of a pixel 
within a block.
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First of all, we convert a given image into a grayscale. Take a block, say of that 
matter, of . This block will have 25 pixels, and for any pixel at  the horizontal and 
vertical gradient is calculated as follows:

H = I(i,	j + 1) – I(i,	j – 1)
V = I(i	+	1,	j) – I(i	–	1,	j)

2 2( )Magnitude H V= +

1 1tan tan VTheta
H

− −  
=  

 

Now, a histogram of theta is as formed, which acts as the feature set. In sklearn, 
the HOG has been implemented in the skimage.feature.hog. The following code 
demonstrates the implementation of HOG using sklearn. Note that the HOG image 
corresponding to Figure 10.18 is shown in Figure 10.19:
Code:
def rgb2gray(rgb):                                    

 r,g,b=rgb[:,:,0],rgb[:,:,1],rgb[:,:,2]

 gray=0.2989*r+0.5870*g+0.1140*b

 return gray_img

#Original image 

data = load_sample_images()     

len(data.images)                

img1 = data.images[0]

img1.shape              

plt.imshow(img1)

Output:

Figure 10.18: Original Image
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#Finding HOG image

img2=rgb2gray(img1)

plt.imshow(img2)

fd, hog_image = hog(img1, orientations=8, pixels_per_cell=(16, 16),cells_
per_block=(1, 1), visualize=True, multichannel=True)

plt.imshow(hog_image)

Output:

Figure 10.19: The HOG image

Likewise, for data.images[1] (Figure 10.20 (a)), the HOG is shown in Figure 10.20 (b):

Figure 10.20 (a): Original Image of flower



220      Machine Learning for Beginners

Figure 10.20 (b): HOG of the image shown in Figure 10.20 (a)

The user can use the fd, obtained in the above code, as the feature of the given image. 
This feature vector can be used to construct the features of the two given classes in 
a classification problem, and the data so obtained can be used for classification. The 
next section introduces the principal component analysis. The method transforms 
the data in the new dimensions considering the variance.

Principal component analysis
The principal component analysis transforms the given data into another set of 
dimensions and finds the direction cut of maximum scatter. It is accomplished 
by using the eigenvectors. Take, for example, the data of students of a particular 
school. The data contains m features, including the age of a student and his date of 
birth. Since both of them are dependent and assuming the rest of the attributes are 
not dependent, the relevant information is contained in the rest of (m – 1) features. 
Now imagine if we do not know about the dependency of features and still want 
to remove the redundant features. The method described in this section helps us to 
achieve this task.

The given data X is a n × m matrix, having n samples and m features.

Find mean 
1

n

i
X X

=
=∑ , which becomes a 1 × m matrix:

1. Subtract X  from X by broadcasting X
2. Find ( )( )TS X X X X= − −
3. Find the eigenvalues and eigenvectors of S
4. Place the vectors in the increasing order of their eigenvalues

To get hold of the method, consider Figure 10.21. The first figure shows the original 
data, which requires two dimensions to separate the data. The second figure shows 
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the new dimension, found by applying principal component analysis. Note that the 
transformation takes the data into new dimensions. Here, just one axis is sufficient 
to classify the data:

Figure 10.21: Data before and after applying PCA

The following steps will take you through the process of transforming the data using 
the principal component analysis:

Step 1: Import the following modules:
from sklearn.datasets import load_iris

import numpy as np

from matplotlib import pyplot as plt

from numpy import linalg

Figure 10.22 shows the first feature. The red and the blue color denote the samples of 
the two classes. Note that the given data cannot be classified easily using only one 
feature:

Figure 10.22: The first feature of the data. The red and blue dots represent the two classes.
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Next, we find the PCA of the given data.
Step 2: Find PCA:
mean=np.mean(Data, axis=0)

s=np.matmul(np.transpose(Data-mean),(Data-mean))

val, vec=linalg.eig(s)

Data_transformed=np.matmul(Data,vec)

print(Data_transformed.shape)

Data1=Data_transformed[50:100,:]

Data2=Data_transformed[100:150,:]

plt.plot(index,Data1[:,0],’rs’)

plt.plot(index,Data2[:,0],’bs’,)

plt.xlabel(‘Feature Number’)

plt.ylabel(‘Feature Value’)

plt.show()

plt.plot(index,Data1[:,1],’rs’)

plt.plot(index,Data2[:,1],’bs’,)

plt.xlabel(‘Feature Number’)

plt.ylabel(‘Feature Value’)

plt.show()

Figure 10.23 shows the first feature of the transformed data. The red and the blue 
color denote the samples of the two classes. Note that the classification of the given 
data has become easy using only this feature:

Figure 10.23: The First feature of the transformed data.  
The red and blue dots represent the two classes.
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Note that the classification becomes easy after the transformation. In general, you 
can use only a few features of the transformed data to accomplish your task after 
applying PCA.

Conclusion
Feature extraction is an important constituent of any machine learning model. It 
helps us to extract relevant features from the given data. It may also help us to reduce 
dimensionality, hence making the model efficient and effective.

This chapter introduces four important feature extraction methods, namely, Fourier 
Transform, patches, HOG, and principal component analysis. The basics, theory, 
and implementation of these topics have been explained in the chapter.
The	reader	is	expected	to	implement	the	above	techniques	and	use	
the	classifiers	studied	the	previous	chapters	to	see	the	effect	of	these	
techniques	on	the	performance	of	the	model.	Moreover,	there	are	some	
other	feature	extraction	techniques	like	ICA	and	LDA.	LDA	has	already	
been	discussed	in	the	book.	The	reader	is	requested	to	explore	the	
Bibliography	at	the	end	of	this	book	for	more	feature	extraction	methods	
like	Local	Binary	Patterns	and	Wavelet	Transform.

Exercises
Multiple Choice Questions
 1. Which technique helps us to transform the data into a frequency domain?
 a. Fourier Transform  b. Local binary pattern
 c. Principal component analysis d. All of the above

 2. Which technique helps us to transform the data into new dimensions based on 
variance?

 a. Fourier Transform  b. Local binary pattern
 c. Principal component analysis d. All of the above

 3. Which technique helps us to find the edges of a picture?
 a. Fourier Transform  b. Local binary pattern
 c. Principal component analysis d. All of the above
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 4. Which technique is more efficient Discrete Fourier Transform or Fast Fourier 
Transform?

 a. Discrete Fourier Transform b. Fast Fourier Transform
 c. Both are equally efficient d. Cannot say

 5. Which of the following helps you to analyze non-stationary signals?
 a. Discrete Fourier Transform b. Fast Fourier Transform
 c. Short Term Fourier Transform d. None of the above

 6. Which of the following signal cannot be analyzed using FFT?
 a. Sin signal consisting of a single frequency
 b. Sin signal consisting of two frequencies
 c. Non-stationary signal
 d. None of the above

 7. Patches are generally used for?
 a. Audio data   b. Video data
 c. Imaging data    d. None of the above

 8. Fourier is used for?
 a. Audio data   b. Video data
 c. Imaging data   d. None of the above

 9. PCA is generally used for?
 a. Audio data   b. Video data
 c. Imaging data   d. All of the above

 10. Which of the following is not a feature extraction method?
 a. PCA b. LDA c. LBP d. FDR

Theory
 1. Explain the concept of principal component analysis and write the algorithm 

to find the PCA of a given data.
 2. Explain the Fourier Transform. Write an algorithm to find the Fourier Transform 

of a given signal.
 3. What changes will you make in the above algorithm to improve its complexity?
 4. Which type of signals cannot be analyzed using the Fourier Transform? Explain 

Short Term Fourier Transform.
 5. Explain the importance of patches.
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Programming
 1. Find the first-order statistical features of an image.
 a.  Can you use the feature obtained so obtained for classification? Take any 

imaging dataset with two classes and verify.
 b. Explain the results so obtained.

 2. Take an image and convert it into grayscale.
 a. Check if the intensity of each pixel is between 0 and255.
 b.  Now, for each pixel, find whether its intensity is greater than each of its 

eight neighbors or not.
 c.  Replace the neighbor’s value by 1, if the neighbor’s value is greater than the 

intensity of the central pixel; else replace the neighbor’s value by 0.
 d.  Find the decimal equivalent of the eight-bit binary number obtained by the 

neighbor’s binary value obtained in c).
 e. Observe the image, what difference do you see vis-à-vis the original one.

 3. Now repeat the above steps for two sets of images and use SVM to classify the 
dataset. Report the accuracy, specificity, and sensitivity.

 4. Repeat the above experiment by replacing the transformed image with the 
histogram of intensity values.

 5. Can you reduce the number of bins in the above histogram?
 6. Why do you think the above system can classify the images? The reader may 

refer to http://www.scholarpedia.org/article/Local_Binary_Patterns.
 7. The Histogram of Gradients (HoG) is a technique that counts occurrences of 

gradient orientation in localized portions of an image. The reader may refer 
to https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients for a 
detailed explanation of the method. Implement the method and classify any 
imagining dataset using this feature extraction technique.

 8. Apply PCA to an imaging dataset (2-class problem) and classify the dataset. 
Report accuracy, specificity, and accuracy. Can you explain the results?

 9. Refer to the bibliography at the end of this book and implement Wavelet 
Transforms. Can this feature extraction technique for classification.

 10. Can you suggest a feature extraction method based on the combination of 
Q2 and Q1? Verify your claim by taking an imaging dataset and performing 
classification.





Pandas: Software Library, mainly used for Data manipulation and Analysis.

Developed By: Wes McKinney.

Released On: 11th January 2008.

Free: It is released under the three-clause BSD license.

Important Data Structures: (a) Series and (b) Data Frame.

Series: A Pandas Series represents a one-dimensional array of indexed data [5]. 

Data Frame: A Data Frame is a two-dimensional labeled array that stores ordered 
collection of columns [5].

Creating a Pandas series
The Series function helps us to create Series data type. It can be done using:
 • List
 • An Array
 • A dictionary. 

appendix 1
Cheat Sheet – Pandas
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Using a List
Syntax:
Pandas.Series(L)

Where L is a list.

Example:
L= [10, 20, 30, 40, 50] 

Series(L) 

L=[10, 20, 30, 40, 50]

S1= pd.Series(L)

S1

Output:
0    10

1    20

2    30

3    40

4    50

dtype: int64

Using NumPy Array
Syntax:
Pandas.Series(Arr)

Where Arr is an NumPy array.

Example:
Arr1=np.random.randint(3, 89, 10)

S2=pd.Series(Arr1)

S2

Output:
0    61

1     9

2    82
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3    63

4    11

5    41

6    37

7    68

8    10

9    48

dtype: int32

Using Dictionary
Syntax:
Pandas.Series(D)

Where D is a dictionary

Example:
D1={‘Harsh’:100, ‘Aayush’:22, ‘Arush’:22}

S3=pd.Series(D1)

S3

Output:
Harsh     100

Aayush     22

Arush      22

dtype: int64

Indexing
Procedure Example Code

Using Keys Access the value corresponding to the key 
‘Arush’ in Series S1

S1[‘Arush’]

Using index Access the value at index 0 S1[0]

_ Access value at the last position S3[-1]

Accessing values 
using loc

Access value corresponding to the key ‘Harsh’ 
in Series S1

S1.loc[‘Harsh’]

Accessing values 
using iloc

Access value at index =1 in the Series S1 S1.iloc[1]
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Slicing
Slicing produces a Sub-Series from a given Series.

Example:
Access element from index 3 up to 5 (5 not included) from Series S1.
S1[3:5]

Common methods
The common methods of the Series data type are presented in Table 2:

Function Purpose Example 
head() This method displays the top 5 values of the 

Series. 
S1.head()

tail() This method displays the last five values of the 
Series. 

S1.tail()

index It displays the index(s) of the given Series. S1.index()

describe() This method shows the count, mean, min, max, 
25%, 50%, 75% and std (standard Deviation)

S1.describe()

sort_values() This method sorts the items of the given Series 
and displays the indexes of the sorted arrays.

S1.sort_values()

max It finds the maximum value from a given series. S1.max()

min It finds the minimum value from a given series. S1.min()

sum It finds the sum of values from a given series. S1.sum()

median It finds the median of the value from a given 
series.

S1.median()

value_counts It counts the frequencies of values in a given 
Series.

S1.value_counts()

Table 1: Common methods of the Series Data Type

Boolean index
In a Series, the necessary condition can be specified inside the square brackets to get 
the elements that satisfy the given condition. For example, the following statement 
selects the elements of S1, which are greater than 20 and put them in S2:

S2=S1[S1>20]
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DataFrame
Creation
a)	 By	passing	a	dictionary	in	which	each	index	is	associated	with	a	list	of	values	in	

the DataFrame method of Pandas.

 Example:
 D={‘Harsh’:[1, 2, 3, 4], ‘Arsh’:[4, 5, 6, 7], ‘Sparsh’: [7, 9, 8, 10]}
 DF_=pd.DataFrame(D)

 Output:

Harsh Arsh Sparsh
0 1 4 7
1 2 5 8
2 3 6 9
3 4 7 10

b) By passing a two-dimensional NumPy array in the DataFrame method of Pandas:

 Example:
 arr2=np.random.randint(2, 89, (3,3))
 DF_2=pd.DataFrame(arr2)

 Output:

0 1 2
0 64 85 66
1 5 80 84
2 23 60 38

c) By passing some Series in the DataFrame method of Pandas:

 Example:
 S1=pd.Series(np.random.randint(2,89,10))
 S2=pd.Series(np.random.randint(0,10,10))
 S3=pd.Series(np.random.randint(20,70,10))
 DF_3=pd.DataFrame({‘Score’:S1, ‘Papers’:S2, ‘Age’:S3})
 DF_3
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 Output:

Score Papers Age
0 25 4 46
1 77 0 33
2 16 9 67
3 43 1 61
4 48 8 33
5 72 5 22
6 79 3 49
7 80 6 23
8 20 6 20
9 53 0 27

Adding a Column in a Data Frame
Syntax:
<name of the Data Frame>[‘<Column Name’>] = L 

Where L is a List.

Example:
Sal=np.random.randint(10000,100000,10)

DF_3[‘Sal’]=Sal

DF_3

Output:

Score Papers Age Sal
0 25 4 46 19850
1 77 0 33 17093
2 16 9 67 90831
3 43 1 61 77055
4 48 8 33 58274
5 72 5 22 95604
6 79 3 49 29780
7 80 6 23 88793
8 20 6 20 29931
9 53 0 27 22357
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Deleting column
The drop function helps us to delete a column from a DataFrame.

Example:

DF_3.drop(‘Sal’, axis=1)

DF_3

Output:

Score Papers Age
0 25 4 46
1 77 0 33
2 16 9 67
3 43 1 61
4 48 8 33
5 72 5 22
6 79 3 49
7 80 6 23
8 20 6 20
9 53 0 27

Addition of Rows
The concat function helps to concatenate a DataFrame with another Data Frame.

Example:

DF_4=pd.DataFrame(np.random.randint(10,1000,(5,3)))

pd.concat([DF_3, DF_4])

Output:

0 1 2 Age Papers Sal Score
0 NaN NaN NaN 46.0 4.0 19850.0 25.0
1 NaN NaN NaN 33.0 0.0 17093.0 77.0
2 NaN NaN NaN 67.0 9.0 90831.0 16.0
3 NaN NaN NaN 61.0 1.0 77055.0 43.0
4 NaN NaN NaN 33.0 8.0 58274.0 48.0

Contd…
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5 NaN NaN NaN 22.0 5.0 95604.0 72.0
6 NaN NaN NaN 49.0 3.0 29780.0 79.0
7 NaN NaN NaN 23.0 6.0 88793.0 80.0
8 NaN NaN NaN 20.0 6.0 29931.0 20.0
9 NaN NaN NaN 27.0 0.0 22357.0 53.0
0 566.0 436.0 746.0 NaN NaN NaN NaN
1 597.0 331.0 666.0 NaN NaN NaN NaN
2 997.0 407.0 702.0 NaN NaN NaN NaN
3 958.0 447.0 741.0 NaN NaN NaN NaN
4 906.0 226.0 688.0 NaN NaN NaN NaN

Deletion of Rows
The drop function is used to drop rows/columns from a Data Frame.

Example:

DF_4.drop([4], axis=0, inplace=True)

Output:

0 1 2
0 566 436 746
1 597 331 666
2 997 407 702
3 958 447 741

unique
The unique function finds unique values in a column of a Data Frame.

Example: To see the unique values of the age column of the Students_df Data Frame 
issue the following command:
Students_df.Age.unique()

nunique
The nunique function finds the number of unique values in a Data Frame column.

Example:
Students_df.Age.unique()
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Iterating a Pandas Data Frame
a) iterrows():
 The pandas.DataFrame.iterrows method helps us to iterate through the rows of 

a Data Frame.
 Example:
	 for	index,	row	in	DF_4.iterrows():
	 	 print(index,’	:	‘,	row)

b) index:
 The pandas.DataFrame.index	attribute	may	also	be	used	to	iterate	over	a	given	

Data Frame rows.
 Example:
 for ind in DF_3.index:
  print(DF_3[‘Age’][ind],’ year old, Papers= ‘, DF_3[‘Papers’][ind])

 Output:
 46 year old, Papers= 4 33 year old, Papers= 0 67 year old, Papers= 9 

61 year old, Papers= 1 33 year old, Papers= 8 22 year old, Papers= 5 
49 year old, Papers= 3 23 year old, Papers= 6 20 year old, Papers= 6 
27 year old, Papers= 0

c) iteritems():
 The DataFrame.iteritems() method can also be used to iterate through a Pandas 

Data Frame.
 Example:
 for label, col in DF_4.iteritems():
  print(label,’ : ‘, col)

 Output:
 0 : 0 566 1 597 2 997 3 958 Name: 0, dtype: int32 1 : 0 436 1 331 2 

407 3 447 Name: 1, dtype: int32 2 : 0 746 1 666 2 702 3 741 Name: 2, 
dtype: int32

Some of the important methods and procedures to deal with the Pandas data types 
have been presented in this Appendix. The reader should visit https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html for a 
detailed discussion on DataFrames and https://pandas.pydata.org/pandas-docs/
stable/reference/api/pandas.Series.html for a detailed discussion on Series.





Introduction
Face classification is the process of identifying the face of a person from an image. 
It is an important problem but not an easy one. The conventional algorithms fail at 
detecting or classifying faces.  We are given two sets of images: first containing the 
face of a person and the second containing the face of another person. The task is to 
identify the first person from an image that is not provided in the training set. In this 
process, the training set contains images of a face, and the corresponding label and 
the label of the test set needs to be predicted. 

Here, machine learning comes to our rescue and helps us tackle this problem. The 
Pipeline used in this problem requires the pre-processing of the data, followed by 
feature extraction, feature selection and finally applying the classification algorithm. 

In this appendix the Local Binary Pattern (LBP) is used for feature extraction, Fischer 
Discriminant Ratio (FDR) is used for feature section and the classification is carried 
out using the Support Vector Machine. The results of the application of the pipeline 
on the given dataset are encouraging.

appendix 2
Face Classification



238      Machine Learning for Beginners

Data
Source: The project uses two sets of images having 28 images each belonging to two 
classes which are henceforth called Actor1 and Actor2. The images are of the shape 
60 × 60 × 3. The data set was divided into test and train by taking 70% of the images 
for training and 30% for testing. 

Conversion to grayscale:
Before applying feature extraction, the images are converted into the grayscale. This 
is because LBP has been used for feature extraction. One of the aims of this extraction 
method is to detect edges, which can be detected using the grayscale images also. 
The shape of each image after this conversion becomes 60 × 60.

Methods
Feature extraction
LBP aims at finding the relevant features and at the same time reducing the number 
of features. Local Binary Pattern (LBP) is a simple yet very efficient texture operator 
which labels the pixels of an image by thresholding the neighborhood of each pixel 
and considers the result as a binary number [6]. The original LBP operator [6] forms 
labels for the image pixels by thresholding the 3 x 3 neighborhood of each pixel 
with the center value and considering the result as a binary number. The histogram 
of these 28 = 256 different labels can then be used as a texture descriptor [6]. The 
application of feature extraction reduces the dataset to a () matrix. 

Splitting of data
Sklearn module train_test_split is used to spit the data in training data and test data 
with testing data of size 30%.

Feature Selection
Fisher Discriminant Ratio (FDR) aims at assigning value to each feature based on its 
mean and the variance, in accordance with its relevance to the label. The features are 
then arranged in the decreasing order of their FDR values. 
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Forward Feature Selection
Forward feature selection is an iterative method in which we start with zero feature 
in the model. We continue adding a feature in each iteration which improves the 
performance of the model until addition of a new variable starts to degrade the 
performance of the model.

Classifier
The Support Vector Machine is a popular classification algorithm. SVM classifier is 
used as it can perform maximum separation hyperplane. SVM classifier with the 
linear kernel is used as a classifier and is trained using training data and then used 
to predict labels of testing data.

Observation and Conclusion
The variation of accuracy with the number of features is shown in Figure 1. It can be 
observed that the highest accuracy achieved is 91% when only 4 features are taken 
for model training.

Figure 1: Variation of accuracy with the number of features. 

The reader is encouraged to try out the combinations of different feature extraction 
methods, classifiers, and feature selection methods and compare the results. 





General
Richard O. Duda, Peter E. Hart, and David G. Stork. (2000). Pattern Classification 
(2nd Edition). Wiley-Interscience, USA.

Mitchell Tom M., (1986). Machine Learning, Mg. Graw Hill. 

Simon Haykin. (1998), Neural Networks: A Comprehensive Foundation (2nd. ed.). 
Prentice Hall PTR, USA.

Russell, S. & Norvig, P. (2003). Artificial intelligence, a modern approach (2nd ed.). 
Englewood Cliffs: Prentice Hall.

T. Ojala, M. Pietikäinen, and D. Harwood (1994), “Performance evaluation of texture 
measures with classification based on Kullback discrimination of distributions”, 
Proceedings of the 12th IAPR International Conference on Pattern Recognition 
(ICPR 1994), vol. 1, pp. 582 - 585.

T. Ojala, M. Pietikäinen, and D. Harwood (1996), “A Comparative Study of Texture 
Measures with Classification Based on Feature Distributions”, Pattern Recognition, 
vol. 29, pp. 51-59.

BiBliography



242      Machine Learning for Beginners

Nearest Neighbors 
[1] Cover, T. M. (1968). Estimation by the nearest neighbor rule. IEEE Transactions 

on Information Theory, IT-14, 50–55.a

[2] Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE 
Transactions on Information Theory, IT-13, 21–27. Dasarathy, B. V. (1991). Nearest-
neighbor classification techniques. Los Alomitos: IEEE Computer Society Press.

[3] Dudani, S. A. (1975). The distance-weighted k-nearest-neighbor rule. IEEE 
Transactions on Systems, Man, and Cybernetics, SMC-6, 325–327.

Neural Networks
[1] Minsky, M. & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT.

[2] Hopfield, J. J. (1982). “Neural networks and physical systems with emergent 
collective computational abilities”. Proc. Natl. Acad. Sci. U.S.A. 79 (8): 2554–
2558. 

[3] McCulloch, Warren; Walter Pitts (1943). «A Logical Calculus of Ideas Immanent in 
Nervous Activity». Bulletin of Mathematical Biophysics. 5 (4): 115–133. 

[4] Rosenblatt, F. (1958). “The Perceptron: A Probalistic Model For Information 
Storage And Organization In The Brain”. Psychological Review. 65 (6): 386–408. 

[5] Minsky, M.; S. Papert (1969). An Introduction to Computational Geometry. MIT 
Press. 

[6] McCulloch, Warren; Pitts, Walter (1943). “A Logical Calculus of Ideas Immanent 
in Nervous Activity”. Bulletin of Mathematical Biophysics. 5 (4): 115–133. 

[7] Hebb, Donald (1949). The Organization of Behavior. New York: Wiley.

Support Vector Machines 
[1] Cortes, Corinna; Vapnik, Vladimir N. (1995). “Support-vector networks” (PDF). 

Machine Learning. 20 (3): 273–297.  

Decision Trees
[1] Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and 

regression trees. Belmont: Wadsworth International Group.

[2] Dietterich, T. (1998). Approximate statistical tests for comparing supervised 
classification learning algorithms. Neural Computation, 10, 1895–1923.



Face Classification      243

[3] Murty, M. N. & Krishna, G. (1980). A computationally efficient technique for 
data clustering. Pattern Recognition, 12, 153–158.

[4] Quinlan, J. R. (1987). “Simplifying decision trees”. International Journal of Man-
Machine Studies. 27 (3): 221–234. 

[5] K. Karimi and H.J. Hamilton (2011), “Generation and Interpretation of Temporal 
Decision Rules”, International Journal of Computer Information Systems and 
Industrial Management Applications, Volume 3

[6] Wagner, Harvey M. (1 September 1975). Principles of Operations Research: With 
Applications to Managerial Decisions (2nd ed.). Englewood Cliffs, NJ: Prentice 
Hall.

[7] R. Quinlan, “Learning efficient classification procedures”, Machine Learning: an 
artificial intelligence approach, Michalski, Carbonell & Mitchell (eds.), Morgan 
Kaufmann, 1983, p. 463–482.

[8] Utgoff, P. E. (1989). Incremental induction of decision trees. Machine learning, 
4(2), 161–186. 

Clustering 
[1] Cheeger, Jeff (1969). “A lower bound for the smallest eigenvalue of the 

Laplacian”. Proceedings of the Princeton Conference in Honor of Professor S. 
Bochner.

[2] William Donath and Alan Hoffman (1972). “Algorithms for partitioning of 
graphs and computer logic based on eigenvectors of connections matrices”. 
IBM Technical Disclosure Bulletin.

[3] Fiedler, Miroslav (1973). “Algebraic connectivity of graphs”. Czechoslovak 
Mathematical Journal.

[4] Stephen Guattery and Gary L. Miller (1995). “On the performance of spectral 
graph partitioning methods”. Annual ACM-SIAM Symposium on Discrete 
Algorithms.

[5] Daniel A. Spielman and Shang-Hua Teng (1996). “Spectral Partitioning Works: 
Planar graphs and finite element meshes”. Annual IEEE Symposium on 
Foundations of Computer Science.

[6] Ng, Andrew Y and Jordan, Michael I and Weiss, Yair (2002). “On spectral 
clustering: analysis and an algorithm” (PDF). Advances in Neural Information 
Processing Systems.



244      Machine Learning for Beginners

[7] Rokach, Lior, and Oded Maimon. “Clustering methods.” Data mining and 
knowledge discovery handbook. Springer US, 2005. 321-352.

[8] Frank Nielsen (2016). “Chapter 8: Hierarchical Clustering”. Introduction to 
HPC with MPI for Data Science. Springer.

[9] R. Sibson (1973). “SLINK: an optimally efficient algorithm for the single-link 
cluster method” (PDF). The Computer Journal. British Computer Society. 16 (1): 
30–34. 

[10] D. Defays (1977). “An efficient algorithm for a complete-link method”. The 
Computer Journal. British Computer Society. 20 (4): 364–366. 

Fourier Transform   
[1] Taneja, H.C. (2008), “Chapter 18: Fourier integrals and Fourier transforms”, 

Advanced Engineering Mathematics, Vol. 2, New Delhi, India: I. K. International Pvt 
Ltd, ISBN 978-8189866563.

[2] Jont B. Allen (June 1977). «Short Time Spectral Analysis, Synthesis, and Modification 
by Discrete Fourier Transform». IEEE Transactions on Acoustics, Speech, and Signal 
Processing. ASSP-25 (3): 235–238.

Principal Component Analysis 
[1] Jackson, J.E. (1991). A User’s Guide to Principal Components (Wiley).

[2] Jolliffe, I. T. (1986). Principal Component Analysis. Springer Series in Statistics. 
Springer-Verlag. pp. 487. 

[3] Jolliffe, I.T. (2002). Principal Component Analysis, second edition (Springer).

Histogram of Oriented Gradients 
[1] Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human 

Detection, lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf


