
 i

Machine Learning
for

Beginners

Learn to Build Machine Learning
Systems Using Python

Harsh Bhasin

www.bpbonline.com

ii

FIRST EDITION 2020
Copyright © BPB Publications, India
ISBN: 978-93-89845-42-6

All Rights Reserved. No part of this publication may be reproduced or distributed in
any form or by any means or stored in a database or retrieval system, without the prior
written permission of the publisher with the exception to the program listings which may
be entered, stored and executed in a computer system, but they can not be reproduced
by the means of publication.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s &
publisher’s knowledge. The author has made every effort to ensure the accuracy of
these publications, but cannot be held responsible for any loss or damage arising from
any information in this book.

All trademarks referred to in the book are acknowledged as properties of their
respective owners but BPB Publications cannot guarantee the accuracy of this
information.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj,
New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

www.bpbonline.com

 iii

Dedicated to
My Mother

iv

About the Author

Harsh Bhasin is an Applied Machine Learning researcher. Mr. Bhasin worked as
Assistant Professor in Jamia Hamdard, New Delhi, and taught as a guest faculty in
various institutes including Delhi Technological University. Before that, he worked
in C# Client-Side Development and Algorithm Development.

Mr. Bhasin has authored a few papers published in renowned journals including
Soft Computing, Springer, BMC Medical Informatics and Decision Making, AI and
Society, etc. He is the reviewer of prominent journals and has been the editor of a
few special issues. He has been a recipient of a distinguished fellowship.

Outside work, he is deeply interested in Hindi Poetry, progressive era; Hindustani
Classical Music, percussion instruments.

His areas of interest include Data Structures, Algorithms Analysis and Design,
Theory of Computation , Python, Machine Learning and Deep learning.

 v

About the Reviewer

u	”Yogesh is the Chief Technology Officer at Byprice, a price comparison
platform powered by advanced machine learning and deep learning models.
He has successfully deployed 4 business critical applications in the last 2 years
by harnessing the power of machine learning.

 He has worked with recommendation systems, text similarity algorithms,
deep learning models and image processing.

 He is a visionary who understands how to drive product market fit for highly
scalable solutions . He has 8 years of experience and has successfully deployed
more than a dozen large scale B2B and B2C applications. He has worked as
a senior software developer in one of Latin America’s largest e-commerce
company, Linio, which serves 15 million users every month.

 His vast experience in different fields of Software Engineering, Data Science
and Storage Engines helps him in creating simple solutions for complex
problems.

 He graduated in Software Engineering from Delhi College of Engineering,
INDIA.

 He loves music, gardening and answering technical questions on
StackOverflow.”

vi

Acknowledgments

“YOU DON’T HAVE TO BE GREAT TO START,
BUT YOU HAVE TO START TO BE GREAT.”

 — ZIG ZIGLAR

I would like to thank a few people who helped me to start. Professor Moin Uddin,
former Vice-Chancellor, Delhi Technological University has been a guiding light in
my life. Late Professor A. K. Sharma had always encouraged me to do better and
Professor Naresh Chauhan, YMCA Institute of Science and Technology, Faridabad
has always been supportive.

I would also like to thank my students Aayush Arora, Arush Jasuja, and Deepanshu
Goel for their help. I would also like to thank BPB Publications for giving all the
support provided when needed. Also would like to thank Yogesh for his efforts,
for the feedback given by him.

Lastly, I would like to thank my mother and sister, my friends, and my pets: Zoe
and Xena for bearing me.

 vii

Preface

Data is being collected by websites, mobile applications, dispensations (on various
pretexts), and even by devices. This data must be analyzed to become useful. The
patterns extracted by this data can be used for targeted marketing, for national
security, for propagating believes and myths, and for many other tasks. Machine
Learning helps us in explaining the data by a simple model. It is currently being
used in various disciplines ranging from Biology to Finance and hence has become
one of the most important subjects.

There is an immediate need for a book that not only explains the basics but also
includes implementations. The analysis of the models using various datasets
needs to be explained, to find out which model can be used to explain a given data.
Despite the presence of excellent books on the subject, none of the existing books
covers all the above points.

This book covers major topics in Machine Learning. It begins with data cleansing
and presents a brief overview of visualization. The first chapter of this book talks
about introduction to Machine Learning, training and testing, cross-validation, and
feature selection. The second chapter presents the algorithms and implementation
of the most common feature selection techniques like Fisher Discriminant ratio
and mutual information.

The third chapter introduces readers to Linear Regression and Gradient Descent.
The later would be used by many algorithms that would be discussed later in the
book. Some of the important classification techniques like K-nearest neighbors,
logistic regression, Naïve Bayesian, and Linear Discriminant Analysis have been
discussed and implemented in the next chapter. The next two chapters focus on
Neural Networks and their implementation. The chapters systematically explain the
biological background, the limitations of the perceptron, and the backpropagation
model. The Support Vector Machines and Kernel methods have been discussed
in the next chapter. This is followed by a brief overview and implementation of
Decision Trees and Random Forests.

Various feature extraction techniques have been discussed in the book. These
include Fourier Transform, STFT, and Local Binary patterns. The book also
discusses Principle Component Analysis and its implementation.

The concept of Unsupervised Learning methods like K-means and Spectral
clustering have been discussed and implemented in the last chapter.

The implementations have been given in Python, therefore cheat sheets of NumPy,
Pandas, and Matplotlib have been included in the appendix.

 ix

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience
to our subscribers. Our readers are our mirrors, and we use their inputs to reflect
and improve upon human errors if any, occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at business@bpbonline.com
for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

x

BPB is searching for authors like you
If you're interested in becoming an author for BPB, please visit
www.bpbonline.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit
your own idea.

The code bundle for the book is also hosted on GitHub at https://github.
com/bpbpublications/Machine-Learning-for-Beginners. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/bpbpublications. Check them out!

PIRACY
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com.

REVIEWS
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions, we at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

 xi

Table of Contents

 1. An Introduction to Machine Learning .. 1
Structure .. 2
Objective .. 2
Conventional algorithm and machine learning ... 2
Types of learning .. 4

Supervised machine learning ..4
Unsupervised learning ..4

Working ... 5
Data ...5
Train test validation data ...6
Rest of the steps ..8

Applications .. 9
Natural Language Processing (NLP) ..9
Weather forecasting ...9
Robot control ...9
Speech recognition ...9
Business Intelligence ..10

History ... 10
Conclusion .. 11
Exercises .. 11

Multiple Choice Questions ..11
Theory ..14
Explore ...14

 2. The Beginning: Pre-Processing and Feature Selection15
Introduction .. 15
Structure .. 16
Objective .. 16
Dealing with missing values and ‘NaN’ ... 16
Converting a continuous variable to categorical variable 23
Feature selection ... 24
Chi-Squared test ... 25

xii

Pearson correlation .. 30
Variance threshold ... 31
Conclusion .. 32
Exercises .. 33

Multiple Choice Questions ..33
Programming/Numerical ..34
Theory ..36

 3. Regression ...37
Introduction .. 37
Structure .. 38
Objective .. 38
The line of best fit ... 38
Gradient descent method .. 40
Implementation .. 42
Linear regression using SKLearn ... 46
Experiments .. 47

Experiment 1: Boston Housing Dataset, Linear Regression,
10-Fold Validation ..47
Experiment 2: Boston Housing Dataset, Linear Regression, train-test split48

Finding weights without iteration .. 49
Regression using K-nearest neighbors .. 50
Conclusion .. 52
Exercises .. 52

Multiple Choice Questions ..52
Theory ..53
Experiments ...54

 4. Classification ...55
Introduction .. 55
Structure .. 56
Objective .. 56
Basics .. 56
Classification using K-nearest neighbors .. 58

Algorithm ...58
Implementation of K-nearest neighbors ... 59
The KNeighborsClassifier in SKLearn ... 61

 xiii

Experiments – K-nearest neighbors .. 62
Logistic regression .. 64
Logistic regression using SKLearn ... 66
Experiments – Logistic regression ... 68
Naïve Bayes classifier ... 68
The GaussianNB Classifier of SKLearn ... 69
Implementation of Gaussian Naïve Bayes ... 70
Conclusion .. 72
Exercises .. 73

Multiple Choice Questions ..73
Theory ..74
Numerical/Programs ...74

 5. Neural Network I – The Perceptron ..77
Introduction .. 77
Structure .. 78
Objective .. 78
The brain.. 78
The neuron .. 80
The McCulloch Pitts model .. 81

Limitations of the McCulloch Pitts ...85
The Rosenblatt perceptron model .. 86

Algorithm ...87
Activation functions .. 88

Unit step ...88
sgn ...89
Sigmoid ...89
Derivative ...90
tan-hyperbolic ..92

Implementation .. 94
Learning... 97
Perceptron using sklearn ... 99
Experiments ..100

Experiment 1: Classification of Fisher Iris Data ..101
Experiment 2: Classification of Fisher Iris Data, train-test split103
Experiment 3: Classification of Breast Cancer Data104

xiv

Experiment 4: Classification of Breast Cancer Data, 10 Fold Validation ...106
Conclusion ..108
Exercises ..108

Multiple Choice Questions ..108
Theory ..110
Programming/Experiments ..110

 6. Neural Network II – The Multi-Layer Perceptron113
Introduction ..113
Structure ..114
Objective ..114
History ...114
Introduction to multi-layer perceptrons ...116
Architecture ..117
Backpropagation algorithm ..118
Learning...120
Implementation ..120
Multilayer perceptron using sklearn ..124
Experiments ..126
Conclusion ..135
Exercises ..135

Multiple Choice Questions ..135
Theory ..137

Practical/Coding ..137

 7. Support Vector Machines ..139
Introduction ..139
Structure ..140
Objective ..140
The Maximum Margin Classifier ...140
Maximizing the margins ...144
The non-separable patterns and the cost parameter..145
The kernel trick ...147
SKLEARN.SVM.SVC ..148

Experiments ...149
Conclusion ..154
Exercises ..154

 xv

Multiple Choice Questions ..154
Theory ..156
Experiment ..156

 8. Decision Trees ...157
Introduction ..157
Structure ..158
Objective ..158
Basics ..159
Discretization ..160
Coming back ...162
Containing the depth of a tree ..167
Implementation of a decision tree using sklearn ...167
Experiments ..168

Experiment 1 – Iris Dataset, three classes ..169
Experiment 2 – Breast Cancer dataset, two classes171

Conclusion ..174
Exercises ..174

Multiple Choice Questions ..174
Theory ..175
Numerical/Programming ..175

 9. Clustering ..177
Introduction ..177
Structure ..178
Objective ..178
K-means ..179

Algorithm: K Means ..180
Spectral clustering ..181

Algorithm – Spectral clustering ..182
Hierarchical clustering ..182
Implementation ..186

K-means ...186
Experiment 1 ..186
Experiment 2 ..187
Experiment 3 ..188

Spectral clustering ...189

xvi

Experiment 4 ..190
Experiment 5 ..191
Experiment 6 ..191

Agglomerative clustering ...193
Experiment 7 ..193
Experiment 8 ..194
Experiment 9 ..195

DBSCAN ..196
Conclusion ..197
Exercises ..198

Multiple Choice Questions ..198
Theory ..199
Numerical ..199

Programming ..200

10. Feature Extraction ...201
Introduction ..201
Structure ..202
Objective ..202
Fourier Transform ..203
Patches ...215
sklearn.feature_extraction.image.extract_patches_2d216
Histogram of oriented gradients ..217
Principal component analysis ...220
Conclusion ..223
Exercises ..223

Multiple Choice Questions ..223
Theory ..224
Programming ...225

Appendix 1. Cheat Sheet – Pandas ..227
Creating a Pandas series ..227

Using a List ..228
Using NumPy Array ..228
Using Dictionary ...229

Indexing ...229
Slicing ...230

 xvii

Common methods ...230
Boolean index ...230
DataFrame ...231

Creation ...231
Adding a Column in a Data Frame ..232
Deleting column ...233
Addition of Rows ..233
Deletion of Rows ..234
unique ..234

nunique ..234
Iterating a Pandas Data Frame ...235

Appendix 2. Face Classification ..237
Introduction ..237
Data ..238

Conversion to grayscale: ..238
Methods ...238

Feature extraction ...238
Splitting of data ...238
Feature Selection ...238
Forward Feature Selection ..239
Classifier ..239

Observation and Conclusion ..239

Bibliography ..241
General ..241
Nearest Neighbors ...242
Neural Networks ..242
Support Vector Machines ...242
Decision Trees ...242
Clustering ...243
Fourier Transform ...244
Principal Component Analysis ...244
Histogram of Oriented Gradients ...244

Chapter 1
An Introduction to
Machine Learning

With the advancements in technology, data collection has become easy. When you
turn on location in your mobile, upload your pictures on Facebook or Instagram, fill
online forms, browse websites, or even order items from an e-commerce website,
your data is collected. What do companies do with this huge data? They analyze it,
find your preferences, and this helps them in marketing. The advertisements being
shown to you, generally, depending on the above things. Marketing professionals
must lure you into buying something that you need or are even remotely interested
in. Your data helps them. Likewise, the dispensation may keep track of suspicious
activities using this data, may tract the source of transactions, or gather other
important information using this data. However, this is easier said than done. It is a
huge data, and its analysis cannot be done using conventional methods.

Let us consider another example to understand this. Suppose Hari visits YouTube
every day and watches videos related to Indian Classical Music, Hindi Poetry, and
watch Lizzie McGuire. His friend Tarush goes to YouTube and watches Beer Biceps
and other videos related to workouts. After some time, YouTube starts suggesting
different relevant videos to both of them. While Hari is shown a video related to
Lizzie McGuire’s reboot or Dinkar, in the recommended videos’ list, Tarush is not
recommended any such video. On the other hand, Tarush is shown a recommendation
for a workout video.

2 Machine Learning for Beginners

It may be stated that recommendation requires an in-depth analysis and cannot
be done solely based on any conventional algorithms. Those using e-commerce
websites or famous music streaming apps like YouTube must be knowing that the
recommendations are mostly good, if not excellent. Here the task is prediction.
Your browsing history helps in this task, and for sure, it cannot be accomplished by
conventional algorithms. Moreover, the betterment in the output, with time, means
there is a well-defined performance measure for the task.

Machine learning comes to the rescue of those wanting to analyze this huge data,
predict trends, find patterns, and so on. This chapter introduces machine learning,
discusses it’s types, explains how the given data is divided, and discusses its
pipeline. This chapter also presents an overview of the history of machine learning
and its applications.

Structure
The main topics covered in this chapter are as follows:
 • Conventional algorithm and machine learning
 • Types of learning
 • Working
 • Applications of machine learning
 • History of machine learning

Objective
After reading this chapter, the reader will be able to learn the following topics:
 • Understand the definition and types of machine learning
 • Understand the working of a machine learning algorithm
 • Appreciate the applications of machine learning
 • Learn about the history of machine learning

Conventional algorithm and machine
learning
The algorithmic solution of a problem requires the input data and a program to
produce an output. Here, a program is a set of instructions, and output is generated
by applying those instructions to the input data. In a machine learning algorithm,

An Introduction to Machine Learning 3

the system takes the Input Data along with the examples of Output (in the case
of supervised learning). It creates a model, which establishes (or tries to establish)
some relation between the input and the output. Learning, in general, is improving
the outcome using experience (E). How do we know that we have improved? The
performance measure tells the performance of our model. As per Tom Michel,
machine learning can be defined as follows.

If the performance measure (P) improves with experience (E) on task (T), then the
system is said to have learned.

Here, the Task (T) can be Classification, Regression, clustering, and so on. The data
constitutes Experience (E). The Performance Measure (P) can be any accuracy,
specificity, sensitivity, F measure, Sum of Squared errors, and so on. These terms
will be defined as we proceed. To understand this, let us consider an example of
disease classification using Magnetic Resonance Imagining. If the number of patients
correctly classified (accuracy) as diseased is considered as a performance measure,
then this problem can be defined as follows:
	 •	 T: Classify given patients as diseased or not-diseased
	 •	 P: Accuracy
	 •	 E: The MRI images of a patient

The task will be accomplished by pre-processing the given data, extracting relevant
features from the pre-processed data, selecting the most important features, applying
a classification algorithm followed by post-processing. In general, a machine learning
pipeline constitutes the following steps (Figure 1.1):

Figure 1.1: Machine learning pipeline

These terms will become clear in the following chapters. Pre-processing has been
discussed in the second chapter. The chapter also introduces the idea of Feature
selection. The next six chapters discuss supervised learning techniques, and the last
chapter introduces Feature extraction. I decided to discuss Feature extraction at the

4 Machine Learning for Beginners

end because some of the techniques require the knowhow of concepts introduced in
the previous seven chapters. Having seen the definition of machine learning, let us
now have a look at its types.

Types of learning
Machine learning can be classified as supervised, unsupervised, or semi-supervised.
This section gives a brief overview of the types.

Supervised machine learning
This type of learning uses the labels of the data in training set to predict the label of
a sample in the test set. The training set acts as a teacher in this type of algorithm,
which supervises the training process. The data in these algorithms contain samples
and their correct labels. The training process tries to uncover the pattern hidden in
the data. That is, the learning aims to relate the labels Y with the data X as y = f(x),
where x is a sample, and y is the label.

If this label is a discrete value, then the process is termed as classification. If y is a real
value, then it is called regression. Chapter 3 of this book introduces a regression, and
Chapter 4 to Chapter 8 discusses classification algorithms.

Examples of classification are face detection, voice detection, object detection, and
so on. Classification essentially means placing the given sample into one of the
predefined categories. Examples of regression include predicting the price of a
commodity, predicting temperature, housing price, and so on.

Unsupervised learning
This type of learning uses input Data(X) but no labels. The learning aims to learn
about the data by grouping the like samples or by deducing the associations. Since
there is no teacher involved in the algorithm, it is called unsupervised learning.
Clustering and association come under unsupervised learning. Clustering uncovers
the groupings in the data. Association, on the other hand, uncovers the rules which
associate the events. Chapter 9 of this book discusses clustering.

There is something in between supervised and unsupervised learning. It is called
semi-supervised learning. In this type of learning, a part of the input data may be
labeled. Many practical problems fall into this category.

An Introduction to Machine Learning 5

Working
This section discusses the working of a machine learning algorithm. We begin with
understanding the data. It is followed by the division of data into train and test sets.
The learning algorithm is then applied to the training data, and the performance is
then measured.

Data
In the discussion that follows, the data is represented by X, which is a matrix with n
rows and m columns (n × m matrix). Here, n is the number of samples, and m is the
number of features in each sample. The labels are represented by y, which is a (n × 1
matrix). It may be noted that the ith row of y contains the label corresponding to the
ith row of X.

For example, consider the Wine dataset available at the UCI Machine Learning
Repository. The data considers attributes of wines from three different cultivars but
from the same region in Italy. The dataset has 13 features, which are as follows (as
per the official documentation at https://archive.ics.uci.edu/ml/datasets/Wine):
1. Alcohol
2. Malic acid
3. Ash
4. Alkalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
8.	 Nonflavanoid	phenols
9. Proanthocyanins
10. Color intensity
11. Hue
12. OD280/OD315 of diluted wines
13. Proline

The label is the class of the Wine (1, 2, or 3). The number of samples in the dataset is
178. That is, the values of the 13 features determine the class of Wine. The value of n
is 178, and that of m is 13. The data, X, is 178 × 13 array, and the response variable,
y, is a 178 × 1 array. It is followed by pre-processing, which involves many things,
including removing null values. Some of these techniques have been discussed in
the second chapter. Once you have got the data, create a train, and a test set out of
the data.

6 Machine Learning for Beginners

Train test validation data
Suppose you are given the responsibility of teaching a topic to a group of students.
How will you find whether your students have understood the topic? You will
probably take a test, and based on the performance of the test; you will judge
how well the topic has been understood. Wait! The performance is indicative of
the learning only if the questions asked are not the same as those discussed while
teaching (or during training). It is because giving the same questions in the test will
judge how well the students can memorize, not their understanding of the topic.

The same is true for a machine learning model. The data used in the training phase
should not be used for testing. So, to have confidence in the model, the given data is
divided into two parts train and test Figure 1.2:

Figure 1.2: Splitting the data into train set and test set

Well! It may also mislead us in believing that the model so developed is good (or
bad). So, we randomly split the data into train data (x %) and test data (100-x%) and
find the accuracy. Repeat this process many times and take the average accuracy. It
increases the confidence in the model so developed.

It may also be stated that while training, we may need to use some data for testing.
We cannot use the test data because of the reasons stated above. So we divide the
train data into train and validation. Train the model using the train data, and once
the parameters are learned. Test the model using the test data:

An Introduction to Machine Learning 7

Figure 1.3: Splitting the data into train set, test set, and validation set

While learning, this validation data can be used to see the training performance.
Once the model has learned, the test data can be used to test the model.

Another approach to validation is referred to as cross-validation. In this approach,
the given data is divided into k parts. Out of these k parts (say part 1), one is used for
testing and the rest for training. The process is repeated, taking part 2 as the test data
and the rest as the train data. Likewise, k such models are created, and the average
performance of these k models is reported. For example, in Figure 1.4, the value of
k is 6. The data is split into six parts, and in each iteration, one of the parts is used
for testing and the rest for training. The performance of the model is reported as the
average of the six models:

To summarize, K-Fold is better than the train-test split as it gives more confidence
in the results. However, the volume of the data must be considered before applying
K-Fold. Also, in K-Fold, you take the average performance of K models and declare
it as the output. Having seen the methods of division of data into train and test, let
us move forward.

8 Machine Learning for Beginners

Figure 1.4: K Fold Validation: K=6

Rest of the steps
The division of data is followed by choosing the target function and its representation.
The learning algorithms are then applied to the training set. The algorithm learns its

An Introduction to Machine Learning 9

parameters using the training set and then applies them to the test set. We will learn
about learning about our journey. The performance measures, which tell you how
good your algorithm is, are discussed in the next chapter.

Having seen the outline of the machine learning pipeline, let us have a look at some
of the exciting applications of machine learning.

Applications
Machine learning is an involved task, and along with other things, it also requires
algorithms that learn from data. Machine learning has successfully been applied in
many domains and disciplines. From Social Science to Drug Development, ML has
proved it’s mental everywhere. It is creating history, and we are a part of this history.
Let us just not watch it, let us live this history and immerse ourselves in ML.

Natural Language Processing (NLP)
NLP aims to process and understand natural language. It involves linguistics,
engineering, and artificial Intelligence. The advancements in ML have greatly helped
the field. One of the fascinating examples of the advancement in this field is Alexa,
voice assistance by Amazon.

Weather forecasting
This discipline aims at predicting the weather conditions at a particular location,
using the past data available. It may be stated that even before the advent of machine
learning, or even computers, the weather was being predicted. However, the latest
technologies have helped improve this prediction.

Robot control
As per the literature review, the mechanical parts of the robot are generally controlled
by software. This software may fail if it does not update itself with time, or learn.
At this point, ML comes into play. ML helps a robot in making intelligent decisions
using the training data.

Speech recognition
Speech recognition aims at the translation of spoken languages by computers. It
requires computational linguistics and Computer Science. This field helps in
understanding speech.

10 Machine Learning for Beginners

Business Intelligence
The data collected by a company must be converted into a form, which helps us in
making decisions. This field helps in analyzing data to create the following:
	 •	 Reports
	 •	 Graphs
	 •	 Dashboards

The above helps in generating actionable insights into the data. Along with the
above, ML has been successfully used in diagnosing diseases using medical imaging
and many other things. So, machine learning is interesting. Let us have a brief look
at how the story started.

History
One of the central characters in this play is the Neural Network. The story of this
character started when Warren McCulloch and Walter Pitts published a paper
explaining the working of Neurons in 1943. They created an electric circuit of this
model. The model laid the foundation for machine learning. This model has been
discussed in the fourth chapter of this book.

The Turing Test was conceived in the 1950s to find whether the user is a human or
a computer. This test laid the foundation for accessing algorithms used in many
ML applications, including chatbots. Many researchers contributed to incremental
research on these topics.

One of the most exciting events in the history of ML is the creation of the first
computer program to play checkers by Samuel. The McCulloch Pitts model was also
being studied and analyzed. The perceptron model was created by Rosenblatt in
1958. Windrow and Hoff created two models ADELINE for binary classification and
MADELINE, which could eliminate echo.

The researchers came up with novel ways to handle the inability of these models
to detect non-linearly separable data. John Hopfield created a network that had
bidirectional lines in 1982.

The development of Multi-Layer Perceptron helped in classifying the non-linearly
separable data also. The discipline got a boost with the invention of Support Vector
Machines, which did not need the whole data to create a separating hyperplane and
were based on the concept of maximum margin classifier.

The second half of the ‘90s witnessed some amazing inventions. IBM developed
Deep Blue in 1997, which was a chess-playing computer. It was followed by the

An Introduction to Machine Learning 11

development of tools that could handle large data and hardware, which could
process faster.

Currently, we are in the Deep Learning Age. GoogleBrain was developed in 2012.
It was a deep neural network created by Jeff, which focused on pattern detection in
images and videos.

AlexNet was also developed by 2012. It won the ImageNet competition by a large
margin in 2012, which led to the use of GPUs and Convolutional Neural Networks
in machine learning. DeepFace was developed in 2014. It is a Deep Neural Network
created by Facebook, which they claimed can recognize people with the same
accuracy as a human can. The research in the field of ML and DL continues and will
hopefully amaze ourselves in the future also.

Conclusion
Machine learning is being used in diverse application domains. It is both useful
and interesting. The creation of hand-crafted features, selection of features,
application of models, and evaluation of performance is no alchemy. It involves a
deep understanding of Computer Science, statistics, and many other disciplines.
Moreover, it can be applied in many application domains and can be used for the
good of the society. It is being used for predicting diseases, understanding the effects
of medicines, and so on. This chapter introduced machine learning. The definition,
types, and processes have been discussed in this chapter. The chapter also threw
light on the applications and the history of machine learning.

This chapter helps you to get hold of the fundamentals. It also aims to help you
motivate yourself towards learning machine learning. The reader must have also
understood the pipeline and the division of data into train and test set. Also,
this chapter forms the basis of the following chapters. The next chapter takes the
discussion forward and introduces pre-processing and feature selection. Welcome to
your journey towards becoming a machine learning professional! Before proceeding
any further, let us spare a minute to see what we have learned.

Exercises
Multiple Choice Questions
 1. Which of the following is not a type of machine learning?
 a. Classification
 b. Regression

12 Machine Learning for Beginners

 c. Clustering
 d. All of the above are the types of machine learning

 2. Which of the following is a type of supervised learning?
 a. Classification b. Regression
 c. Both d. None of the above

 3. Which of the following is a type of unsupervised learning?
 a. Clustering b. Finding association rules
 c. Both d. None of the above

 4. In the case of supervised learning:
 a. Both X and y are given
 b. Only X is given
 c. X and the labels of some of the samples are given
 d. None of the above

 5. In the case of unsupervised learning:
 a. Both X and y are given
 b. Only X is given
 c. X and the labels of some of the samples are given
 d. None of the above

 6. In the case of semi-supervised learning,
 a. Both X and y are given
 b. Only X is given
 c. X and the labels of some of the samples are given
 d. None of the above

 7. If the label y in the case of supervised learning is discrete, then it is referred to
as

 a. Classification b. Regression
 c. Both d. None of the above

 8. If the label y in the case of supervised learning is a real value, then it is referred
to as

 a. Classification b. Regression
 c. Both d. None of the above

An Introduction to Machine Learning 13

 9. Can we use the whole input data for training?
 a. Yes b. No
 c. Depends on the problem d. None of the above

 10. Which of the following may not produce better performance in training, but
will lead to a robust model?

 a. 70% train, 30% test b. 30% train, 70% test
 c. K-Fold d. None of the above

 11. The performance of K-Fold represents:
 a. The performance of the final model
 b. The average performance of all the models developed
 c. Depends on the situation
 d. None of the above

 12. If the value of K in K-Fold is 1, then:
 a. All the data would be used in training
 b. All the data would be used in testing
 c. Depends on the situation
 d. None of the above

 13. If the value of K in K-Fold is same as the number of input samples, then:
 a. All the data would be used in training
 b. All the data would be used in testing
 c. Depends on the situation
 d. None of the above

 14. Which of the following is a part of an ML pipeline?
 a. Feature extraction b. Feature selection
 c. Learning d. All of the above

 15. Which of the following must be performed, in case of data having very high
dimensionality?

 a. Feature selection b. Pre-processing
 c. Both d. None of the above

14 Machine Learning for Beginners

Theory
 1. Define machine learning. Explain the difference between a conventional

algorithm and an ML algorithm.
 2. What is supervised learning? Give examples to explain why it is called

supervised learning.
 3. What is unsupervised learning? Give examples to explain why it is called

unsupervised learning.
 4. Define classification.
 5. Define regression. How is it different from classification?
 6. Define clustering. Give examples.
 7. Explain the importance of dividing the data into train and test set.
 8. What is the validation data? How is it useful while training?
 9. Explain K-Fold validation. How is the performance of a model measured using

K-Fold validation?
 10. State some of the applications of machine learning. Write a brief note on the

history of machine learning.

Explore
As you proceed, you will need data for your experiments. Explore the following link
to find out the various data available for:
	 •	 Classification
	 •	 Regression
	 •	 Clustering

https://archive.ics.uci.edu/ml/index.php

Perform the following tasks:

 1. Download three datasets of each type and read the data using Python.
 2. Find the number of features and the number of samples in each dataset.
 3. Find out the data type of each feature.
 4. Find the statistical description of each feature (mean, median, mode, standard

deviation).

Introduction
Machine learning is an intricate task. Learning from the data involves cleaning
of data, extracting features, selecting relevant features, and applying learning
algorithms. The first and most important task is to clean the data. The data may
contain missing values due to the reasons discussed in the chapter. The data may also
contain “Not a Number” or “NaN”’s. Since missing data will hamper the learning
process or, worse, will make the model learn incorrectly, dealing with such values is
essential. This chapter gives an overview of how to deal with such values. Cleaning
of data will enhance the performance of our Machine Learning model and make the
results more meaningful. At times it is essential to convert the continuous data to
categorical one. This chapter also introduces the discretization of data.

Once the data is clean, we extract the features and then move to the selection of
relevant features. The feature extraction methods have been discussed in the
following chapters. The second part of this chapter focuses on feature selection. Some
of the statistical methods of feature selection have been discussed in this chapter.
The chapter is important as it is the starting point of the road to machine learning.
The methods discussed in the chapter will make your model efficient and effective.

Chapter 2
The Beginning:

Pre-Processing and
Feature Selection

16 Machine Learning for Beginners

Structure
The main topics covered in this chapter are as follows:
	 •	 Dealing with the missing values and ‘NaN’’s
	 •	 Feature selection
	 •	 Chi-Squared test
	 •	 Using variance to select features
	 •	 Pearson correlation

Objective
After reading this chapter, the reader will be able to:
	 •	 Understand the importance of dealing with the missing values
	 •	 Understand the importance of feature selection
	 •	 Understand the Chi-Squared test and Pearson’s correlation

Dealing with missing values and ‘NaN’
If your data contains missing values or ‘Not-a-Number’ type values, you might
not be able to apply the standard procedures to carry out tasks like classification,
regression, and so on. Therefore these missing values must be dealt-with before
learning from the data. Knowing the source of the missing data can greatly help you
in identifying the proper techniques to deal with them. These values may occur due
to numerous reasons. Some of the most common ones are as follows:
	 •	 Incomplete filling of forms by the users
	 •	 If the database is migrated from some other, some data may have been lost
	 •	 Errors due to programs or due to other technical reasons

To deal with a missing value, one must:
	 •	 Find information about the feature which contains missing values. For

example, if all the values in a feature are in a given range, the probability of
the missing value lying in that range is high.

	 •	 Find the type of feature. For example, if a feature contains string type values,
the missing value must also be a string.

	 •	 Find if the missing value can be replaced with obvious value. For example,
if the column named country, in the regular employee table of a company
located in Faridabad, has a missing value, its probability of being “India”
is high.

The Beginning: Pre-Processing and Feature Selection 17

There are many ways to deal with such values, but the application of any technique
requires an in-depth analysis of the data at hand and due deliberations. It is because
filling these placeholders with incorrect data may lead to the formation of a model
that does not perform well.

Some of the most common ways to deal with the missing values are as follows:
	 •	 Ignoring the records having missing values: This solution is problematic if

the number of samples is low. But in the case of data with many samples, this
solution might work.

	 •	 Replacing the missing values with average/median: This may not be
possible if the range of the values is too large. However, if this range is low,
this solution might work.

	 •	 Replacing the missing values with those obtained from regression: This
book contains a dedicated chapter on regression. Applying the regression
techniques for finding out the missing values is one of the options, but this
may not work in some of the cases.

According to many data scientists, replacing missing values with the mean is
not a good idea. It is because replacing many values with mean will reduce the
variance and would undermine its correlation with other features. To understand
the procedure of dealing with the missing values, consider the following data.

This section uses a file called Research_data.csv. The file contains seven fields:
	 •	 R_ID: Research ID of the researcher
	 •	 F_Name: The first name of the researcher
	 •	 L_Name: The last name of the researcher
	 •	 No_Books: The number of books authored by him/her
	 •	 No_Papers: The number of papers authored by him/her
	 •	 R_Score: The Research Gate score of the researcher

The data types of the fields are as follows:
	 •	 R_ID: Integer
	 •	 F_Name: String
	 •	 L_Name: String
	 •	 No_Books: Integer
	 •	 No_Papers: Integer
	 •	 R_Score: Float

18 Machine Learning for Beginners

The contents of the file are as follows (Table 2.1):

R_ID F_Name L_Name No_Books No_papers R_Score

0 1001.0 Harsh Bhasin 9 25 15.37
1 1002.0 Kumar Gaurav NaN 10 10.23
2 1003.0 Lovish Kundu NaN 8 8.20
3 NaN Arush Jasuja 2 NaN
4 1005.0 Kim parsons Nan 15 12.56
5 1006.0 Pulin Verma NaN 2 4.00
6 1007.0 ABC XYZ 5 8 7.21
7 1008.0 LMN QRS 1 13 9.76

Table 2.1: The given table contains missing values and NaN’s

Note that the file contains NaN and missing values. The following steps take the
reader on the journey of dealing with the missing values. The following code uses
Pandas.
1. Importing Numpy and Pandas:
 import pandas as pd

 import numpy as np

2. Observing a few rows of the given data: Use read_csv method to read the file
and the head method to see the first few rows of the file

 df = pd.read_csv(“property_data.csv”)

	 #	The	first	few	rows

 data=df.head()

 print(data)

 Output:

R_ID F_Name L_Name No_Books No_papers R_Score

0 1001.0 Harsh Bhasin 9 25 15.37
1 1002.0 Kumar Gaurav NaN 10 10.23
2 1003.0 Lovish Kundu NaN 8 8.20
3 NaN Arush Jasuja 2 NaN
4 1005.0 Kim parsons Nan 15 12.56

Table 2.2: Output of Step 2

The Beginning: Pre-Processing and Feature Selection 19

3. Finding ‘NAN’ values and ‘NAN’ type-values: The NAN values in the data can
be found by the isnull method of a column of a dataframe:

 # Finding Nan’s in the No_Books column

 print(df[‘No_Books’])

 print(df[‘No_Books’].isnull())

 Output:
 0 9

 1 NaN

 2 NaN

 3 2

 4 Nan

 5 NaN

 6 5

 7 1

 Name: No_Books, dtype: object

 0 False

 1 True

 2 True

 3 False

 4 False

 5 True

 6 False

 7 False

 Name: No_Books, dtype: bool

	 Note	 that	 the	 above	method	does	 not	work	 if	 a	 field	 has	 ‘Nan’	 or	 any	 other	
value	in	place	of	‘NaN.’	Moreover,	the	method	will	not	work	if	the	value	of	a	
field	having	an	integer	data	type	is	empty.	For	example,	if	the	method	is	applied	
to the No_Papers	field,	 the	expected	results	are	not	obtained.	Note	 that	 in	 the	
example	that	follows,	False is displayed for row 3:

 print(df[‘No_papers’])

 print(df[‘No_papers’].isnull())

 Output:
 0 25

20 Machine Learning for Beginners

 1 10

 2 8

 3

 4 15

 5 2

 6 8

 7 13

 Name: No_papers, dtype: object

 0 False

 1 False

 2 False

 3 False

 4 False

 5 False

 6 False

 7 False

 Name: No_papers, dtype: bool

 The	solution	of	the	above	problem	is	to	find	the	unique	values	in	the	column	(or	
manually	observe	the	column)	and	replace	each	‘NaN’	like	values	with	‘NaN’.	
This can be done by assigning na_values	to	the	list	containing	possible	‘NaN’	
values in the column:

 missing = [“n/a”, “na”, “Nan”,” “]

 df = pd.read_csv(“Research_data.csv”, na_values = missing)

 The above statements will result in the replacement of all the values in the
missing	list	with	the	standard	‘NaN.’	It	can	be	observed	by	printing	the	values	
of	the	affected	fields:

 print(df[‘No_Papers’])

 print(df[‘No_papers’].isnull())

 Output:
 0 3.0

 1 3.0

 2 NaN

 3 1.0

The Beginning: Pre-Processing and Feature Selection 21

 4 3.0

 5 NaN

 6 2.0

 7 1.0

 8 NaN

	 Name:	NUM_BEDROOMS,	dtype:	float64

 0 False

 1 False

 2 True

 3 False

 4 False

 5 True

 6 False

 7 False

 8 True

 Name: NUM_BEDROOMS, dtype: bool

4. Dealing with the ‘NAN’ in an integer type column: Note that the above method
will not work if a column contains characters, and one of the values is an integer.
To consider the integer value in a column having data type character, as ‘NaN,’
the following code can be used:

 count=0

 for item in df[]:

 try:

 int(item)

 df.loc[count,]=np.nan

 except ValueError:

 pass count+=1

 Likewise,	to	convert	any	value	having	a	particular	data	type,	the	value	code	can	
be used by replacing the type.

5. Counting the total number of missing values in each column: To count the
total number of missing values in each column, the following statement can be
used:

 print(df.isnull().sum())

22 Machine Learning for Beginners

 Output:
 R_ID 1

 F_Name 0

 L_Name 0

 No_Books 3

 No_papers 0

 R_Score 1

 dtype: int64

6. Finding the total number of missing values: To find the total number of missing
values in the data, the following statement can be used:

 print(df.isnull().sum().sum())

 Output:
 5

7. Replacing the ‘NaN’ values with a particular value in a particular column:
To replace the ‘NaN’ values with a particular value in a particular column, the
following statement can be used:

	 df[<column	name>].fillna(<value>,	inplace=True)

8. Replace ‘NAN’ with the mean: To replace the ‘NaN’ with the mean of the
column, the following statement can be used:

 m = df[]<column name>].mean()

	 df[<column	name>].fillna(m,	inplace=True)

 As	stated	earlier,	replacing	the	missing	value	with	the	mean is not recommended.

9. To drop the records with ‘NaN’ values: To drop the records with ‘NaN’ values,
the following statement can be used:

 df.dropna()

 Output:

R_ID F_Name L_Name No_Books No_papers R_Score

0 1001.0 Harsh Bhasin 9 25 15.37
4 1005.0 Kim parsons Nan 15 12.56
6 1007.0 ABC XYZ 5 8 7.21
7 1008.0 LMN QRS 1 13 9.76

Table 2.3: The output of Step 9

The Beginning: Pre-Processing and Feature Selection 23

Having seen the ways to deal with the missing values, let us now move to the process
of discretization. The next section gives a brief overview of the process.

Converting a continuous variable to cate-
gorical variable
A continuous variable can be converted into a categorical variable in many ways,
some of which have been explored in this chapter.

To begin with, a continuous variable can be converted into binary by setting the
value less than a threshold to 0 and those greater than the threshold as 1. This
process is called Dichotomizing. To understand the need for this, consider a study
about happiness with the present dispensation where your happiness question
ranges from 1 to 10. You might be interested in categorizing the results as either great
happiness or low happiness. To accomplish this task, you can also split a continuous
variable into two parts. Likewise, to divide the values into n parts, a similar process
can be applied.

The following code converts the Fisher-Iris data into categorical values. In the first
step, the required modules have been imported. The second step extracts the data
and asks for the value of the number of levels. The third step performs the required
task:

1. Import the required modules:
 import numpy as np

 from sklearn import datasets

 data= datasets.load_iris()

2. Extracting data:
 x=data.data[:100,:]

 x=np.array(x)

 print(x.shape)

 y=data.target[:100]

 y=np.array(y)

 print(y.shape)

 n=int(input(‘Enter the value of n \t:’))

3. Carry out categorization:
 for i in range (x.shape[1]):

24 Machine Learning for Beginners

 x1=x[:,i]

 max1=np.max(x1)

 min1=np.min(x1)

 step=(max1-min1)/n

 print(max1, ‘ ‘,min1, ‘ ‘,step)

 for k in range (n):

 a=min1+(step*k)

 b=min1+(step*(k+1))

 for j in range(x.shape[0]):

 if ((x[j,i]>=a) and (x[j,i]<=b)):

 x[j,i]=k

 print(x)

In case of data having a very large number of features, feature selection is used. The
following sections give an in-depth overview of some of these methods.

Feature selection
The pre-processing of data follows feature extraction. These features will be used
to create a feature set, which will help in learning. Feature extraction has been
discussed in the last chapter of this book. At times, the features so obtained are
huge in number. For example, if you have a 256×256 picture and wish to consider
each pixel of the picture as a feature, you will have 216 features. A picture with more
pixels will have more features. Likewise, a video will have an even larger number of
features. The extraction techniques, discussed in the following chapters, help to find
better features. Some techniques even represent the given data with a lesser number
of features. However, not all the features so obtained are equally important. Some
of them are redundant, and some are noisy. The redundant features do not enhance
the performance of a model, and the noisy features may degrade the performance of
a model. Therefore, a smaller, more relevant subset of features needs to be selected
to carry out the required learning task efficiently and effectively. So, having a larger
number of features results in the following problems:
	 •	 Learning with a larger number of features is computationally expensive
	 •	 Some features are redundant
	 •	 Some features are noisy

The Beginning: Pre-Processing and Feature Selection 25

Feature selection aims at better performance and reduced learning time. This
selection can be classified as follows:
	 •	 Feature selection: This method aims at selecting the most relevant features

from the given set of features.
	 •	 Feature elimination: This method aims at eliminating the irrelevant features

from the given set of features.

Feature selection can again be classified as follows:
	 •	 Filter methods: The filter methods select the features considering their

relation with the labels.
	 •	 Wrapper methods: The wrapper method uses the classifier/repressor to find

the subset that gives the best performance.

Except for the above, some learning methods have inbuilt feature selection
mechanisms. Feature selection methods generally arrange features in order of their
importance. To do this, these methods may consider a single feature or a set of
features. The former is referred to as Univariate methods, and the later are called
Multivariate methods.

Univariate feature selection methods place features in order of their relation with
the output variables. It can be done using statistical tests. Some of the prominent
methods that can be used for this purpose are as follows:
	 •	 Chi-Squared
	 •	 Variance based
	 •	 Correlation-based
	 •	 ANOVA

The next three sections discuss Chi-Squared, Variance based, and Correlation-based
methods for feature selection.

Chi-Squared test
Feature selection in case of data having categorical variables can be made using the
χ2 test. A categorical variable is one that can take values from a given set. The test is
applicable for categorical variables, so continuous data is converted into categorical
data by applying the techniques studied in the last-but-one section.

“The Pearson’s Chi-Squared (χ2) test supposes that the expected frequencies of a categorical
variable match the observed frequencies for that variable [1].”

26 Machine Learning for Beginners

The observed frequencies of variables can be determined using the given data and
their expected frequencies using the methods explained in the following discussion.
If the value of the χ2 is large, the expected and the observed frequencies are far apart.
In case this value is low, the two are nearer.

The result obtained on applying the test needs to be compared with the critical value.
This critical value is found using tables by calculating the degree of freedom. The
degree of freedom is found using the following formula:

degreesoffreedom: (numberofrows - 1) * (numberofcolumns - 1)

Formally, the test can be stated as follows:

χ2 Test:
	 •	 Reject Null hypothesis is χ2 >= Critical Value
	 •	 Do not reject the Null hypothesis if χ2 < Critical Value

The following steps explain the process of finding the χ2. The code uses Pandas. The
following examples use a file called Dept_paper_Data.csv. The file contains four
fields:
	 •	 R_ID: Research ID of the researcher
	 •	 Department: The department of the researcher
	 •	 No_Papers: The number of papers authored by him/her
	 •	 Patent: If the researcher has a patent

The data types of the fields are as follows:
	 •	 R_ID: Integer
	 •	 Department: String
	 •	 No_Papers: Integer
	 •	 Patent: String

The contents of the file are as follows (Table 2.4):

R_ID Department No_papers Patent

0 H001 CS 3 Y
1 H002 CS 5 NA
2 H003 CS 2 NA
3 H004 CS 9 N
4 H005 CS 1 Y
5 H006 CS 6 NA

Contd…

The Beginning: Pre-Processing and Feature Selection 27

6 H007 CS 1 N
7 H008 ECE 2 NA
8 H008 ECE 0 N
9 H009 ECE 4 N
10 H010 ECE 10 Y
11 H011 ECE 3 N
12 H012 ECE 1 Y

Table 2.4: The research output table

It is intended to find whether the value of the Patent field depends on the Department
of the researcher. The following steps will help us to apply Chi-square to accomplish
the given task.

In the above example, Patent can take values:
	 •	 ‘Y’
	 •	 ‘N’
	 •	 ‘NA’

And the Department can take the following values:
	 •	 ‘CS’
	 •	 ‘ECE’

And are hence categorical variables. Therefore, the test can be used to accomplish
the given task. Firstly, the summary of the values of categorical variables of the two
features needs to be drawn. It can be done using a table called a contingency table.
Table 2.5 shows the format of the contingency table:

_ ‘Y’ ‘NA’ ‘N’

‘CS’ 2 3 2
‘ECE’ 2 1 3

Table 2.5: Format of the contingency table

The following steps will help us to apply The Pearson’s Chi-Squared Chi-square to
accomplish the given task:

1. Find unique values from the Department column and place them in a list called
departments. Likewise, find unique values from the Patent column and place
them in a list called patent_values:

28 Machine Learning for Beginners

 departments=df[‘Department’].unique()

 print(departments)

 patent_values=df[‘Patent’].unique()

 print(patent_values)

 Output:
 [‘CS’ , ‘ECE’]

 [‘Y’ , ‘NaN’, ‘N’]

2. Find the records where Patent is ‘Y’ and Department is ‘CS’. Likewise, find the
number of records for all six combinations. The task can be accomplished by
using the following code:

 table=np.zeros((2,3))

 i=0

 j=0

 for dept in departments:

 j=0

 for val in patent_values:

 a=(df[(df[‘Department’]==dept) & (df[‘Patent’]==val)].count())

 table[i,j]=a[0]

 j+=1

 i+=1

 print(table)

 Output:
 array([[2., 3., 2.], [2., 1, 3.]])

Having obtained the contingency table, we can proceed further and find the expected
frequencies, as shown in Table 2.6. Note that the last column contains the sum of
values in that row, and the last row contains the sum of values of that column:

_ ‘Y’ ‘NA’ ‘N’

‘CS’ 2 3 2 7
‘ECE’ 2 1 3 6

4 4 5

Table 2.6: Calculating expected frequencies

The Beginning: Pre-Processing and Feature Selection 29

The expected frequency of the cell at the intersection of ‘CS ‘and ‘Y’ is:
7 × 4

13
It is obtained by multiplying the value at the last cell of the corresponding column
with the last cell of the corresponding row and dividing the result with the last cell
of the table. Likewise, the expected frequency of each cell (Ei) can be calculated. The
value of the chi-squared metric is calculated by using the following formula:

χ 2 = −∑()/()O E Ei i i

The table value corresponding to the degree of freedom, which in this case is two
is then compared with the calculated value, and decision regarding dependence is
made.

The implementation of this test using SKLearn is as follows: In the code that follows,
the chi2_contingency and scipy.stats needs to be imported. The module has a
method called chi2_contingency, which takes the contingency table as its argument
and outputs the value of the statistics, the p_value, and the degree of freedom
(d_of_freedom). The critical value can be obtained by using the chi2.ppf method,
which takes probability and the degree of freedom as its arguments. The comparison
between the two values is then made, and the result is printed:
from scipy.stats import

from chi2

value, p_value, d_of_freedom, expected = chi2_contingency (table)

print(expected)

probability = 0.95

critical = chi2.ppf(probability, d_of_freedom)

if abs(value) >= critical:

 print(‘The variables are Dependent’)

else:

 print(‘The variables are not Dependent’)

alpha = 1.0 - probability

print(‘significance=%.2f,	p=%.2f’	%	(alpha,	p_value))

if p_value<= alpha:

 print(‘Reject’)

else:

 print(‘Do not reject’)

30 Machine Learning for Beginners

Output:
[[2.15384615 2.15384615 2.69230769]

[1.84615385 1.84615385 2.30769231]]

The vairbles are not Dependent

significance=0.05,	p=0.57

Do not reject

Having seen the implementation of Chi-squared, let us now move to another feature
selection technique called the Pearson Correlation.

Pearson correlation
Pearson’s coefficient of correlation between two variables X and y is given by:

corr X y X y X yX y X
i

n

i i
i

n

i
i

n

i, /(() = −()× −()

 −() ×

= = =
∑ ∑ ∑

1 1

2

1

−−()y
2
)

Where Xi is the ith element of X and yi is the ith element of y.

If the value of corr(X,y) is high, the samples are highly correlated, and if the value of
this coefficient is low, they are less correlated. If the value of corr(X,y) is 1, it denotes
a perfect positive correlation. In case this value is -1, it denotes a perfect negative
correlation. The value 0 indicates that X and y are not related. To place the features
of a given data in order of their importance using this test, we take one feature at
a time and find its correlation with y. The coefficients so obtained are placed in a
list. The values of this list indicate the importance of features. The following code
implements the method. The implementation includes the following methods:
	 •	 load_data

	 •	 pearson_cor

The load_data function returns the data and the target of the Fisher Iris dataset:
Def load_data():

Data=load_iris()

data=Data.data

target=Data.target

return (data, target)

The Pearson’s coefficient can then be calculated for each feature, using the formula
stated above:

The Beginning: Pre-Processing and Feature Selection 31

def pearson_cor(X,y):

 corr=[]

 for i in range(X.shape[1]):

 x=X[:,i]

 x_mean=np.mean(x)

 y_mean=np.mean(y)

 x1=x-x_mean

 y1=y-y_mean

 prod=x1*y1

 num=np.sum(prod)

 den=np.sqrt((np.sum(x1*x1))*(np.sum(y1*y1)))

 c=num/den

 corr.append(c)

 return corr

Finally, the above functions can be invoked to get the Person’s coefficient of each
feature and place them in order:
X,y=load_data()

corr=pearson_cor(X,y)

feat=np.argsort(np.abs(corr))

print(feat)

The above code results in a list consisting of indices placed in the order of importance
of features. In the case of Fisher Iris data, the list is [2, 0, 1, 3], which means that the
third feature is the most important, followed by the first and then the second. The
fourth feature is the least important. If one aims to select the top two features, he can
select the third and the first feature. In case the top three features are required, the
second feature can also be selected.

The next section discusses feature selection using the variance threshold.

Variance threshold
If a feature has the same value in all the samples, it is not important for classification
or regression. Therefore, such a feature can be excluded from the data. Extending
this argument further, we can say that the feature which has low variance may not
be very important. It may be stated that for Bernoulli random variables, the variance
is given by:

32 Machine Learning for Beginners

Var = p × (1 – p)

Where p is the probability. For the Boolean features, the above formula can be used
as a threshold. For example, in a dataset with Boolean features, if it is intended to
remove which are same for more 90% of the samples the threshold .9 * (1 - .9) can
be used as an argument of the VarianceThreshold method and the final data, which
does not contain the relevant features can be generated using the fit_transform
method of SKLearn. The method can be implemented using the following code:
#Selecting features using variance threshold

import numpy as np

from sklearn.feature_selection import VarianceThreshold

X, y=load_data()

sel = VarianceThreshold(threshold=(.9* (1 - .9)))

sel.fit_transform(X)

print(sel)

Feature selection can also be accomplished using some of the methods which require
the know-how of some of the learning algorithms discussed in the following chapters
and hence have not been included here.

Conclusion
Like the Simpsons revolve around the Simpson family, but the absence of other
characters will have a catastrophic effect on the series. You can understand Liza only
if the rest of the characters show very little respect for nature. Homer is effective only
because of Ned Flanders, and Marge shines as Homer does not. In machine learning,
the learning algorithms are the protagonists. However, they will lose their cut if the
procedures like data cleaning are absent.

This chapter is the first step towards machine learning and data science. The
techniques discussed in this chapter not only make your model effective and
efficient but will also help you in many other disciplines. The chapter begins with
the methods of dealing with the missing values and ‘NaN’’s. It is followed by a brief
discussion on converting continuous data into categorical ones.

The second part of this chapter introduces one of the most important topics of
machine learning, which is feature selection. Some important techniques of feature
selection, like the Chi-Squared test, variance-based method, and Pearson correlation,
have been discussed in the chapter.

The Beginning: Pre-Processing and Feature Selection 33

The methods introduced in this chapter would help you to clean the data and find
missing values. It will not only improve the performance of the model but also make
the results more meaningful. The reader is expected to analyze the methods and by
varying the parameters.

The next chapter introduces the regression for finding the values of unknown
samples. The reader should clean the data and deal with the missing values before
applying the algorithms introduced in the next chapter.

Exercises
Multiple Choice Questions
 1. Missing values may occur due to?
 a. Incomplete filling of forms by the users
 b. If the database is migrated from some other, some data may have been lost
 c. Errors due to programs or due to other technical reasons
 d. All of the above

 2. To deal with a missing value, one must?
 a. Find information about the feature
 b. Find the type of feature
 c. Find if the missing value can be replaced with an obvious value
 d. All of the above

 3. Some of the most common ways to deal with the missing values are as follows:
 a. Ignoring the records having missing values
 b. Replacing the missing values with average/median
 c. Replacing the missing values with those obtained from regression
 d. All of the above

 4. Which of the following is true?
 a. Not all the features so obtained are equally important
 b. The redundant features do not enhance the performance of a model
 c. The noisy features may degrade the performance of a model
 d. All of the above

34 Machine Learning for Beginners

 5. Having a larger number of features results in?
 a. Computationally inefficient learning
 b. Redundant features
 c. Noisy features
 d. All of the above

 6. Feature selection aims at?
 a. Better performance b. Reduced learning time
 c. Both d. None of the above

 7. Several features can be reduced by?
 a. Feature selection b. Feature elimination
 c. Both d. None of the above

 8. Which of the following are the types of feature selection?
 a. Filter methods b. Wrapper methods
 c. Both d. None of the above

 9. Which of the following are the types of feature selection?
 a. Univariate methods b. Multivariate methods
 c. Both d. None of the above

 10. Some of the prominent methods that can be used for feature selection are?
 a. Chi-Squared b. Variance based
 c. Correlation-based d. All of the above

Programming/Numerical
Create a file called Student.csv, having the following data:

S_ID F_name L_name No_Sub Fees

H001 Pratham Reehal 1 1500
H002 Tanishq Chitkara 2750
H003 _ Arora 2 2750
H004 Krishna Sharma 2
H005 Tarush _ 1 3000
H006 Eliel Joseph 1 3000
H007 Ram Mohan 2 6000

The Beginning: Pre-Processing and Feature Selection 35

The description of the fields is as follows:
	 •	 S_ID: Student ID
	 •	 F_Name: First name
	 •	 L_Name: Last name
	 •	 No_Sub: Number of subjects
	 •	 Fees: Total fees

The data type of each field is as follows:
	 •	 S_ID: String
	 •	 F_Name: String
	 •	 L_Name: String
	 •	 No_Sub: Integer
	 •	 Fees: Float

Now, perform the following tasks:

 1. Read the CSV file using Pandas
 2. Replace the ‘NaN’ type values with ‘NaN’
 3. Replace the unknown value in the Fees field with the mean
 4. Replace the unknown value in the No_Sub field with the median
Another field called distinction is added to the table. The updated data is as follows:

S_ID Distinction

H001 Y
H002 N
H003 Y
H004 NA
H005 N
H006 Y
H007 N

 1. Find whether No_Sub and Distinction are correlated?
 2. Apply the Chi-Squared test to find whether No_Sub and Distinction are

correlated.
 3. If Distinction is the label, find which feature is more important No_Sub or

Fees. Accomplish this task using:
 a. Variance b. Correlation

36 Machine Learning for Beginners

 4. Use the Breast Cancer dataset (https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.load_breast_cancer.html) and place the features in
terms of their importance using:

 a. Variance b. Correlation

 5. Do you observe anything peculiar while applying the first method?
 6. Perform the above task using the Fisher Iris dataset.

Theory
 1. Explain the importance of feature selection.
 2. What are the types of feature selection?
 3. Differentiate between filter and wrapper methods.
 4. What is Univariate feature selection? Give an example.
 5. Explain the Chi-Squared test for feature selection.
 6. How can variance be used for selecting features?
 7. Explain the application of Pearson Correlation for feature selection.
 8. How do you deal with missing values in the given data? Explain.
 9. What are the problems in replacing the missing values with mean?
 10. What are the problems in replacing the missing values with zeros?

Introduction
At times we need to apply our skills to solve the problems of the people of the
nation. The nation, which is different from what is being shown, where untimely
rains cause farmer distress, where people work for their lifetime to buy a house,
where weather determines whether a family will have the evening meals or not.
Regression partially helps us to predict the above and accomplish the task of making
people’s lives better.

Regression is a supervised learning technique where the values of the dependent
variable are real. This chapter introduces gradient descent, which will not only help
in implementing regression but also in the classification algorithms discussed in the
following chapters. The algorithm assumes that the dependent variables depend
linearly on the independent variables, which may not always the case. The regression
technique based on the values of the nearest neighbors will overcome this limitation.
This chapter also presents the results of the application of the above algorithms on
different datasets, hence uncovering the applicability of an algorithm on diverse
datasets and hence its robustness.

Chapter 3
Regression

38 Machine Learning for Beginners

Structure
The main topics covered in this chapter are as follows:
	 •	 Line of best fit
	 •	 Gradient descent method
	 •	 Implementation
	 •	 Linear regression using SKLearn
	 •	 Finding weights without iteration
	 •	 Regression using K-nearest neighbors

Objective
After reading this chapter, the reader will be able to:
	 •	 Define regression
	 •	 Find the line of best fit
	 •	 Understand gradient descent
	 •	 Implement Regression using SKLearn
	 •	 Use K-nearest neighbors for regression

The line of best fit
A survey was conducted in a start-up, in which the respondents were asked to state
their income and the rent paid by them. The data collected has been shown in Table
3.1. Here, the income is the independent variable, and the rent is the dependent
variable:

Income Rent
23000 9500
14000 5000
24000 10000
52500 18000
43750 16000
18000 6000
15000 5000
16000 6000
41500 18000
45000 17500

Table 3.1: Income and rent paid by ten employees

Regression 39

Now, given the value of the independent variable, the value of the dependent variable
is to be predicted, based on the given data. Let us start by plotting the data (Figure
3.1). Note that if the data is plotted, a positive correlation between the dependent
and the independent variables can be observed:

Figure 3.1: Graph Income versus Data

If the line of best fit is found, the value of the dependent variable can be predicted,
given the value of the independent variable. If sx is the standard deviation of X, sy
is the standard deviation of Y, r is the coefficient of correlation between X and Y,
x is the mean of X and y is the mean of Y, the line of best fit for two data sets X and
Y are given by the following equation:

y = mx + c

Where:

m = (r × sy)/sx

And:

c = y – mx

Figure 3.2 shows the predicted values of rent and actual values. The slope of this line
comes out to be 0.377552163, and the y-intercept comes out to be 47.16042351. The
equation of the line, therefore, becomes:

y = 0.377552163 x + 47.16042351

This line can be used to predict the values of rent, given the income:

40 Machine Learning for Beginners

Figure 3.2: The red squares depict the predicted values of y, and the blue
rhombus depict the actual values of the rent

So, if the income of a person is 15000, then the value of rent comes out to be
5710.442871.

In the above case, the number of independent variables was one. If there is more
than one independent variable, then the regression is termed as multiple regression:

y = w0 + w1 x1 + w2 x2 + w3 x3 + … + wn xn

Here:

x1, x2, x3, …, xn are the independent variables. y is the dependent variable, w0, w1, w2,
…, wn are the weights, to be found using the given data, where weights correspond
to the coefficient to of the features, in the line (or hyperplane) of best fit. To find
the weights, the least square method can be applied. That is, from amongst many
possible straight lines (or hyper-planes), we select the line having the least mean
square distance from the given points.

“The goal of linear regression procedures is to fit a line or a hyper-plane through the points.
Specifically, the program will compute a line so that the squared deviations of the observed
points from that line are minimized.[1]”

Gradient descent method
Given X, a matrix having m columns and n rows, and y, a column matrix, having n
rows. Each row in X, represent a sample, xi. The values in xi are the values of the m

Regression 41

features which determine the value of the dependent variable yi. Here, we assume
that the linear combination of xi’s determine the value yi.

Let wi be the weight associated with a feature xi and b be the y-intercept. The
expected value of the dependent variable would be ŷ , considering ŷ to be the linear
combination of the given features. That is:

1

ˆ
m

i i
i

xy w b
=

= +∑

The above equation can be re-written by considering, x0 = 1 and b = w0 as:

0

ˆ
m

i i
i

wy x
=

=∑

The difference between the predicted value ŷ and the given value y should be
minimum, and so should be its square and half of the resultant. The objective
function therefore becomes:

21 ˆ()
2

f y y= × −

To get the optimal weights, the gradient of f with respect to the weights must be
found. The partial derivative of f with respect to the weight of the ith sample can be
written as:

ˆ
ˆ

i i

f f y
w y w
δ δ δ
δ δ δ

= ×

It is because f depends on ŷ and ŷ depends on wi:

0ˆ()

m

i i i

i i

x wf y y
w w

δδ
δ δ

== − × ∑

The final value of the gradient becomes:

()ˆ
i

i

f y y x
w
δ
δ

= − ×

The weights must be updated in a direction opposite to the gradient as the gradient
tells us the direction for the positive growth of the function. That is:

i i
i

fw w
w
δ
δ

= −

42 Machine Learning for Beginners

Or

()ˆ
i i iw w y y x= − − ×

Which is the equation used to update the weights of the ith sample?

The process of learning weights is as follows:
1.	 Initialize	weights	by	small	random	numbers:
 w = List of random numbers conatining m values, where m is the number of features
2.	 Till	convergence,	change	weights	using	the	following	equation:

()ˆ
i i iw w y y x= − − ×

3.	 Find	 the	mean	 square	 error	on	 the	 test	 set	using	 the	weights	 obtained	 in	 the	
above step.

Having seen the algorithm of regression, let us now implement the above algorithm.

Implementation
To understand the idea of linear regression, consider the following data (Table 3.2).
The data has five features: X1, X2, X3, X4, and X5. The number of samples in the
data is 21. Note that the last column depicts y, depends on the values in the first four
columns. You can save the following data as a CSV file called DataRegression.csv:

X1 X2 X3 X4 X5 y
13 82 37 98 71 137.2167
87 89 87 68 98 138.9469
75 78 81 53 36 101.2451
87 74 26 51 47 100.9123
73 78 17 32 80 104.0818
43 97 87 63 33 118.059
99 59 24 71 71 109.5203
31 17 91 41 48 53.05253
33 37 18 84 61 94.39396
22 55 85 88 79 115.9572
36 35 28 91 93 107.8502
48 83 45 24 98 108.7555
92 51 75 25 35 66.94636
20 28 40 15 72 54.09701

Contd…

Regression 43

15 37 58 43 75 76.71684
10 43 31 91 61 101.6789
48 38 32 81 69 97.00749
24 12 69 61 73 68.1979
26 38 54 47 36 66.75108
96 91 56 16 48 95.35608
62 63 94 14 45 72.02378

Table 3.2: Data for DataRegression.csv

This section will discuss the procedure to develop a model that learns w, the weights
and w0, the bias to fit the data such that:

0 1 1 2 2 3 3 4 4 5 5y w w x w x w x w x w x= + + + + +

1.	 Read	the	CSV	file	and	extract	the	data	in	X and y. This task can be accomplished
using	the	CSV	module	and	reading	the	file	using	the	reader	method.	The	extract	
Data() method fetches the data into the variables X and y. The code to read the
file	is	as	follows:

 import numpy as np

 import matplotlib.pyplot as plt

 from numpy import genfromtxt

 import csv

	 with	open(‘F:\Machine	Learning\Regression\DataRegression.csv’,’r’)	as	
f:

 data = csv.reader(f)

2.	 Initialize	the	weights	by	random	numbers	between	0	and	1.	The	init_weights
function accomplishes this task:

	 def	init_weights():

	 	 w=np.random.random(X.shape[1])

	 	 return	w

3.	 Normalize	the	data	by	using	the	following	formula:

x mx
s
−

=

	 Here,	s	is	the	standard	deviation	of	the	feature,	and	m	is	its	mean.	The	normalize	
function takes Data as the input and returns the Data,	the	mean	of	each	column,	

44 Machine Learning for Beginners

and the standard deviation of each column. The last two can be used for
converting the predicted value back to the same scale and to predict the error.

	 The	data	can	be	normalized	by	subtracting	mean	from	each	value	and	dividing	
the	difference	by	the	standard	deviation:

 def normalize(Data):

 mean_arr=[]

 std_arr=[]

 for i in range(Data.shape[1]):

 col=Data[:,i]

 s=np.std(col)

 m=np.mean(col)

 mean_arr.append(m)

 std_arr.append(s)

 #print(‘col ‘,i,’ mean ‘,m,’ std ‘,s)

 for j in range(Data.shape[0]):

 Data[j,i]=(Data[j,i]-m)/s

 #print(Data)

 return Data, mean_arr, std_arr

4. The gradient descent method can be used to train the model and learn the
weights. Note that there is no need to learn the bias separately as it is treated as
one	of	the	weights.	The	train	function	accomplishes	the	above	task.	It	takes	X,	y
and w as input arguments and returns the weight w. Note that the value of the
learning rate in the following is set as 0.01:

	 def	train(X,	y,	w):

 mse=0

 for i in range(X.shape[0]):

 x=X[i,:]

	 	 	 sum1=np.matmul(np.transpose(w),x)

 diff=(sum1-y[i])

 mse=(diff**2)

 mse=np.sqrt(mse)

 if(mse>0.01):

Regression 45

	 	 	 	 w=w-0.1*(diff)*x

	 	 	 	 #print(w)

	 	 return	w

5.	 The	mean	 squared	 error	mse	 can	 be	 calculated	using	 the	 following	 function,	
which takes X,	y and w as the input arguments and returns the mse:

	 def	calMSE(X,	y,	w):

 mse=0

 for i in range(len(y)):

 x=X[i,:]

	 	 sum1=np.matmul(np.transpose(w),x)

 diff=(sum1-y[i])

 mse+=(diff**2)

 #print(mse)

 mse=np.sqrt(mse)

 return(mse)

6.	 The	results	obtained	from	the	model,	can	be	converted	into	the	original	scale,	
using the verify	 function,	 which	 takes	 the	 predicted	 value,	 w,	 the	 mean	 of	
features and their standard deviation as input arguments and returns the
predicted values by using the formula value=(value*s)+m:

 def verify(pred, mean_arr_y, std_arr_y):

 for j in range(pred.shape[0]):

 pred[j]=(pred[j]*std_arr[-1])+mean_arr[-1]

 #print(pred)

 return pred

7.	 The	final	program	for	regression	is	as	follows:

 Data = genfromtxt(‘F:\Machine Learning\Regression\DataRegression.
csv’, delimiter=’,’)

 Data,mean_arr, std_arr=normalize(Data)

 X, y=extractData(Data)

	 w=init_weights()

	 w=train(X,	y,	w)

46 Machine Learning for Beginners

	 mse=calMSE(X,	y,	w)

	 pred=np.matmul(X,w)

	 predicted=verify(pred,	w,mean_arr,	std_arr)

The reader is expected to implement the above technique and observe and analyze
the results. The reader can also use other datasets and compare the performance of
the algorithm on various datasets.

Linear regression using SKLearn
The module sklearn.linear_model.LinearRegression implements linear
regression. The following discussion uses the model. The important parameters of
the constructor of the method are as follows (Table 3.3):

Parameter Explanation
fit_intercept This parameter is used to find the intercept. If the value of this parameter

is set as False, the data is deemed to be centered. The default value of
this parameter is True.

normalize The data is normalized by subtracting mean and dividing the data by
L2 norm. The default value of this parameter is False. Also, note that
this parameter is not important of the fit_intercept parameter is set
to False.

Table 3.3: The parameters of LinearRegression

Having seen the parameters of the function, let us now move to the attributes. The
attributes of the sklearn.linear_model.LinearRegression are as follows (Table 3.4):

Attributes Explanation
coef_ It returns the weights of the features. If there is a single target, a 1-D

array is returned, whereas, in the case of multiple targets, the 2D array
is returned. Here, the shape of the array would be (n_targets, n_
features).

intercept_ The independent term or the bias in the linear model is returned by this.
Table 3.4: The attributes of LinearRegression

The module provides us with some functions. The fit and predict are the two most
important functions. The fit function models the data X with y. The predict function
predicts the output of the argument. Let us now use the above methods on some
common datasets.

Regression 47

Experiments
This section presents two experiments in which linear regression has been applied
to the Boston Housing dataset. In the first experiment, K-Fold validation has been
used with K=10, and in the second experiment, the train test split has been used with
test-size=0.33. The reader is expected to vary the value of K and test_size to see the
effect of variation of these parameters on the mean squared errors. (make a plot of
variation in test size and accuracy).

Experiment 1: Boston Housing Dataset, Linear
Regression, 10-Fold Validation
1.	 Import	requisite	modules:

 import numpy as np

 from sklearn.linear_model import LinearRegression

 from sklearn.datasets import load_boston

 from sklearn.model_selection import train_test_split

 from sklearn.model_selection import KFold

2. Load the data using the load_boston() function:

 boston=load_boston()

 X=boston.data

 y=boston.target

3.	 Use	the	following	code	to	split	the	data	into	train-test,	using	the	K-Fold	validation.	
Find	the	mean	squared	error	of	each	test	case	and	find	the	average	of	the	mse’s	
so obtained:

 kf=KFold(n_splits=5)

 kf.get_n_splits(X)

 mse_arr=[]

 for train_i,test_i in kf.split(X):

 X_train,X_test=X[train_i],X[test_i]

 y_train,y_test=y[train_i],y[test_i]

	 	 modal=	LinearRegression().fit(X_train,	y_train)

 mse=0

48 Machine Learning for Beginners

 for l in range(len(y_test)):

 X_test_data=X_test[l,:]

 y1=modal.predict([X_test_data])

 d=y1-y_test[l]

 mse=mse+(d**2)

 mse=mse//(y_test.shape[0])

 mse=np.sqrt(mse)

 mse_arr.append(mse)

 print(np.mean(mse_arr))

Experiment 2: Boston Housing Dataset, Linear
Regression, train-test split
1.	 Import	requisite	modules:
 import numpy as np
 from sklearn.linear_model import LinearRegression
 from sklearn.datasets import load_boston
 from sklearn.model_selection import train_test_split
 from sklearn.model_selection import KFold

2. Load the data using the load_boston() function:
 boston=load_boston()
 X=boston.data
 y=boston.target

3.	 Use	 the	 following	 code	 to	 split	 the	 data	 into	 the	 train-test,	 using	 the	 K-fold	
validation.	Find	the	mean	squared	error	of	each	test	case	and	find	the	average	of	
the	mse’s	so	obtained:

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.33, random_state=42)

	 modal=	LinearRegression().fit(X_train,	y_train)
 mse=0
 for l in range(len(y_test)):
 X_test_data=X_test[l,:]
 y1=modal.predict([X_test_data])
 d=y1-y_test[l]
 mse=mse+(d**2)

Regression 49

 mse=mse//(y_test.shape[0])
 mse=np.sqrt(mse)
 print(np.mean(mse))

The above experiment can be repeated by not providing the random state, repeating
the experiment 10 times. Moreover, the nested validation can also be done to make
the final result more reliable.

Finding weights without iteration
Let X and Y are two matrices of order n × m and n × 1,	then	the	dimensions	
of YTX is m × n.

X be the matrix representing the Data, where each row of X represents a sample, and
each column represents a feature. The vector y gives the value of the real label. That
is:

1
11 1

2

1

 and
m

n nm
n

y
x x

y
X Y

x x
y

= =

If W represents the weight matrix, of order 1 × m, W’ represents the transpose of

W. Then (X × W’ – Y) should be minimized. It implies that , 21 ()
2

X W Y× × − is also
minimized.

That is:

() , 21 ()
2

J W X W Y= × × −

Which is same as:

() , ,1 () ()
2

TJ W X W Y X W Y= × × − × × −

To minimize the value of J, the derivative of J, with respect to W, should be equated
to 0, to get the value of W, that is:

()
0

J W

W

δ

δ
=

50 Machine Learning for Beginners

The derivative after simplification becomes:

0T TX XW X Y− =

Which gives:
1()T TW X X X Y−=

The following code implements the above algorithm:

from sklearn.datasets import load_iris

import numpy as np

from numpy import linalg

from sklearn import model_selection

Data=load_iris()

X=Data.data[:100,:]

y=Data.target[:100]

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y,
test_size=0.20, random_state=42)

W=np.matmul(np.matmul(linalg.inv(np.matmul(np.transpose(X_train),X_
train)),np.transpose(X_train)),y_train)

Let us now move to another technique of regression called K-nearest neighbors.

Regression using K-nearest neighbors
Suppose the salary of a person is to be guessed just by looking at the salaries of his
five closest friends. What will you do? Probably take the average of the salaries of
the five friends. It may appear very naïve, but it works most of the time.

In the above example, replace the friends with the train set, the salary with features,
and the person whose salary is to be guessed with the test set. The salary, to be
guessed, becomes the predicted value of the dependent variable. It is essential,
K-nearest neighbors, for regression. The precise algorithm for this regression is as
follows:
1. Divide the data into the train and the test set
2. For each test set:
 a. Find its distance from all the samples in the train set
 b. Arrange the distances in ascending order

Regression 51

	 c.	 Take	the	indices	of	the	first	K	samples	in	2.	b
 d. Find the average of the dependent variable of the test set for the above indices

and declare the result

To ascertain the performance, you can find the root mean square error.

The implementation of the above algorithm is as follows:

Data=load_boston()

X=Data.data

y=Data.target

X_train,X_test,y_train,y_test=model_selection.train_test_split(X,y,test_
size=0.3)

y_pred=[]

for i in range(X_test.shape[0]):

 x=X_test[i]

 dist=[]

 for j in range(X_train.shape[0]):

 d=0

 for k in range(X_train.shape[1]):

 d+=((X_train[j,k]-X_test[i,k])**2)

 d=np.sqrt(d)

 dist.append(d)

 index=np.argsort(dist)

 mean=0

 for t in range(5):

 mean+=(y_train[index[t]])

 mean=mean/5

 y_pred.append(mean)

It may be stated that many classification algorithms described in the following
chapters can be used for regression also.

52 Machine Learning for Beginners

Conclusion
This chapter described a supervised learning approach called regression. The
statistical method of fitting a line has been discussed in the first section. The
gradient descent method is generally used to learn the weights by minimizing the
least squared error. The method has been discussed in detail, and regression using
this method has been implemented both by using Scikit learn and without using it.
The learning of weights without iteration has also been discussed in this chapter.
Regression can also be done using other methods like K-nearest neighbors, SVM,
and neural networks. Some of these methods would be discussed in the following
chapters.

Regression finds its applications in diverse fields like weather forecasting, stock
market prediction, and so on. The technique is exciting, and there is a scope of
research in this field. The exercises given at the end of the chapter would prompt
you to explore the algorithms studied on various datasets. You will continue
learning regression both in ML and outside as and when you grow, professionally
and personally.

The next chapter introduces classification. The chapter discusses some simple
algorithms like K-nearest neighbors, logistic regression, and so on. The concept of
Linear Discriminant Analysis has also been explained in the chapter.

Exercises
Multiple Choice Questions
 1. Regression is?
 a. Supervised learning b. Unsupervised learning
 c. Both d. None of the above

 2. Gradient descent changes weights?
 a. In the direction of the gradient
 b. In the opposite direction of the gradient
 c. Both
 d. None of the above

 3. Which of the following can be used for regression?
 a. Single-layer perceptron b. Multi-layer perceptron
 c. Decision trees d. All of the above

Regression 53

 4. Which of the following can be used for regression?
 a. KNN b. Support Vector Machines
 c. Decision trees d. All of the above

 5. Which of the following can be used for regression?
 a. K means b. Support Vector Machines
 c. PCA d. All of the above

 6. What is multiplied with the gradient in the gradient Descent to change the
weights?

 a. Learning rate b. Accuracy
 c. Specificity d. None of the above

 7. Which of the following can be used to ascertain the performance of a regression
model?

 a. Mean Squared Error b. Accuracy
 c. Specificity d. None of the above

 8. In which of the following regression can be used?
 a. Weather prediction b. Stock market prediction
 c. To predict the growth of a sector d. All of the above

 9. Which of the following can be used to create a model of regression?
 a. Gradient descent b. Newton’s method
 c. Both d. None of the above

 10. If the mse of your model is 0, then it is the case?
 a. Underfitting b. Overfitting
 c. Insufficient information d. None of the above

Theory
 1. Define regression. Explain any three applications of regression.
 2. Differentiate between regression and classification.
 3. Derive the formula for gradient descent.
 4. Explain the statistical line fitting.
 5. What is multiple regression?
 6. How do you carry out regression using K-nearest neighbors?

54 Machine Learning for Beginners

 7. Explain how you can accomplish the task of finding unknown values using the
concept of Neural networks.

 8. Is feature selection important for regression?

Experiments
 1. Consider the 3D Road Network (North Jutland, Denmark) data set in the

UCI data repository. The data is a text data, having 434874 instances and
four attributes. Note that there are no missing values on the dataset. The data
contains the following features:

	 	 •	 OSM_ID: OpenStreetMap ID for each road segment or edge in the graph
	 	 •	 Longitude
	 	 •	 Latitude
	 	 •	 Altitude
 As per the UCI machine learning repository.
	 	 •	 Check if the altitude can be found by using the longitude and latitude.
	 	 •	 	Accomplish the above task using the gradient descent method and find the

mean squared error.
	 	 •	 Perform the above task using the KNN regression.
 2. Give reasons to justify why regression should not be applied to the above

problem?
 Repeat the above (Q1 and Q2) experiments on the Airfoil self-noise data set

and compute the mean squared error.
 3. The Alcohol QCM Sensor Dataset Data Set in the UCI repository has eight

features. The data in the above question had six features and that in question
1 had four features. Apply the linear regression of SKLearn to all of them and
see if having more number of features improves the results.

 4. Now have a look at the Appliances energy prediction data set, having 29
features, and see if the feature selection has an impact on the results. You can
select the relevant features by any of the feature selection methods explained
in Chapter 2.

 5. Based on the above experiments, write a note on whether having the optimal
number of features enhances the performance of the regression models.

Introduction
Hari decided not to see the face of a particular person. So, he sought to automate the
process of distinguishing the pictures having the face of the person from those which
do not contain the face. To accomplish this task, he decided to develop a pipeline.
He used various classification algorithms and compared the performance of the
algorithms using accuracy, specificity, and sensitivity. Finally, he selected a feature
extraction method, a feature section algorithm, and a classification algorithm. He
was able to accomplish the task. This chapter presents some of the most common
classification algorithms and will help you if you are stuck in the same situation.

This chapter introduces classification. It assigns one of the designated labels to a
test sample and comes under supervised learning. The techniques like K-Nearest
Neighbor, Logistic Regression, and Naïve Bayes have been discussed and
implemented in the chapter. The first is based on the determination of the majority
behavior, in the vicinity, to find the behavior of the unknown sample. The second
and third use the concepts of probability.

The chapter presents some basic experiments and expects the reader to understand
the importance of empirical analysis in machine learning. This chapter will form the
basis of complex ML-based projects like face recognition, and so on.

Chapter 4
Classification

56 Machine Learning for Beginners

Structure
The main topics covered in this chapter are as follows:
	 •	 K- Nearest Neighbors
	 •	 Implementation of KNN
	 •	 Use of SKLearn to implement KNN
	 •	 Logistic Regression
	 •	 Implementation of Logistic Regression using SKLearn
	 •	 Naïve Bayes
	 •	 Implementation of Gaussian Naïve Bayes using SKLearn

Objective
After reading this chapter, the reader will be able to:
	 •	 Understand K-Nearest Neighbor algorithm
	 •	 Implement KNN
	 •	 Use SKLearn to implement KNN
	 •	 Understand the Logistic Regression algorithm
	 •	 Use SKLearn to implement Logistic Regression
	 •	 Understand the Naïve Bayes algorithm
	 •	 Use SKLearn to implement Gaussian Naïve Bayes

Basics
Classification is the process of assigning one of the designated classes to a given
sample. It is preceded by feature extraction and feature selection. The feature
extraction part of the system extracts the relevant features, which help us to
distinguish a sample of a particular class from that of another class. This part is
important and generally determines the performance of a system. In the case of an
image or a video, since the number of features is colossal, the selection of relevant
features using a good feature selection method is required. The feature extraction
algorithms are discussed in the following chapters.

The performance of a classifier can be measured in terms of accuracy, specificity, and
sensitivity. In a problem having just two classes, say Class 0 and Class 1, one of the
following cases may occur (Table 4.1):

Classification 57

The decision of the classifier Actual class Decision designated as

Class 0 Class 0 True Negative (TN)
Class 0 Class 1 False Negative (FN)
Class 1 Class 1 True Positive (TP)
Class 1 Class 0 False Positive (FP)

Table 4.1: Decisions of a classifier, in case of a two-class problem

The number of samples correctly classified by the classifier is termed as accuracy.
The number of positive samples correctly classified is sensitivity, and the number
of negative samples correctly classified is specificity. The formulae for accuracy,
specificity, and sensitivity are as follows. The F-measure is the harmonic mean of
sensitivity and specificity:

TP TNAccuracy
TP TN FP FN

+
=

+ + +

TNSpecificity
TN FP

=
+

()TP
Senstivity

TP FN
=

+

2 Specificity SenstivityF measure
Specificity Senstivity
× ×

− =
+

It may be stated that there are many more ways of determining the performance of a
model. However, this chapter uses the above performance measures.

Generally, the accuracy of a model is stated to show the performance of a model.
However, the only accuracy does not always give the correct picture. For example,
if you develop a system for segregating spam mails and your model gives 90%
accuracy, it may not be a very good model. It is because more than 90% of the total
emails are spam, and if your model classifies every sample as spam, even then, the
accuracy can be 90%.

One may note that, most likely, there cannot be a model, which gives 100%
performance. It is, therefore, desirable to find the probability of a sample belonging
to a given class. This chapter introduces algorithms that help us to develop such
models. Primarily, this chapter discusses K-nearest neighbors, Naïve Bayes, and
logistic regression.

58 Machine Learning for Beginners

Classification using K-nearest neighbors
A man is known by the company he keeps. Let us use this proverb to find the class of
an unknown sample by finding the classes of its neighbors. The majority class can
be deemed as the class of the sample. For example, if a sample is to be marked
as left or right, the leaning of its k neighbors can be determined. If the majority of
its neighbors are left-leaning, the sample would be deemed as left-leaning, else it
would be deemed as right-leaning.

The above algorithm is referred to as the K-nearest neighbors. It can be easily
implemented. The distance of a given sample can be found from all the data in the
train set. This distance is then arranged in increasing order. The majority-label of the
first K elements of this ordered distance array is then returned as the output label.
The formal algorithm for this method is as follows.

Algorithm
1. Divide the data into the train and the test set.
2. For each test set:
 a. Find its distance from all the samples in the train set.
 b. Arrange the distances in ascending order.
	 c.	 Take	the	indices	of	the	first	K	samples	in	2.b
	 d.	 Find	the	class	of	the	neighbors	identified	in	2.c.
 e. The majority class in d. would be the class of the unknown sample.

To find the distances between the samples, any of the following formulae can be
used. In the following formulae, the summation represents the addition of the values
in the features. The three most common distances are as follows (Table 4.2):

Name of the distance Formula

Euclidean Distance
1

2()
m

t t
i

i
ix x

=

−∑

Manhattan Distance
1

()
m

t t
i

i
ix x

=

−∑

Minkowski Distance
1

()
m

pt tp
i i

i

x x
=

−∑

Table 4.2: Distance used in KNN

Classification 59

To ascertain the performance, you can find the accuracy, specificity, and sensitivity.
The following section implements the above algorithm.

Implementation of K-nearest neighbors
The KNN algorithms explained in the above section can be easily implemented
using NumPy. The implementation that follows constitutes four steps and uses the
Euclidean Distance. The Fisher Iris dataset has been used in the following code:

1. To implement the algorithm, you need to import the following modules:

 from sklearn.datasets import load_iris

 import numpy as np

 from sklearn import model_selection

2. This implementation divides the given data into train data and test data. This is
done by creating the load_data() method:

 def load_data():

 Data=load_iris()

 X=Data.data[:100,:]

 y=Data.target[:100]

 X_train, X_test, y_train, y_test = model_selection.train_test_
split(X, y, test_size=0.30, random_state=42)

 return(X_train, X_test, y_train, y_test)

3. The performance measures can be calculated by finding the number of True
Positive, True Negative, False Positive and False Negative. This is done by
crafting the following function:

 def cal_acc(y_pred, y_test):

 TP=0

 TN=0

 FP=0

 FN=0

 for i in range(len(y_test)):

60 Machine Learning for Beginners

 if(y_test[i]==y_pred[i]):

 if(y_pred[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(y_pred[i]==1):

 FP+=1

 else:

 FN+=1

 return(TP, TN, FP, FN)

4. The classification is carried out using the following code. The following
implementation uses Euclidean Distance:

 X_train, X_test, y_train, y_test = load_data()

 y_pred=[]

 for i in range(X_test.shape[0]):

 dist=[]

 for j in range(X_train.shape[0]):

 d=0

 for k in range(X_train.shape[1]):

 d+=(X_test[i,k]-X_train[j,k])**2

 d=np.sqrt(d)

 dist.append(d)

 ord_dist=np.sort(dist)

 index=np.argsort(dist)

 s=0

Classification 61

for m in range(5):

 s+=y_train[index[m]]

 if(s>3):

 y_pred.append(1)

 else:

 y_pred.append(0)

TP, TN, FP, FN=cal_acc(y_pred, y_test)

accuracy=(TP+TN)/(TP+TN+FP+FN)

print(accuracy)

Let us now have a look at the implementation of KNN using SKLearn.

The KNeighborsClassifier in SKLearn
This classifier implements the K-nearest neighbor algorithm. The important
parameters and methods of the classifier are given in Table 4.3 and Table 4.4:

Parameter Explanation Details
n_neighbors It depicts the number of

neighbors, that is K.
It is an optional parameter. The
default value of this parameter is 5.

weights It depicts the functions
of generating weights for
prediction.

It is an optional parameter. The
default value of this parameter is
uniform. The value of weights can be
distance, also, where the data points
closer to the sample would have more
weights.

algorithm It depicts the algorithm
used to carry out K-Means

The values of this parameter can be
auto, ball_tree, kd_tree, or brute.
It is an optional parameter

Power parameter It is used in case of
Minkowski metric

It is an optional parameter. Its default
value is 2.

Table 4.3: Parameters of KNeighborsClassifier

The important methods of KNeighborsClassifier are given in Table 4.4. The reader
may note that the fit and predict method of practically all the classifiers work in the
same manner:

62 Machine Learning for Beginners

Name of the method Purpose

fit(self, X_train, y_train) This method takes two parameters: the train data
and the train labels.

kneighbors(self[, X, n_
neighbors, …])

This method finds the n-neighbors of a point.

kneighbors_graph(self[, X, n_
neighbors, mode])

This method computes the graph of k-Neighbors.

predict(self, X_test) This method predicts the class labels for X_test.

predict_proba(self, X_test) This method finds the probability estimates for
X_test.

Table 4.4: Important methods of KNeighborsClassifier

Having seen the important attributes, parameters, and methods of the classifier, let
us now move to the experiment part.

Experiments – K-nearest neighbors
The following codes show how to use the above methods to carry out classification.
Code 1 uses the train_test_split to split the data into train and test data. Code 2
uses the KFold to implement the KFold validation with k=10, and Code 3 repeats the
task with K=20. The functions used in the following codes (load_data, cal_acc) are
the same, as shown in the earlier sections.

Code 1: Breast Cancer; Train Test Split

X_train, X_test, y_train, y_test=load_data()

Model_Knn	=	KNeighborsClassifier(n_neighbors=5)

Model_Knn.fit(X_train,	y_train)

predicted=Model_Knn.predict(X_test)

TP, TN, FP, FN=cal_acc(predicted,y_test)

accuracy=(TP+TN)/(TP+TN+FP+FN)

print(accuracy)

The next experiment uses train_test_split to classify the Breast Cancer dataset.

Code 2: Breast Cancer; 10-Fold Cross Validation

acc_arr=[]

Classification 63

Data=datasets.load_breast_cancer()

X=Data.data

y=Data.target

kf = KFold(n_splits=5)

KFold(n_splits=10, random_state=None)

for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

	 Model_Knn	=	KNeighborsClassifier(n_neighbors=5)

	 Model_Knn.fit(X_train,	y_train)

 predicted=Model_Knn.predict(X_test)

 TP, TN, FP, FN=cal_acc(predicted,y_test)

 acc=(TP+TN)/(TP+TN+FP+FN)

 acc_arr.append(acc)

acc_av=np.mean(acc_arr)

print(acc_av)

The next experiment uses ten-fold cross-validation to classify the Breast Cancer
dataset.

Code 3: Breast Cancer; 10 Fold Cross Validation

acc_arr=[]

Data=datasets.load_breast_cancer()

X=Data.data

y=Data.target

kf = KFold(n_splits=10, random_state=None)

Data=datasets.load_breast_cancer()

X=Data.data

y=Data.target

64 Machine Learning for Beginners

for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

	 Model_Knn	=	KNeighborsClassifier(n_neighbors=5)

	 Model_Knn.fit(X_train,	y_train)

 predicted=Model_Knn.predict(X_test)

 TP, TN, FP, FN=cal_acc(predicted,y_test)

 acc=(TP+TN)/(TP+TN+FP+FN)

 acc_arr.append(acc)

acc_av=np.mean(acc_arr)

print(acc_av)

Having seen the working of K-nearest neighbor, let us now shift our focus to the
logistic regression, which will also help us to determine the probability of a sample
belonging to a class.

Logistic regression
Logistic regression is a statistical model, which helps in modeling probability. This
model can also be extended for classification. This section gives a brief overview of
logistic regression. Let us first have a look at the mathematical foundations of this
model. In the discussion that follows, X is a matrix of order n × m and W is a matrix
of order 1 × m. The former depicts the data having n samples and m features and the
later depict the weights assigned to each feature. y denotes the target. In classification
problems, the values of y are discrete. Specifically, for a two-class problem, y will be
either 1 or 0. In such cases, the value of y can be predicted by finding WtX and then
using a function which maps the obtained values to . The sigmoid function is one
such function. The sigmoid function is:

() 1
1 Z

f z
e−

=
+

Note that the maximum value of the function is 1 when the value of Z is ∞, that is:

1() 1
1 Z

f z
e−

= =
+

Classification 65

The minimum value of the function is 0, when the value of Z is – ∞, that is:

1() 0
1 Z

f z
e−

= =
+

This function not only smoothly maps (– ∞, ∞) to [0, 1], but also can be differentiated
with ease. The derivative of s sigmoid function can be expressed in terms of itself as
follows:

() () ()' (1)f Z f Z f Z= × −

Here, f(Z) depicts the probability of the value of y being 1, given the data. That is:

() ();P X W f x=

The probability of the value of y being 0, given the data, is therefore 1 – f(x). That is:

() (); 1P X W f x= −

The probability of y given X and W can, therefore, be written as follows:

() 1; () (1 ())y yP X W f x f x −= −

Here we take the liberty of assuming that all the samples have independent features.
The product of probabilities will give us the likelihood:

() 1; () (1 ())y y
i i iP x W f x f x −= −

()
1

1; () (1 ())
m

y y
i

i
iP X W f x f x

=

−= −∏

Taking log, we get the log-likelihood:

() ()
1

log log log () (1) log(1 ())
i

m

L y f x y f x
=

= × + − × −∑

The derivative of the log-likelihood can be written in terms of itself as follows:

()() ()
log log

() i
i

L
y f x x

W

δ

δ
= −

In each iteration of training, the change in weights can thus be found as follows:

()()i i iw w y f x xα= + × −

66 Machine Learning for Beginners

Having obtained the formula for updating the weights, let us now move to the
formal algorithm.

Algorithm:

1. Split the given data into train data and test data.

2. Initialize the weights to random numbers.

3. Repeat the following steps for each training sample.
 a. Update the weights using the following formula:

()()i i i i iw w y f x xα= + × −

 Where, yi is the value of the target variable for the ith sample, xi is the data of
the ith sample, and a is the learning rate.

4. For each test sample :

 a. Find j ju x w=∑

 b. Find () 1
1 u

f u
e−

=
+

 c. The value obtained above gives the probability of a given sample belonging
to a class

 d. Based on the value obtained above, decide whether the given sample belongs
to the class or not

The reader is expected to implement the above using Numpy. The implementation
of logistic regression using SKLearn has been explained in the next section.

Logistic regression using SKLearn
The LogisticRegression classifier implements the above algorithm is SKLearn. The
parameters, attributes, and methods of LogisticRegression are as follows. Table 4.5
shows the parameters of the classifier:

Parameter Explanation Details
penalty The norm used in penalization is

specified using this parameter.
The values of this parameter can
be l1, l2, elasticnet, or none.

It is an optional parameter. The
default value of this parameter is
12.

Contd…

Classification 67

tol This parameter specifies the
tolerance for stopping criteria.

It is an optional parameter. The
default value of this parameter is
1e-4.

class_weight The weights associated with classes
are specified using this parameter.
The values of this parameter can
be dict or balanced.

It is an optional parameter. The
default value of this parameter is
none.

solver This parameter is used to specify
the algorithm.

It is an optional parameter. The
default value of this parameter is
liblinear.

max_iter This parameter represents the
number of iterations.

It is an optional parameter. The
default value of this parameter is
100.

multi_class It is chosen if there are more
than two labels. It can have the
following values ovr, auto, or
multinomial.

It is an optional parameter. The
default value of this parameter is
ovr.

Table 4.5: Important parameters of logistic regression

The attributes of the classifier have been shown in Table 4.6:

Attributes Details
classes_ This attribute gives the class labels of each sample.
coef_ This attribute gives the coefficients of the decision function.
intercept_ This attribute gives the intercept of the decision function.

Table 4.6: Important attributes of logistic regression

The important methods of the LogisticRegression classifier are as follows (Table 4.7):

Name of the method Purpose
fit(self,	X_train,	y_train) This method takes two parameters: the train data

and the train labels.
predict(self, X_test) This method predicts the class labels for X_test.
predict_proba(self, X_test) This method finds the probability estimates for X_

test.
Table 4.7: Important methods of Logistic Regression

Having seen the important attributes, parameters, and methods of the classifier, let
us now move to the experiment part.

68 Machine Learning for Beginners

Experiments – Logistic regression
The following codes show how to use the above methods to carry out classification.
It may be noted that the loading of data, finding accuracy, and so on, can be done in
the same manner as shown in the previous implementations. To use the classifier,
one needs to import the following modules:
from sklearn.datasets import load_iris

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

import numpy as np

The rest of the code is the same as that explained earlier. However, the classifier can
be constructed using the LogisticRegression() method, shown as follows:
clf=LogisticRegression()

clf.fit(X_train,y_train)

y_pred=clf.predict(X_test)

The reader is advised to use these functions on the Breast Cancer dataset and the Iris
dataset and find the accuracy using:
	 •	 train_test_split
	 •	 KFold

And compare the results. Another example of a probability-based model has been
explained in the following section.

Naïve Bayes classifier
The ethos of the data is generally not known, and therefore modeling is required,
which is a random process. It may also be stated that we do not know all the
variables affecting the outcome. Therefore, even if the process is deterministic, it
will be difficult to accomplish the above task. However, the model can be crafted by
using the probability of observable variable P(x), which can be found easily. Using
the above model, classification can be carried out. It can be done by finding the
probability of a given sample belonging to a particular class. Bayes Theorem, which
can be stated as follows, helps us to accomplish this task:

1

(/) ((/) ())/ ((/) ())
C

i
i i i i iP B A P A B P B P A B P B

=

= × ×∑

Classification 69

Where, P(Bi/A) is the conditional probability of Bi, provided A is given. Likewise,
P(A/Bi) is the conditional probability A provided Bi is given. Also, if P(Bi/A) and
P(Bi) are known, the above theorem can be applied.

In the case of classification if there are two classes we can find out the probability of
sample belonging to a particular class, say for that matter, C1 and C2.

Since there are only two classes:

()1 2() 1P C P C+ =

Where, P(C1) is the prior probability, and P(x/C) is called likelihood, and P(x) is the
evidence, which can be found by using the law of total probability:

() 1 1 2 2(/) () (/) ()P x P x C P C P x C P C= × + ×

The posterior probability is defined as the product of prior probability and the
likelihood divided by the evidence. That is:

(/) ((/) ())/ ()i i iP C x P x C P C P x= ×

The value of P(x) can be found using the above equation.

The final decision can be made by choosing the class Ci for which P(Ci/x) is maximum.

The decision can also be taken by minimizing the risk as there is always a loss
incurred for taking the decision. We can define the risk for the action Ai as follows:

() ()/ /i ik kR a x P C x= ∈∑
Where k varies from 1 to the number of classes, and the value of k is not the same as
the correct class.

The discriminant function can, hence, be defined as the negative of the above risk.
It is because the minimization of the risk would lead to the maximization of the
discriminant function:

() (/)if x R a x= −

The reader is expected to implement the above using Numpy. The in-built classifier
has been explained in the next section.

The GaussianNB Classifier of SKLearn
SKLearn comes with various Naïve Bayes implementations. These include Gaussian
Naïve Bayes, Bernoulli Naive Bayes, and Multinomial Naïve Bayes. The Gaussian

70 Machine Learning for Beginners

Naive Bayes is popular and simple. It assumes the Gaussian distribution of the data.
The important parameters and methods of the classifier are given in Table 4.8 and
Table 4.9:

Parameter Explanation Details
priors The prior probabilities of the

classes can be found using this
parameter.

It is an optional parameter.

var_smoothing The portion of the largest variance
of all features can be seen using
this parameter.

It is an optional parameter. The
default value of this parameter is
1e-9.

Table 4.8: Parameters of Gaussian Naïve Bayes

Attributes Details
class_prior_ This attribute provides the prior probability of each class.
theta_ This attribute provides the mean of each feature per class.
epsilon_ This parameter provides the absolute additive value to variances.

Table 4.9: Important attributes of GaussianNB

Some of the most important methods of Gaussian Naïve Bayes are as follows (Table
4.10):

Name of the method Purpose
fit(self,	X_train,	y_train) This method takes two parameters: the train data

and the train labels.
predict(self, X_test) This method predicts the class labels for X_test.
predict_proba(self, X_test) This method finds the probability estimates for X_

test.
Table 4.10: Important methods of GaussianNB

Having seen the important parameters, attributes, and methods of Gaussian Naïve
Bayes, let us now move to the experiment part.

Implementation of Gaussian Naïve Bayes
The Gaussian Naïve Bayes explained in the above section can be easily implemented
using SciPy. The implementation that follows constitutes four steps and uses the
GaussianNB, explained in the previous section. Breast Cancer dataset has been used
in the following code:

Classification 71

1. To implement the algorithm, you need to import the following modules:
 from sklearn.datasets import load_breast_cancer

 from sklearn.naive_bayes import GaussianNB

 from sklearn.model_selection import KFold

 import numpy as np

2. The performance measures can be calculated by finding the number of True
Positive, True Negative, False Positive and False Negative. This is done by
crafting the following function:

 def cal_acc(y_pred, y_test):

 TP=0

 TN=0

 FP=0

 FN=0

 for i in range(len(y_test)):

 if(y_test[i]==y_pred[i]):

 if(y_pred[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(y_pred[i]==1):

 FP+=1

 else:

 FN+=1

 return(TP, TN, FP, FN)

The classification is carried out using the following code:
acc=[]

Data=load_breast_cancer()

X=Data.data

y=Data.target

kf = KFold(n_splits=5)

kf.get_n_splits(X)

72 Machine Learning for Beginners

for train_index, test_index in kf.split(X):

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

 clf = GaussianNB()

	 clf.fit(X_train,y_train)

 y_pred=clf.predict(X_test)

 TP, TN, FP, FN=cal_acc(y_pred, y_test)

 accuracy=(TP+TN)/(TP+TN+FP+FN)

 acc.append(accuracy)

av_acc=np.mean(acc)

print(av_acc)

Having seen the use of the GaussianNB module, let us summarize the discussion.

Conclusion
This chapter discussed various classification algorithms, their implementation,
and the use of pre-defined functions for the classification of standard datasets. The
K-means algorithm finds the majority class of the neighbors of a given sample and
declares the label. It is one of the simplest algorithms but performs exceptionally
well not just in text data but also in images. The Naïve Bayes algorithm calculates
the posterior probability of a sample belonging to a particular class and takes the
decision accordingly. The algorithm makes some assumptions regarding the ethos of
the sample and the dependence of features. Logistic regression also helps us to find
the probability of a sample belonging to a given class.

The reader may note that it is important to choose the correct algorithm before
finalizing the model for classification. Also, your model needs to be robust, so it is
pointless to project the maximum accuracy in various experiments run. It is always
good to run experiments many times and declare the average accuracy.

The next chapter introduces the reader to the fascinating world of neural networks.
This world has not only empowered humans with the power of machine learning
but also gave birth to a newer, better, and fascinating world of deep learning.

Classification 73

Exercises
Multiple Choice Questions
 1. Which of the following finds the majority labels of the neighbors and declares

the label of an unknown sample?
 a. KNN b. Naïve Bayes
 c. Logistic Regression d. None of the above

 2. Which of the following distances are used in KNN?
 a. Euclidean Distance b. Manhattan Distance
 c. Minkowski Distance d. All of the above

 3. Which of the following is the default value of the number of neighbors in the
K-Neighbors Classifier?

 a. 5 b. 3
 c. 1 d. None of the above

 4. Which function is generally used in the implementation of logistic regression?
 a. Sigmoid b. Ramp
 c. Both d. None of the above

 5. Which of the following is not true with reference to Logistic Regression?
 a. It uses a log of odds
 b. It generates a probability of a sample belonging to a class
 c. Both
 d. None of the above

 6. Logistic Regression is used for?
 a. Classification b. Regression
 c. Both d. None

 7. K-nearest neighbors are used for?
 a. Classification b. Regression
 c. Both d. None

 8. Naïve Bayes is used for?
 a. Classification b. Regression
 c. Both d. None

74 Machine Learning for Beginners

 9. Which of the following should be true for applying Gaussian Naïve Bayes?
 a. The features should be independent
 b. The features should be dependent
 c. The model does not make any assumption regarding the dependence of

features on each other.
 d. The coefficient of correlation between the features should be less than 0.5

 10. Which of the following should be true for applying Gaussian Naïve Bayes?
 a. The data should follow Gaussian distribution
 b. The data should follow Binomial distribution
 c. None of the above
 d. The model does not make any assumption regarding the distribution of

data

Theory
 1. Write the algorithm for classification using K-Nearest Neighbors. Also,

implement the algorithm using NumPy.
 2. Write the algorithm for classification using Naïve Bayes. Also, implement the

algorithm using NumPy.
 3. Write the algorithm for classification using Logistic Regression. Also,

implement the algorithm using NumPy.
 4. What are the various distance measures used in KNN?
 5. What are the assumptions regarding the data and features in Gaussian Naïve

Bayes?
 6. The algorithm for KNN, given in the text, uses Brute Force. Suggest another

algorithm which is better in terms of efficiency but preserves the essence of the
algorithm.

 7. What is the difference between Single Layer Perceptron and Logistic
Regression?

 8. Can we claim that the accuracy of a model is 100%? If not, why?

Numerical/Programs
 1. The coordinates of points and their respective classes have been shown in the

following table. Use K-NN to find to which class the point (5,6) belongs?

Classification 75

Point Class
(2, 2) 0
(2, 4) 0
(3, 2) 1
(3, 4) 1
(2, 5) 0
(6, 4) 1
(1, 2) 0
(1, 7) 0

 2. In the above question, use LDA to find the class of the unknown sample.
 3. Generate 50 random numbers (Normal Distribution: Mean=10, variance =5).

Let the label of these samples be 0. Now, generate another set of 50 random
numbers (Normal Distribution: Mean=15 and variance=3). Let the label of
these samples be 1. Use K-Fold validation to carry out classification and state
the accuracy of the model which uses:

 a. KNN
 b. Naïve Bayes
 c. LDA
 d. Logistic Regression

Introduction
If you like music, your mind starts behaving like Alexa. When you see Phoebe Buffay
in Friends, the song “Smelly Cat” comes to your mind; on seeing Sheldon Cooper,
“Soft Kitty” starts playing, which immediately switches to “Jungle Jungle” on seeing
Mowgli. Your mind drenches your thoughts with the melodious voices and takes
you deep down, riding on the compositions by Faiz.

And there is a similarity between Alexa and your mind: both learn. While growing
up, you listen to songs, memorize them, associate them with situations, characters,
cartoons, and so on, and your mind becoming a Jukebox is the outcome of this
process.

This chapter describes neural networks, which work similarly. They are inspired
by the neurons in the brain, which is the most important and perhaps the most
complex organ of the human body. It acts as the Central Processing System (CPU)
of a computer system. Like a CPU, the brain receives information from the sense
organs, integrates them, processes them, and takes decisions that are conveyed to the
various parts of the body. It contains many nerves, connected by connections called
neurons. The neural structure was proposed by Cajal in 1911. There are billions of

Chapter 5
Neural Network I –

The Perceptron

78 Machine Learning for Beginners

neurons and trillions of synapses in our bodies. This structure inspired computer
scientists, and the Narnia of machine learning was discovered.

This chapter starts with a brief description of the brain and the structure of neurons.
The models, learning algorithms, and limitations of neural networks have been
divided into two chapters. This chapter deals with the single layer perceptron, and
the next chapter discusses the multi-layer perceptron. This chapter also presents the
Delta Learning Rule and discusses the applicability of Perceptron in the classification
of two different datasets.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 The brain
	 •	 The structure of a neuron
	 •	 The McCulloch Pitts model
	 •	 The Rosenblatt perceptron
	 •	 Activation functions
	 •	 Implementation of neural networks
	 •	 Learning rules
	 •	 Experiments with two datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Understand the basic structure of a neuron
	 •	 Understand the McCulloch Pitts Model
	 •	 Understand the principle of Rosenblatt perceptron
	 •	 Understand the idea behind learning
	 •	 Implement Rosenblatt perceptron
	 •	 Use perceptron to carry out classification

The brain
The brain is the most important and perhaps the most complex organ of the human
body. It acts like a computer system. Like the Central Processing System or the

Neural Network I – The Perceptron 79

CPU of a computer system, the brain receives information from the sense organs,
integrates them, processes them, and takes decisions that are conveyed to the various
parts of the body. It contains many nerves connected by neurons. There are billions
of neurons and trillions of synapses in the body, which forms the crux of the body’s
neural network.

Before initiating the discussion on the neural network, let us briefly discuss the parts
of the brain. The cerebrum, cortex, brain stem, basal ganglia, and cerebellum are
some of the important parts of the brain. The largest part, cerebrum, is divided into
two hemispheres. The cerebral cortex is an outer layer of grey matter. It covers the
core of the white matter. The spontaneous moments are controlled by this layer. The
cerebrum is connected to the spinal cord via the brainstem. It contains:
	 •	 The midbrain
	 •	 The pons
	 •	 The medulla oblongata

Breathing is controlled by the brain stem. The coordination between the brain areas
is controlled by the basal ganglia, which is the cluster of structures at the center. The
coordination and balance are controlled by the cerebellum, which is at the base and
the back of the brain. The cerebellum is connected to the brainstem by pairs of tracts.
The layer surrounding the brain is meninges, and the skull protects the brain.

Each hemisphere is divided into four lobes. These include the frontal lobes, the
parietal lobes, the temporal lobes, and the occipital lobes. The prime functions of the
lobes are as follows.

The frontal lobes take care of:
	 •	 Problem solving and judgment
	 •	 Motor function

The parietal lobes are primarily concerned with:
	 •	 Sensation
	 •	 Handwriting
	 •	 Body position

The temporal lobes take care of:
	 •	 Memory and hearing

Finally, the occipital lobes primarily deal with the:
	 •	 Visual processing system

80 Machine Learning for Beginners

Having learned the basics of a human brain, let us now have a look at the structure
of a neuron.

The neuron
The human brain and spinal cord constitute the Central Nervous System (CNS).
The nerve impulses are responded by the release of neurotransmitters. The neurons
connect to constitute the neural pathways, the neural circuits, and, ultimately, the
network.

A neuron can be excited electrically and communicate with each other using synapse.
We all have neurons, each one of us, except SpongeBob. It is because sponges do not
have neurons neither do plants. Neurons can be classified as follows:
	 •	 Sensory neurons: Act in response to touch, sound, light
	 •	 Motor neurons: Get signals from the brain and spinal cord
	 •	 Interneurons: These neurons are known to connect neurons of the brain or

spinal cord to other neurons within the same region

A neural circuit is a group of connected neurons. Figure 5.1 shows the structure of a
neuron. The components of a neuron are:
	 •	 Cell body (soma)
	 •	 Dendrites
	 •	 Axon

Figure 5.1: A neuron

Neural Network I – The Perceptron 81

Dendrites receive messages from other neurons. They have a large number of
branches. The message is processed in the cell body. The axon takes the message
to the other neuron. The process of sending a signal to another neuron is partially
chemical and partially electrical.

Generally, neurons get input signals through the dendrites, process the signal, and
send the output down the axon.

The structure of neuron inspired the first learning model, the McCulloch Pitts model.

The McCulloch Pitts model
An American Neuropsychologist Warren Sturgis McCulloch and Walter Harry Pitts,
Jr., a logician, proposed the McCulloch Pitts model in 1943. The model mimicked the
biological neuron and proposed an LTU or Linear Threshold Unit. The initial model
had binary inputs and outputs and restrictions on weights. It is widely regarded by
many as the first computational model based on neurons.

The Pitts model is perhaps one of the simplest models of learning. The model takes
binary input xi and summates them. The binary output xi depends on whether the
summation is greater than the threshold or not. So, the only thing that needs to be
learned in the threshold. Figure 5.2 depicts the McCulloch Pitts model:

Figure 5.2: The McCulloch Pitts model

Here, x1, x2, …xn are the binary inputs (can be 0 or 1), and y is the binary output. The
function g is the summation of xi’s and f is the result of applying threshold (Figure
5.3). That is:

1

n

i
ig x

=

=∑

f = threshold(g)

82 Machine Learning for Beginners

Figure 5.3: Thresholding in McCulloch Pitts model

Let us understand the model by keeping the weights of each synapse as 1 or -1. If
wi = 1, the input may be referred to as the excitatory input. If the value of wi = –1,
the input is referred to as the inhibitory input. The later can be used to model the
not gate. Note that, in the discussion that follows if wi = 1 ∀i the weight has not been
shown in the model.
The model can be used to create logic gates as well. For example, for creating an AND
gate, the inputs are x1 and x2 and the output is . The function g is the summation of xi’s:

2

1
i

i

g x
=

=∑

If both the inputs are 1, the output should be high. In all other cases, the output
should be low.
Therefore, the threshold of f should be 2.

() 1, 2
0, 2

g
f threshold g

g
 ≥= = <

The model can be interpreted geometrically in Figure 5.4:

Figure 5.4: The AND gate

Neural Network I – The Perceptron 83

Likewise, for creating an OR gate, the inputs are x1 and x2 and the output is y. The
function g is the summation of xi’s. If both the inputs are 0, the output should be low.
In all other cases, the output should be high. Therefore, the value of f should be 1:

2

1
i

i

g x
=

=∑

f = threshold(g)

Figure 5.5 presents the geometrical interpretation of the OR gate created using
perceptron:

Figure 5.5: The OR gate

The above discussion can be extended to 3-dimensions also. That is, perceptron can
be used to generate a three-input AND gate as well. Let the inputs to this gate be and
the output be x1, x2 and x3 is the output. The function y is the summation of xi’s. If all
the inputs are 1, the output should be high. In all other cases, the output should be
low. Therefore, the value of f should be 3:

3

1
i

i

g x
=

=∑

() 1, 3
0, 3

g
f threshold g

g
 ≥= = <

In this case, the separating hyperplane is x1 + x2 + x3 = 3. Note that there can be many
such hyperplanes which satisfy the condition that the output should be high when
all the inputs are 1. Figure 5.6 shows one such hyperplane:

84 Machine Learning for Beginners

Figure 5.6: The three input AND gate

Likewise, for creating a three-input OR gate, x1, x2 and x3 are the inputs, and y is the
output. The function g is the summation of xi’s. If any of the inputs are 1, the output
should be high. If all the inputs are low, the output should be low. Therefore, the
value of f should be 1:

3

1
i

i

g x
=

=∑

() 1, 1
0, 1

g
f threshold g

g
 ≥= = <

In this case the separating hyperplane is x1 + x2 + x3 = 1. Again, there can be many
such hyperplanes which satisfy the condition that the output should be high when
any of the inputs are 1. Figure 5.7 shows one such hyperplane:

Neural Network I – The Perceptron 85

Figure 5.7: The three input OR gate

In a NAND gate, the output becomes low if all its outputs are high. In all other cases, it
is high. In a NOR gate, on the other hand, the output becomes high, when all its inputs
are low. In all other cases, it remains low. One can create a NOR gate and a NAND gate
using the above idea. A XOR gate produces one if inputs are alternate. Otherwise,
it produces 0. It may be stressed that it is not possible to craft a XOR gate using the
above model. However, it can be created by a multi-layer McCulloch Pitts model.

Limitations of the McCulloch Pitts
Despite being extremely useful, the model had its limitations. The notable ones were
as follows:
	 •	 The inputs to a model are not always binary. The next section discusses a

model, which considers the real-valued inputs.
	 •	 In the McCulloch Pitts model, the Heaviside step function (the unit step

function) is used for thresholding. The following sections explores other
activation functions.

	 •	 The model cannot deal with inputs that are not linearly separable.
Some of these limitations are handled in the Rosenblatt Perceptron, described in the
next section.

86 Machine Learning for Beginners

The Rosenblatt perceptron model
This model was proposed by Frank Rosenblatt, who was an American Psychologist.
He created the first Perceptron device based on the principle discussed in the above
section. The difference, however, was the ability of this model to deal with real
inputs. Also, each input in this model can have different weights, which are initially
random numbers and can change based on some learning rules. The model was
simulated on IBM-704 in 1957.
It is a model, which takes input and develops a general linear model by learning
the weights and using an activation function. The inputs are multiplied with the
weights, and bias is added to the resultant, which acts as an input to the activation
function. The weights and bias are initially random numbers and can be learned
using the gradient descent method, explained in Chapter 2 of this book. The original
data is divided into two parts: the train data and the test data. The learning is done
using the train data, and the testing is done using the test data. The model is shown
in Figure 5.8.
In the model, the input is [X1, X2, X3, …Xm], the weights are [w1, w2, w3, …wm] and
the bias is b. The inputs are multiplied with weights, summated, and added with
the bias to give u, as depicted in the following equation. It is then passed, as the
argument to the activation function f, to generate v. For a classification problem,
the threshold then determines the class. Note that the formula used to update the
weights is the same as that derived in gradient descent:

Figure 5.8: Simple perceptron

Neural Network I – The Perceptron 87

In the equations that follow, X is a matrix of order, n × m where n is the number of
samples, and m is the number of features. The target y is a n × 1 row matrix. The
inputs are fed one row at a time to the above network. So, a 1 × m vector is fed to the
network. Since there are m features, the weight matrix of 1 × m is required:

m T
i ii

u X w b
=

= +∑
v = f(u)

1,
0,

ifv
output

ifv
θ
θ

 >= <

If the output matches the expected output, weights would not be changed. Otherwise,
they will be changed as per the following equation. The formula has been derived
in the next section:

() () ()1 []w t w t d i y i X i + = + ∝ −

The above discussion has been summarized in the algorithm that follows.

Algorithm
	 •	 Creating train test data: Divide the data into train and test sets.
	 •	 Network creation: If the data has n features, create a network with n input

neurons and a bais. For the binary classification problem, there can be a
single output neuron.

	 •	 Initialization: Initialize the weight (matrix of order n×1) randomly. Also,
initialize the bais randomly.

	 •	 Parameters: Decide the learning rate.
	 •	 Learning: Apply the formula to change weights. The weights can be changes

by taking one sample at a time or a set of inputs. Repeat till the changes in
weights are small enough.

Figure 5.9 shows the steps of the learning algorithm. Note that, the bais can also be
considered as an input with xi = 1. It would save the model from learning the bais
separately:

88 Machine Learning for Beginners

Figure 5.9: Learning weights in perceptron

Since activation functions play an important part in the learning, the next section
presents a brief overview of the activation functions and their attributes.

Activation functions
The summation of products of weights and inputs, added to the bias, is given as
input to the activation function. Some of the important activation functions for
learning are as follows.

Unit step
The function can be mathematically represented as follows:

() 1, 0
0, 0

ifx
f x

ifx
 >= <

The graph of the function has been shown in Figure 5.10. The function simply allows
the signal to pass through if it is positive. The derivative of the function is 0:

Figure 5.10: The unit step function

Neural Network I – The Perceptron 89

The function, being simple, can be used as the activation function in single layer
perceptron, if the binary output is desired.

sgn
The function can be mathematically represented as follows:

() 1, 0
1, 0

ifx
f x

ifx
 >= − <

The graph of the function has been shown in Figure 5.11. The function simply returns
1; if the function is positive, else it returns a -1. The derivative of the function is 0:

Figure 5.11: The sgn function

The function, like the unit step function, is simple and can be used as the activation
function in single layer perceptron, if output [-1, 1] is desired.

Sigmoid
The sigmoid function is one of the most important activation functions. The function
can be stated as follows:

() 1/(1)sxf x e−= +

The function is shown in Figure 5.12. The maximum and the minimum value of
the function can be calculated as shown. The following derivation proves that the
derivative of this function can be expressed in terms of itself, which is an added
advantage of using this function for learning:

90 Machine Learning for Beginners

Figure 5.12: The Sigmoid function

Minimum value:

When (), lim lim 1/(1) 0sx

x x
x f x e

∞ ∞
∞ −

→− →−
→ − = + =

Maximum value:

When (), limlim 1/(1) 1sx

x x
x f x e

∞ ∞
∞ −

→ →
→ = + =

Since the value of f(x) becomes 0 at x = –∞ and 1 at x = ∞, the value of f(x) lies between
0 and 1.

Derivative
Also, the derivative of f(x) can be expressed in terms of itself:

() 1
1 sx

f x
e−

=
+

()
() ()

'
2 2

1 1 (1)
11 1

sx

sxsx sx

s ef x s s f f
ee e

−

−
− −

× = − = − × − = − × − + + +

Neural Network I – The Perceptron 91

Table 5.1 shows the effect of the variation of the parameter s:

s Sigmoid
2

3

10

Table 5.1: Effect of variation of s on Sigmoid

92 Machine Learning for Beginners

It can be seen from the table that, for higher values of s, the function behaves like
the unit step.

tan-hyperbolic
The tan-hyperbolic function is also one of the most important activation functions.
The function can be stated as follows:

() (1)/(1)sx sxf x e e− −= − +

The function is shown in Figure 5.13. The maximum and the minimum value of the
function can be calculated as follows. Table 5.2 shows the effect of the variation of the
parameter s:

Figure 5.13: The tanh function

Minimum value:

When (), lim lim (1)/(1) 1sx sx

x x
x f x e e

∞ ∞
∞ − −

→− →−
→ − = − + = −

Maximum value:

When (), limlim (1)/(1) 1sx sx

x x
x f x e e

∞ ∞
∞ − −

→ →
→ = − + =

Neural Network I – The Perceptron 93

Hence, the value of f(x) lies between -1 and 1:

s tanh(x)
2

3

10

Table 5.2: Effect of variation of s on tanh

It can be observed from the table that, for higher values of s, the function behaves
like the sgn function.

94 Machine Learning for Beginners

Implementation
The following code presents the implementation of the Rosenblatt perceptron using
Numpy. The reader may revisit Chapter 2 for the details of the methods for loading
the data and carrying out matrix operations.

Code:
from sklearn.datasets import load_iris

import numpy as np

from	sklearn.utils	import	shuffle

#Loading the data

Data=load_iris()

X=Data.data

Y=Data.target

#Train test split

x=X[:100,:]

y=Y[:100]

x,	y	=	shuffle(x,	y,	random_state=0)

x_train=x[:80,:]

y_train=y[:80]

x_test=x[80:,:]

y_test=y[80:]

#Setting parameters

alpha=0.01

s=X.shape

#Initial	weights	and	bais

w=np.random.rand(1,s[1])

b=np.random.rand()

n=(x_train.shape)

#Learning: The Rosenblatt Perceptron

for i in range(n):

Neural Network I – The Perceptron 95

 x1=x_train[i,:]

	 u=np.matmul(x1,np.transpose(w))

 v=1/(1+np.exp(-1*u))

 if (v>0.5):

 o1=1

 else:

 o1=0

 #print(v,’ ‘,y_train[i])

 y1=y_train[i]

	 w=w-alpha*(o1-y1)*x1

 b=b-alpha*(o1-y1)

#Finding	accuracy,	specificity	and	senstivity

tp=0

tn=0

fp=0

fn=0

 for i in range(20):

 x1=x_test[i,:]

	 	 u=np.matmul(x1,np.transpose(w))+b

 v=1/(1+np.exp(-1*u))

 if (v>0.5):

 o1=1

 else:

 o1=0

 y1=y_test[i]

 if(o1==1 & y1==1):

 tp+=1

 elif(o1==0 & y1==0):

 tn+=1

 elif(o1==1 & y1==0):

 fp+=1

 else:

 fn+=1

96 Machine Learning for Beginners

acc=(tp+tn)/(tp+tn+fp+fn)*100

Output:
y_test: [0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0]

Accuracy: 100.0

Having seen the results, let us spend some time deliberating on why this model can
classify the IRIS data with such good accuracy. The data has four features. The pairs
of features have been shown in Table 5.3. One may note that the data seems linearly
separable and hence can be classified using the perceptron:

Feature 1 Feature 2 Figure showing Feature 1 on the X-axis and
Feature 2 on the Y-axis

1 2

1 3

1 4

Contd…

Neural Network I – The Perceptron 97

2 3

2 4

3 4

Table 5.3: Features of Fisher IRIS data

If we only use two features for classification: 1 and 2, 1 and 4, or 2 and 4, for
classification, a linear decision boundary can be formed. The Iris data is, as such,
linearly separable and hence can be easily classified using the perceptron model.

Learning
Neural networks can perform many sophisticated tasks. These models find the
relationship between the input and the output. The raw input is generally converted
into feature space. And the model learns the weight of each feature, which is the
same as learning the importance of a feature. For the time being, let us not go into

98 Machine Learning for Beginners

the conversion of raw input to feature space and assume that the model learns the
weights of inputs. This learning can be understood as follows.

The sum of products of the inputs and the corresponding weights is fed into an
activation function, which produces some output. The difference between what is
being produced by the model and the desired output should be as low as possible.
Therefore, the square of this difference should also be as low as possible.

That is, Ej = (Dj – Oj)2 should be minimized, where Ej is the squared error, Dj is the
desired output and Oj is the output produced by the model. Note that Oj = f(uj) and
uj = xj wj, for each input xj having weight wj, f being the activation function.

The gradient of E is given by:

2()j j
j j

E D O
w w

δ
δ δ
∂

= −

()2 ()j j j
j

D O O
w
δ

δ
= − −

()2 ()j j j j
j

D O x w
w
δ

δ
= − −

()2 ()j j j j
j

D O x w
w
δ

δ
= − −

()2 j j jD O x= − −

The weights can be changed by adding the negative of this gradient to the previous
weight, that is:

() ()1j j
j

Ew t w t
wδ
∂

= − −

Or:

() () ()1j j j j jw t w t D O xη= − + −

Here η is the learning rate. The value of η, should neither be too high or too low. If
the value of η is large, we may overshoot the optimal solution. The small value of η
poses the danger of learning too slow.

The above learning rule was proposed by Bernard Widrow and his doctoral student
Ted Hoff in 1949 and is hence referred to as the Widrow-Hoff learning rule. This

Neural Network I – The Perceptron 99

rule was instrumental in the advances in neural networks. It is also called the Delta
learning rule. Rosenblatt model uses the perceptron learning rule, which, though
different in origin, is similar to the above. If a linearly separable pattern is presented
to the perceptron, the perceptron is guaranteed to learn the weights, if they can be
learned. As per Rosenblatt:

The perceptron learning rule is guaranteed to converge in a finite number of steps for all
problems that can be solved by a perceptron. That is linearly separable classification problems.

It may be stated here that though we will use this rule in our models, this was
certainly not the first learning rule. The first learning rule was proposed by Canadian
Psychologist Donald Olding Hebb, who is considered as the father of neural
networks. Hebb, in his book The Organization of Behaviour, stated that the synaptic
efficiency of a cell increases by repeated and persistent stimulation of a cell. The rule
can be loosely stated as follows:

“Neurons that fire together wire together.”

It is not difficult to understand the rule. For example, team B is given a job, which
was being done by another team, say A. The team members have no idea of what is
to be done and hence fail in whatever they do in successive attempts. Since they are
not very competent, owing up is simply out of the question. Few of them try to learn
the job, and the rest start blaming the previous team for their failures. What happens
after that is anyone’s guess. In B, the learners bind together, and so does the other
ones. The rule can be stated as follows:

wj (t) = wj (t – 1) + η(Oj) xj

Where the symbols have usual meanings. The interested readers can explore the
references at the end of this chapter for a detailed discussion on Hebbian Learning.

Perceptron using sklearn
The module sklearn.linear_model implements a few general linear models,
including the perceptron. The important parameters of the constructor of the
perceptron class have been presented in Table 5.4:

Parameter Type Explanation
fit_intercept Boolean This parameter determines whether the bais term

should be estimated or not. The default value of this
parameter is True.

max_iter Integer This parameter determines the epochs. It is an optional
parameter, and its default value is 1000.

Contd…

100 Machine Learning for Beginners

tol Float or None This parameter determines the stopping criteria based
on loss. It is an optional parameter, and its default
value is 1e-3.

shuffle Boolean This parameter determines if the input should
be shuffled after each iteration. It is an optional
parameter, and its default value is True.

random_state Integer If you want the model to produce the same result
every time it runs, this parameter can be used. It is an
optional parameter, and its default value is None.

n _ i t e r _ n o _
change

Integer This parameter sets the number of iterations after no
change. The default value of this parameter is 5.

class_weight Dictionary or
“balanced” or
None

It is an optional parameter. The absence of this
parameter assumes each class to be of weight 1. As
per the official site: “The “balanced” mode uses the
values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y)).

Table 5.4: Parameters of perceptron

Table 5.5 presents the attributes of the model:

Attribute Explanation
coef_ It gives the weights assigned to the features.
intercept_ It shows the constants in decision function.
n_iter_ It gives the number of iterations to reach the stopping criteria.

Table 5.4: Attributes of the model

The above functions have been exemplified in the following experiments.

Experiments
To understand the usage of the above methods, consider the following experiments:
	 •	 Experiment 1 uses the first 100 samples of the Fisher IRIS data, normalizes

the data, and carries out classification using the SLP.
	 •	 Experiment 2 uses the first 100 samples of the IRIS data and uses the train-

test-split to classify the data using the SLP.
	 •	 Experiments 3 use the Breast Cancer data, normalize it, and carry out

classification using the SLP.

Neural Network I – The Perceptron 101

	 •	 Experiment 4 uses the Breast Cancer data and applies K-Fold validation
(K=10) to classify the data using the SLP.

Note that K-Fold and train-test-split have been discussed in Chapter 1.

Experiment 1: Classification of Fisher Iris Data
from sklearn.datasets import load_digits

from sklearn.linear_model import Perceptron

from sklearn.datasets import load_iris

import numpy as np

import math

#Load Data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalize

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Prepare test train data

arr=np.random.permutation(100)

X=IRIS.data[arr,:]

y=np.vstack((np.zeros((50,1)),np.ones((50,1))))

y=y[arr]

X_train=X[:40,:]

102 Machine Learning for Beginners

X_test=X[40:50,:]

y_train=y[:40]

y_test=y[40:50]

X_train1=X[50:90,:]

X_test1=X[90:100,:]

y_train1=y[50:90]

y_test1=y[90:100]

X_train=np.vstack((X_train,X_train1))

y_train=np.vstack((y_train,y_train1))

X_test=np.vstack((X_test,X_test1))

y_test=np.vstack((y_test,y_test1))

#Classify using SLP

clf=Perceptron(random_state=0)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

Neural Network I – The Perceptron 103

sens=TP/(TP+FN) #sensitivity

spec=TN/(TN+FP)	 	 	 	 #specificity

Experiment 2: Classification of Fisher Iris Data,
train-test split
from sklearn.linear_model import Perceptron

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

import numpy as np

import math

#Load Data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalize

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Train test split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_
state=4)

#Predict using SLP

clf=Perceptron(random_state=0)

104 Machine Learning for Beginners

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

sens=TP/(TP+FN) #sensitivity

spec=TN/(TN+FP)	 	 	 	 #specificity

Experiment 3: Classification of Breast Cancer
Data
from sklearn.linear_model import Perceptron

from sklearn.datasets import load_breast_cancer

import numpy as np

import math

#Load Data

dataset=load_breast_cancer() #constructor called

X=dataset.data

y=dataset.target

Neural Network I – The Perceptron 105

#Normalize

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Train test data

X_train=X[:400,:]

X_test=X[400:,:]

y_train=y[:400]

y_test=y[400:]

#Classify using Perceptron

clf=Perceptron(random_state=0)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

106 Machine Learning for Beginners

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

sens=TP/(TP+FN) #sensitivity

spec=TN/(TN+FP)	 	 	 	 #specificity

Experiment 4: Classification of Breast Cancer
Data, 10 Fold Validation
from sklearn.linear_model import Perceptron

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import KFold

import numpy as np

import math

#Load dataset

dataset=load_breast_cancer()

X=dataset.data

y=dataset.target

#K Fold

kf=KFold(n_splits=10,random_state=None,shuffle=True)

kf.get_n_splits(X)

#Classification	Using	Perceptron	

accur=[]

specificity=[]

senstivity=[]

for train_index, test_index in kf.split(X):

print(“TRAIN:”, train_index.shape, “TEST:”, test_index.shape)

Neural Network I – The Perceptron 107

X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

clf=Perceptron(random_state=0)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)

accur.append(acc)

sens=TP/(TP+FN)

senstivity.append(sens)

spec=TN/(TN+FP)

specificity.append(spec)

#Performance

print(np.mean(accur))

print(np.mean(senstivity))

print(np.mean(specificity))

108 Machine Learning for Beginners

The accuracy, specificity, and sensitivity obtained in the four experiments is shown
in Table 5.6:

Experiment Accuracy Sensitivity Specificity

1 0.95 1.0 0.93
2 0.76 1.0 0.67
3 0.69 0.6 1.0
4 0.96 0.98 0.94

Table 5.6: Results of Experiments

Conclusion
This chapter discussed the structure of a neuron and explained how the neural
network of the body inspired the Artificial Neural Networks. The so-called first-
generation neural networks have been introduced in this chapter. Right from the
simplicity of the Mc-Culloch-Pitts model to the elegance of Rosenblatt perceptron
has been talked about. The mechanism of learning has also been covered in this
chapter.

The implementation of a single layer perceptron (SLP) and important functions in
SciPy have also been discussed. One must note that experimentation and empirical
analysis are involved tasks, the pre-requisites to which is a sound foundation of the
related concepts. The reader is expected to analyze the outputs with various datasets
and reason out the differences in the performance measures.

The discussion continues in the next chapter, where multi-layer perceptrons (MLP)
and the backpropagation algorithm are discussed. The limitation of the models,
given in this chapter, can be handled elegantly by the MLP’s. MLP’s can thus classify
the inputs that are not linearly separable.

Exercises
Multiple Choice Questions
 1. Which of the following is the derivative of Sigmoid function 1()

1 sx
x

e−
=

+
?

 a. –s × f × (1 – f) b. –s × (1 – f)
 c. f × (1 – f) d. None of the above

Neural Network I – The Perceptron 109

 2. For larger values of s, the sigmoid function behaves like?
 a. Unit Impulse b. Unit Step
 c. Ramp d. None of the above

 3. For larger values of s, the tanh function behaves like?
 a. Unit Impulse b. Unit Step
 c. sgn d. None of the above

 4. Which of the following can be used if the probability of a test sample belonging
to a particular class is to be determined?

 a. Sigmoid b. Tanh
 c. Unit step d. None of the above

 5. Which of the following is used in the McCulloch Pitts model?
 a. Unit step b. Sigmoid
 c. tanh d. None of the above

 6. The Rosenblatt Perceptron can learn the weights of?
 a. Linear separable inputs
 b. Any inputs
 c. Input with a limited number of features
 d. None of the above

 7. In delta learning, which of the following can be avoided?
 a. Learning of w’s b. Learning of bais
 c. None d. Both

 8. Which of the following cannot be handled by the McCulloch Pitts model?
 a. AND gate b. OR gate
 c. XOR gate d. None of the above

 9. Who is considered the father of neural networks?
 a. Hebb b. McCulloch c. Rosenblatt d. Justin Trudeau

 10. Which of the following learning rules can be used to train a Perceptron?
 a. Delta b. Hebbian
 c. Both d. None of the above

110 Machine Learning for Beginners

Theory
 1. What is a neuron? Explain the structure of a neuron.
 2. State the types of neurons.
 3. Explain the McCulloch Pitts Model.
 4. Implement the following using the McCulloch Pitts model.
 a. 2 Input AND gate
 b. 2 Input OR gate
 c. 3 Input AND gate
 d. 3 Input AND gate
 e. 2 Input NAND gate
 f. 2 Input NOR gate
 g. 3 Input NAND gate
 h. 3 Input NOR gate
 i. 4 Input AND gate

 5. Implement the above using Rosenblatt perceptron, starting from random
weights between 0 and 1.

 6. Derive the formula for the change in weights using the Delta Learning Rule.
 7. Explain the Hebbian Learning Rule.
 8. Find the maximum and minimum value of the following. Also, analyze the

effect of changing the value of parameter s.
 a. Sigmoid b. tanh

 9. Prove that the derivative of sigmoid can be expressed in terms of itself.
 10. Explain why the XOR gate cannot be handled by a single layer perceptron.

Programming/Experiments
 1. Implement Rosenblatt Perceptron.
 2. Analyze the effect of replacing random weights by zeros on the number of

iterations, in which convergence is achieved.
 3. Analyze the effect of replacing delta learning rule by Hebbian on the number

of iterations, in which convergence is achieved. What do you observe about
the weights if the number of iterations becomes large?

 4. On the Breast Cancer Data set:
 a. Use train-test split (60% Train data and 40% test data)

Neural Network I – The Perceptron 111

 b. Use train-test split (80% tarin data and 20% test data)
 c. Use K-Fold (K=20)
 d. Use K-Fold (K=10)
 e. Use K-Fold(K=5)

 5. Compare the specificity, selectivity, and sensitivity in each case.
 6. Perform the above experiment on the Autism Screening Adult dataset (https://

archive.ics.uci.edu/ml/datasets/Autism+Screening+Adult) and compare the
accuracy in each case.

Introduction
You have been asked to develop a model capable of segregating the pictures of
faces of Dr. Heinz Doofenshmirtz and Major Monogram of Phineas and Ferb fame.
You will classify the pictures into the above classes by looking at the higher-level
features like nose, eyes, hair, and so on. These features, in turn, can be constructed
using various lines (horizontal, vertical, inclined) and curves. So, your model should
probably:
	 •	 Take a given picture as input
	 •	 Find various lines and curves in the picture
	 •	 Construct higher-level features from the above features
	 •	 Classify the given picture based on the above features

The process can be perceived as a concatenation of layers, each performing some
task. The first being the input layer, which takes the input and the last being the
output layer, which declares whether the input image is of Dr. Doofenshmirtz or
Major Monogram. Everything in between is not visible to the world and hence are
hidden layers. These layers extract features. Just for the record, Dr. Doofenshmirtz is
not a real doctor; he purchased his degree.

Chapter 6
Neural Network II –

The Multi-Layer
Perceptron

114 Machine Learning for Beginners

Now, consider each layer as being a single layer perceptron and the concatenation of
these Perceptrons as being the multi-layer perceptron. This chapter briefly explores
the fascinating world of multi-layer perceptrons and presents the feed-forward model
and the back-propagation algorithm for learning. MLP’s are capable of handling
data that is not linearly separable. This chapter also presents an implementation of
the multi-layer perceptrons and its applicability to some of the publically available
datasets.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 History of neural networks
	 •	 The architecture of the feed-forward neural network
	 •	 Back-propagation algorithm
	 •	 Feed-forward algorithm
	 •	 Implementation of MLP
	 •	 Experiments with two datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the need of multi-layer perceptrons
	 •	 Understand the back-propagation algorithm
	 •	 Understand the feed-forward model
	 •	 Implement MLP
	 •	 Use MLP to carry out classification

History
Knowing the history helps us to deal with the present in a better way. We learn
from the mistakes made in the past and ascertain the factors behind our successful
endeavors. Also, creating history is fun but inconsequential. So, let us dwell on the
history of neural networks, which is as exciting as each episode of Duck Tales. There
was initial enthusiasm, followed by a period of dismay, which followed an influx

Neural Network II – The Multi-Layer Perceptron 115

of funds bringing happiness along-with. Table 6.1 shows the brief history of neural
networks:

Year Researcher/Group What was proposed?

1943 Warren McCulloch and Walter
Pitts

The proposed model, which takes inputs
(excitatory or inhibitory), summates them
and make decision-based on the summation

1949 Donald Hebb He authored the organization of Behavior,
which argued, “Neurons that fire together,
wire together.”

1950 Nathanial Rochester from the
IBM research laboratories

It was the first Neural network to be
simulated

1959 Bernard Widrow and Marcian
Hoff

They developed Adaline and Madaline
model. Adaline could predict a binary
pattern. Madaline pioneered the application
of Neural Network to a practical problem.

1962 Bernard Widrow and Marcian
Hoff

They developed a learning paradigm,
which adjusts weights after scrutinizing
the input.

Problems _ A paper suggested that the SLP could not
be extended to a multilayer. The learning
functions used at that time were problematic
as they could not be differentiated at each
point. The potential of Neural Networks
was embroidered after initial success

1975 _ The first multilayer network was created.

1982 John Hopfield He presented a work in the National
Academy of Science, in which he used
bidirectional lines in the networks.

1982 US-Japan Conference on
Cooperative Neural Network.

Fear of being left behind increased funding.

1986 Three groups of researchers,
including David Rumelhart.

Back-propagation networks introduced.

Table 6.1: History of neural networks

The table shows the important events in the history of Neural Networks. Figure 6.1
summarizes the above discussion:

116 Machine Learning for Beginners

Figure 6.1: The important events in the life of neural networks

The discussion continues in the chapter on deep learning.

Introduction to multi-layer perceptrons
The single layer perceptron (SLP), discussed in the previous chapter, can handle
patterns, which can be separated linearly but cannot handle the ones which behave
otherwise and, therefore, cannot solve the XOR problem.

This chapter introduces the multi-layer perceptron (MLP), which does not suffer
from the above limitations and hence can act as a universal approximator. In an
MLP, each layer is a perceptron whose output acts as the input to the next layer. The
sum of products of weights and inputs of a layer ()1

n
i ij iw x
=

Σ added together with the
bias (bi0) is fed to the activation function and produce the value (vi), which becomes
the input to the next layer:

0
1

n

j ij i i
i

u w x b
=

= +∑

vi = f(uj)

Here, wij is the synaptic weight of the connection between the ith neuron in the first
layer to the jth in the next. Figure 6.2 depicts the above equations:

Neural Network II – The Multi-Layer Perceptron 117

Figure 6.2: The sum of weights and inputs, added with
the bias is fed to the activation function to produce vj

So, an MLP contains input layers, hidden layers, and output layers. The network
contains at least one hidden layer. It may be noted that theoretically there is no limit
on the number of the hidden layers, though more hidden layers make the output
unexplainable. Hence, it is better to have a small number of hidden layers.

Moreover, if the hidden layers outputs a linear function, the purpose of having many
layers is defeated as the combination of linear combinations is linear. Hence the
activation functions in the hidden layer are generally the sigmoid or tanh functions,
owing to their non-linearity and also because any function can be expressed in terms
of basis functions like an exponential function. So, these functions can generate any
function. Though, recently the relu function has become popular.

Architecture
MLP has an input layer, an output layer, and at least one hidden layer. The number
of neurons in the input layer can be:
	 •	 Same as the number of features of the given data, in which case bias is needed
	 •	 Number of features in the given data + 1, the last one for the bais, this extra

input would always be one, and its weight would be equivalent to the bias
in the above model

The number of neurons in the output layer is the same as the number of outputs.
For example, if the given data has m features and n samples and a single response,
then X = {x1, x2, x3, …, xm}, where xi is n × 1 vector, and y is 1 × n vector. In this case,

118 Machine Learning for Beginners

the number of neurons in the input layer would be m + 1 and that in the output layer
would be 1. In the figure that follows, the neural network contains a single hidden
layer which has p neurons (Figure 6.3):

Figure 6.3: Architecture of the feed-forward model

The learning of weights, in the above network, is slightly tricky. It is because the input
and the expected output is known to us. The network learns the weights between
the hidden layer and output layer and uses these updated weights to update the
weights between the input and the hidden layer. The algorithm for changing the
weights has been discussed in the next section.

Backpropagation algorithm
Consider the weight of the synapse connecting the jth neuron in a layer to the ith in
the previous layer. This weight determines the outcome yj. The difference between
the desired output and the output obtained, for the nth input and jth neuron is:

e(n) = di (n) – yj (n)

The value of yj is obtained by giving to the activation function :

yj (n) = f(uj)

And uj is the summation of xi and wij:

Neural Network II – The Multi-Layer Perceptron 119

The square of this error multiplied ½, henceforth referred to as the loss function,
needs to be minimized, to attain dj(x):

() () () 21 ()
2 i jE n d n y n= −

To do so, the weights would have to be changed as per the delta rule. The weight of
the synapse connecting the ith neuron of the previous layer to the jth neuron in the
layer, wij would change as per the following equation:

Ä ()/ji jiw E n wδ δ= −

Now, E(n) depends on yj(n). This quantity is obtained by feeding uj(n) to the activation
function f. Therefore:

() () j j

ji j j ij

E n E n y u
w y u w

δ δ δ δ

δ δ δ δ
= × ×

The partial derivative of E with respect to yj is found as follows:

() () ()() () ()()11 2
2 i j i j

j

E n
d n y n d n y n

y

δ

δ
= − × × × − = − −

The partial derivative of yj for uj is found as follows:

()j
j

j

y
u

u
f

δ

δ
= ′

In the case of the sigmoid function, this becomes f × (1 – f).

Finally, the partial derivative of uj for wij is:

j
i

ij

u
x

w
δ

δ
=

Therefore, ()
ji

E n

w

δ

δ
 becomes:

() () ()()1 ()i j j i
ji

E n
d n y n f u x

w

δ

δ
′= − × − × ×

And finally, the change in the weights would be:

() () ()()Ä ()ji i j j i
ji

E n
w d n y n f u x

w

δ

δ
′= − = − × ×

120 Machine Learning for Beginners

First of all, start by changing the weights of the outermost layer and then move
inward, using the new weights obtained in the previous step.

Learning
The data in the neural network, being discussed, travels from the input layer to the
output layer. It is the reason why it is referred to as the feed-forward model. The
feed-forward backpropagation model works as follows:
	 •	 The neural network can have one more than the number of features neurons

in the input layer (for the bias). Likewise, the number of neurons of the
output layer generally is one less than the number of predictors.

	 •	 Initialize the weights by small random numbers.
	 •	 Feed input data to the input layer and calculate the output.
	 •	 Update the weights using the back-propagation algorithm. The change of

weights starts from the output layer, and the weights of the inner layers are
changed in the successive steps.

	 •	 Stop changing the weights when the change becomes less than the threshold
or the maximum number of iterations is reached.

The process has been depicted in the figure below:

Figure 6.4: Feed-forward, backpropagation model

The next section discusses the implementation of MLP.

Implementation
The above algorithm has been implemented from scratch using NumPy. The
implementation creates a network of a single hidden layer. The hidden layer
contains two neurons. The value of the learning rate has been taken as 0.1 for the

Neural Network II – The Multi-Layer Perceptron 121

bias. The code follows. The reader is expected to change the learning rate and the
number of neurons in the hidden layer to analyze the effect of these parameters on
the performance of the network. The MLP has been implemented in the following
code:

from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

import numpy as np

import math

#Loading Data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalization

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

arr=np.random.permutation(100)

X=IRIS.data[arr,:]

y=np.vstack((np.zeros((50,1)),np.ones((50,1))))

y=y[arr]

#Train test split

X_train=X[:40,:]

X_test=X[40:50,:]

y_train=y[:40]

122 Machine Learning for Beginners

y_test=y[40:50]

X_train1=X[50:90,:]

X_test1=X[90:100,:]

y_train1=y[50:90]

y_test1=y[90:100]

X_train=np.vstack((X_train,X_train1))
y_train=np.vstack((y_train,y_train1))

X_test=np.vstack((X_test,X_test1))

y_test=np.vstack((y_test,y_test1))

print(X_train.shape)

print(X_test.shape)

#Initialize	weights	and	bias	

W1=np.random.random((4,2))

W2=np.random.random((2,1))

b1=np.random.random((1,2))

b2=np.random.random((1,1))

#Activation

def f(u):

 ans=1/(1+np.exp(-1*u)) #s=1

 return ans

#Learning

y_pred=np.zeros(y_train.shape[0])

for i in range(X_train.shape[0]):

 input_sample=X_train[i,:]

 u1=np.matmul(input_sample,W1)+b1 #1X2

 v1=f(u1) #1X2

 u2=np.matmul(v1,W2)+b2 #1X1

 v2=f(u2) #1X1

 if(v2>0.5): #threshold=0.5

 y_pred[i]=1

 else:

Neural Network II – The Multi-Layer Perceptron 123

 y_pred[i]=0

 W 2 = n p . t r a n s p o s e (n p . t r a n s p o s e (W 2) + 0 . 9 5 * (y _ t r a i n [i] - y _
pred[i])*(v2)*(1-v2)*v1) #s=1,learning rate=0.475

 a=np.transpose(input_sample) #4X1

 b=(y_train[i]-y_pred[i])*(v2)*(1-v2) #1X1

 c=np.matmul(np.transpose(W2),np.matmul((np.transpose(v1)),(1-v1)))
#1X2

e=np.matmul(b,c) #1X2

inp=np.zeros((4,1))

for j in range(a.shape[0]):

 inp[j]=a[j]

 delta=np.matmul(inp,e)

 W1=W1+0.95*delta

 b2=b2-0.1*y_pred[i] #learning rate=0.1

 b1=b1-0.1*y_pred[i] #learning rate=0.1

print(W2) #2X1

print(W1) #4X2

#Testing

corr=0

for i in range(X_test.shape[0]):

 input_sample=X_test[i,:]

 u1=np.matmul(input_sample,W1)+b1 #1X2

 v1=f(u1) #1X2

 u2=np.matmul(v1,W2)+b2 #1X1

 v2=f(u2) #1X1

 if(v2>0.5): #threshold=0.5

 y_pred[i]=1

 else:

 y_pred[i]=0

 if(y_test[i]==y_pred[i]):

 corr+=1

 acc=corr/(y_test.shape[0]) #accuracy

124 Machine Learning for Beginners

 print(acc)

#Performance Measures

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==y_pred[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(y_pred[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

print(acc)

sens=TP/(TP+FN) #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

The next section discusses the in-built sklearn function for the implementation of
MLP.

Multilayer perceptron using sklearn
The module sklearn.neural_network implements a few neural network models,
including the forward backpropagation model. The following discussion uses
the sklearn.neural_network.MLPClassifier. The important parameters of the
constructor of the MLPClassifier have been presented in Table 6.2:

Neural Network II – The Multi-Layer Perceptron 125

Parameter Type Explanation
hidden_layer_
sizes

tuple, length The tuple depicts the number of hidden
layers, and the length depicts the number of
neurons. The default value is (100,).

activation One of the values
from {‘identity’,
‘ l o g i s t i c ’ ,
‘tanh’, ‘relu’}

It represents the activation function. The
default value is relu.
‘identity’ returns f(x) = x
‘logistic’ returns f(x) = 1 / (1 +
exp(-x))
‘tanh’ returns f(x) = tanh(x)
‘relu’ returns f(x) = max(0, x)

solver One of the values
from {‘lbfgs’,
‘sgd’, ‘adam’}.

It represents the solver used in the model.
The default value is ‘adam’.
‘lbfgs’: Optimizer in the family of quasi-
Newton methods.
‘sgd’: Stochastic gradient descent.
‘adam’: Stochastic gradient-based optimizer
proposed by Kingma, Diederik, and Jimmy
Ba.

alpha float It represents the learning rate. This parameter
is optional, and its default value is 0.0001.

batch_size int It represents the size of the batches in
stochastic optimizers. It is also an optional
parameter, and its default value is ‘auto’.

learning_rate One of the values
from {‘constant’,
‘ i n v s c a l i n g ’ ,
‘adaptive’}

The default value of this parameter is
‘constant’.

max_iter int It represents the maximum number of
iterations. It is an optional parameter whose
default value is 200.

random_state int The random_state is the seed used by the
random number generator.

Tol float It represents the tolerance. It is an optional
parameter whose default value is 1e-4.

Table 6.2: Parameters of MLPClassifier

Having seen the parameters of the function, let us now move to the attributes. Table
6.3 presents the attributes of MLPClassifier:

126 Machine Learning for Beginners

Attribute Type Explanation
classes_ Array or List It gives the class label for each attribute.
loss_ Float It gives the current loss.
intercepts_ List The elements represent the bias vectors.
n_iter_ int It represents the number of iterations run.

Table 6.3: The attributes of MLPClassifier

The module provides us with some functions. The fit, predict, predict_log_probas,
predict_probas are some of the most important such functions.

The fit function models the data X with y. The predict function predicts the output
of the argument. The predict_log_prob returns the logarithms of the probability
estimates. Likewise, the predict_prob provides us with the probabilities.

Experiments
To understand the usage of the above parameters, attributes, and methods, consider
the following experiments. The first experiment uses the first 100 samples of the IRIS
dataset. The data has been normalized, divided into the test and the train data, and
classified using the MLPClassifier. The size of the network is (3,2), and the value of
alpha is 10-3.

Experiment 1: IRIS DATA, Two classes, Normalization, MLP
from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

import numpy as np

import math

Loading the data

IRIS=load_iris()

X=IRIS.data

y=IRIS.target

#Normalization

max=[]

min=[]

Neural Network II – The Multi-Layer Perceptron 127

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#	shuffling	and	creating	test	and	train	data	

arr=np.random.permutation(100)

X=IRIS.data[arr,:]

y=np.vstack((np.zeros((50,1)),np.ones((50,1))))

y=y[arr]

X_train=X[:40,:]

X_test=X[40:50,:]

y_train=y[:40]

y_test=y[40:50]

X_train1=X[50:90,:]

X_test1=X[90:100,:]

y_train1=y[50:90]

y_test1=y[90:100]

X_train=np.vstack((X_train,X_train1))

y_train=np.vstack((y_train,y_train1))

X_test=np.vstack((X_test,X_test1))

y_test=np.vstack((y_test,y_test1))

#print(X_train.shape)

#Classification	

clf=MLPClassifier(solver=’lbfgs’,alpha=1e-3,hidden_layer_sizes=(3,	 2),	
random_state=1)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

128 Machine Learning for Beginners

#Performance evaluation

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

print(acc)

sens=TP/(TP+FN) #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

Output:
1.0

1.0

1.0

The second experiment uses the first 100 samples of the Fisher IRIS dataset. The data
has been normalized to numbers between 0 and 1. It has been divided into the test
and the train data using the train-test split, and the MLPClassifier has been used
to classify the data. The size of hidden layers, in the network, is (3,2). The value of
alpha is 10-3.

Neural Network II – The Multi-Layer Perceptron 129

Experiment 2: IRIS DATA, two classes, Normalization, Train-test split, MLP
from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

from sklearn.model_selection import train_test_split

import numpy as np

import math

#Loading the data

IRIS=load_iris()

X=IRIS.data[:100,:]

y=IRIS.target[:100]

#Normalization

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

#Train test split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_
state=4)

#Classification	

clf=MLPClassifier(solver=’lbfgs’,alpha=1e-3,hidden_layer_sizes=(3,
2),random_state=1)

clf.fit(X_train,	y_train)

predicted=clf.predict(X_test)

130 Machine Learning for Beginners

#Performance measures

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

print(acc)

sens=TP/(TP+FN) #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

Output:
1.0

1.0

1.0

The third experiment deals with the Breast Cancer dataset. The given data has been
normalized remove. The data has been divided into the test, and the train data and
the MLPClassifier have been applied to classify the data. The size of hidden layers,
in the network, is (10,2). The value of alpha is 10-3.

Experiment 3: Breast Cancer Dataset, Two classes, Normalization, MLP

Neural Network II – The Multi-Layer Perceptron 131

from sklearn.datasets import load_breast_cancer

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

import numpy as np

import math

#Load Data

dataset=load_breast_cancer()

X=dataset.data

y=dataset.target

#Normalization

max=[]

min=[]

S=X.shape

for i in range(S[1]):

 max.append(np.max(X[:,i]))

 min.append(np.min(X[:,i]))

for i in range(S[1]):

 for j in range(S[0]):

 X[j,i]=(X[j,i]-min[i])/(max[i]-min[i])

Train Test Split

X_train=X[:400,:]

X_test=X[400:,:]

y_train=y[:400]

y_test=y[400:]

#Classify

clf=MLPClassifier(solver=’lbfgs’,alpha=1e-5,hidden_layer_sizes=(5,
2),random_state=1)

clf.fit(X_train,y_train)

132 Machine Learning for Beginners

#Performance Measures

predicted=clf.predict(X_test)

TP=0

TN=0

FN=0

FP=0

for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN) #accuracy

print(acc)

sens=TP/(TP+FN) #sensitivity

print(sens)

spec=TN/(TN+FP)	 	 	 	 #specificity

print(spec)

Output:
0.93

0.96

0.89

The fourth experiment uses the Breast Cancer dataset. The data has been normalized,
divided into the test, and the train data using the K fold validation and classified
using the MLPClassifier. The size of hidden layers, in the network, is (3,2). The value
of alpha is 10-3.

Neural Network II – The Multi-Layer Perceptron 133

Experiment 4: Breast Cancer Dataset, Two classes, Normalization, K-Fold Split, MLP
from sklearn.datasets import load_breast_cancer

from matplotlib import pyplot as plt

from	sklearn.neural_network	import	MLPClassifier

import numpy as np

fromsklearn.model_selection import KFold

import math

#Load Data

dataset=load_breast_cancer()

X=dataset.data
y=dataset.target

#K Fold Validation

kf=KFold(n_splits=10,random_state=None,shuffle=False)

kf.get_n_splits(X)

accur=[]

specificity=[]

senstivity=[]

for train_index, test_index in kf.split(X):

 #print(“TRAIN:”, train_index.shape, “TEST:”, test_index.shape)

 X_train, X_test = X[train_index], X[test_index]

 y_train, y_test = y[train_index], y[test_index]

	 	clf=MLPClassifier(solver=’lbfgs’,alpha=1e-3,hidden_layer_sizes=(8,	
2))

	 clf.fit(X_train,y_train)

 predicted=clf.predict(X_test)

 TP=0

 TN=0

 FN=0

 FP=0

 for i in range(len(y_test)):

 if(y_test[i]==predicted[i]):

134 Machine Learning for Beginners

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(predicted[i]==1):

 FP+=1

 else:

 FN+=1

 acc=(TP+TN)/(TP+TN+FP+FN)

 accur.append(acc)

 if((TP+FN)!=0):

 sens=TP/(TP+FN)

 else:

 sens=0

 senstivity.append(sens)

 if((TN+FP)!=0):

 spec=TN/(TN+FP)

 else:

 spec=0

	 specificity.append(spec)

print(np.mean(accur))

print(np.mean(senstivity))

print(np.mean(specificity))

The results of the above experiments are shown in the following table (Table 6.4):

Experiment Accuracy Sensitivity Specificity

1 1.0 1.0 1.0
2 1.0 1.0 1.0
3 0.93 0.96 0.89
4 0.71 0.89 0.18

Table 6.4: Results of Experiments 1, 2, 3 and 4

Neural Network II – The Multi-Layer Perceptron 135

Conclusion
The single layer neural networks, discussed in the last chapter, were able to perform
many tasks, but not all. Therefore, the interest in neural networks waned after
an initial surge. One of the reasons for this was the inability of the single layer
perceptrons to classify data, which was not linearly separable. This lead to the advent
of the multi-layer neural networks, which could handle the non-linearly separable
data and could learn any function.

This chapter presented a brief overview of multi-layer perceptrons. The history and
architecture of the neural networks have also been discussed in this chapter. The last
chapter discussed the activation functions, which can be discrete or continuous. The
unit step function is an example of a discrete activation function. The examples of
continuous activation functions are sigmoid and the hyperbolic tangent function.
The later helps to develop a model capable of predicting a continuous function. This
chapter introduced the feed-forward models, which used continuous activation
functions.

It may also be noted that initially, the number of layers in the network could not be
increased as there was no way of learning the weights since the output of the hidden
layer was not known. The back-propagation model proposed in 1986 changed the
discourse and set the bells ringing. The model helped to learn the weights of the output
layer, after which the weights of the hidden layer can be learned. It is one of the most
used algorithms for learning the weights in neural networks. It may be stated that
this algorithm was certainly not the first to be proposed. Firstly, Rosenblatt proposed
the random initialization of weights, followed by the learning of the weights of the
outer layer. This chapter discussed the backpropagation algorithm and presented
arguments in favor of multi-layer perceptrons as Universal Approximators.

The next chapter discusses the support vector machines, which is much better in
classifying the patterns as it uses only some of the inputs (called support vectors)
for classification. Also, the idea behind classification is markedly different from
neural networks. The reader is expected to attempt the exercises to develop a better
understanding of the chapter.

Exercises
Multiple Choice Questions
 1. Generally, the initial weights in a Neural Network are small random numbers.

Why?

136 Machine Learning for Beginners

 a. So that the learning algorithm does not lead to large random numbers and
hence saturate the network

 b. So that computation time is saved
 c. The given statement is not true
 d. None of the above

 2. Which of the two initializations of weights is generally better?
 a. All the initial weights are equal
 b. They are not equal
 c. Both the above situations are equivalent
 d. Cannot determine

 3. Training of a network can be done using?
 a. Single input at a time b. Set of inputs
 c. All the inputs together d. All of the above

 4. In backpropagation, the weights of which layer are modified first?
 a. Last Layer b. First Layer
 c. Hidden Layer d. All of the above

 5. Which of the following activation functions can be used in MLP?
 a. Relu b. Sigmoid
 c. tanh d. All of the above

 6. Which of the following activation functions cannot be used in MLP?
 a. Relu b. Sigmoid
 c. Unit step d. All of the above

 7. Which of the following cannot handle the XOR problem?
 a. MLP b. SLP
 c. Both d. None of the above

 8. What is the minimum number of hidden layers in MLP?
 a. 0 b. 1
 c. 2 d. None of the above

 9. Which of the following can be classified using MLP?
 a. Two class problem b. Multi-class problem
 c. Both d. None of the above

Neural Network II – The Multi-Layer Perceptron 137

 10. A neural network can have?
 a. Different activation functions at each neuron
 b. Any number of hidden layers
 c. Any number of neurons in a layer
 d. All of the above

Theory
 1. Explain the backpropagation algorithm and derive the formula for change in

weights.
 2. Examine the problems in SLP and argue in favor of MLP.
 3. Prove that MLP can act as a universal approximator.
 4. Write the algorithm for classification using a feed-forward back-propagation

model.
 5. Which activation functions can be used in MLP?
 6. What is the importance of the learning rate?
 7. Explore research papers, given in the reference at the end of this book, and

write a note on deciding the number of hidden layers and neurons in each
layer.

 8. Write a short note on the history of neural networks.

Practical/Coding
 1. Implement a neural network using numpy for classifying any classification

dataset from the UCI machine learning Repository.
 a. Analyze the effect of replacing random weights by zeros on the number of

iterations. In which of the two convergence is achieved?
 b. Analyze the effect of replacing delta learning rule by Hebbian on the

number of iterations. In which convergence is achieved? What do you
observe about the weights if the number of iterations becomes large?

 2. On the Breast Cancer Data set:
 a. Normalize the data
 b. Use K-Fold (K=10)
 Change the number of hidden layers and the number of neurons in each layer.
 Report the average accuracy, selectivity, and sensitivity in each case.
 3. Perform the above experiment on the Autism Screening Adult dataset (https://

archive.ics.uci.edu/ml/datasets/Autism+Screening+Adult) and compare the
accuracy in each case.

Introduction
The discussion so far leads to the conclusion that if a test sample is far away from
the decision boundary, its probability of belonging to a particular class is more,
as compared to a sample which is near to the decision boundary. It is because the
decision boundary is crafted using the train data, and we intend to classify the test
data. Therefore, the assignment of a label to a test sample, very near to the decision
boundary, may not be correct. The above premise suggests that the samples further
from the decision boundary are more likely to be correctly classified. The reader
is requested to appreciate this idea before proceeding any further. This chapter
introduces the reader to support vector machines. The classifier explained in this
chapter is based on the idea of the Maximum Margin Classifier.

Support vector machines are perhaps one of the best machine learning algorithms.
They are elegant, effective, and even work for data having very large dimensions.
These machines, therefore, handle the curse of dimensionality gracefully. These
machines do not use the whole data to craft the separating hyperplane, but only a
small subset of the training data called the support vectors. It makes these machines’
memory efficient. Though the algorithm is based on the creation of hyperplane for
linearly separable data, the model can be extended to non-linearly separable data
using the kernel trick. Also, the concept of cost has been explained in the chapter,

Chapter 7
Support Vector

Machines

140 Machine Learning for Beginners

which allows the misclassification of the train data to achieve a better performance
on the test data.

The following sections also explain the implementation of SVM using sklearn.svm.
The reader will be able to appreciate the mathematical basis of SVM, use SVM for
classifying the numeric data and the images using the experiments explained in this
chapter. The discussion continues in the Appendix of this book, which introduces
regression using the support vector machines.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 The Maximum Margin Classifier
	 •	 Maximizing the margins
	 •	 The cost parameter
	 •	 The kernel trick
	 •	 Implementation of SVM
	 •	 Experiments with two datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the importance of Maximum Margin Classifiers
	 •	 Understand the derivation of maximum margin
	 •	 Understand the cost parameter and kernel trick
	 •	 Implement SVM
	 •	 Use SVM to carry out classification

The Maximum Margin Classifier
The samples of the data, shown in Figure 7.1, belong to two classes, and it is desired
to find a line that separates the space. The symbol X represents the samples of class
I, and the symbol * represents the samples of class II. For the sake of mathematical
convenience, we take the labels of the samples belonging to class I as -1 and of those
belonging to class II as 1. Assume that the classifier used to accomplish the task
comes up with the line shown in Figure 7.1, which is very near to class II. Another
classifier comes up with that shown in Figure 7.2, which is very near to class I. Both

Support Vector Machines 141

the lines can classify the samples into two classes but may not give good results for
the test data. The above analysis takes into consideration only two features of the
data. However, the concept developed in the following discussion can be extended to
multiple features, in which case a hyper-plane instead of a line would be generated
by the classifier:

Figure 7.1: The classifier gives a line very near to class II

Figure 7.2: The classifier gives a line very near to class I

If we can maximize the width of the gutter shown in Figure 7.3 and the classifier
generates a line in the middle of the gutter, the chances of enhanced performance of
the classifier with the test data would increase:

142 Machine Learning for Beginners

Figure 7.3: It is desired to maximize the width of the gutter between the two classes

To do so, we find a vector representing the width of this gutter. Let any point ()1x
belonging to class I satisfy:

 1. 1x w b+ ≤ − …(1)

And any point () belonging to class II satisfy:

 2 . 1x w b+ ≥ …(2)

That is:

 1. 1, 1ix w b if y+ ≤ − = − …(3)

And

 2 . 1, 1ix w b if y+ ≥ = …(4)

The above two equations can be written as:

 (.) 1iy x w bι + ≥ …(5)

And xi for, the samples in the gutter satisfies:

 (.) 1iy x w bι + = …(6)

The hyperplane, in this case, would be represented by:

 (.) 0i x w bι + = …(7)

Support Vector Machines 143

If the vectors 1x and 2x represent those to the two lines passing through the
endpoints of the two classes (Figure 7.4), then 1 2()x x− represents the width of the
gutter (Figure 7.5):

Figure 7.4: The gutter between the two samples needs to be maximized

Figure 7.5: 1 2()x x− represents the width of the gutter

The magnitude of this vector is
1 2().x

w
wx− , which becomes 2

w
 by equation (6).

Having found the width of the gutter, let us move to maximize this width. The next
section uses Lagrange’s method to accomplish this task.

144 Machine Learning for Beginners

Maximizing the margins
In the following discussion, the labels y ∈{-1, 1} and the classifier is represented
by f = g(X × W T). The weights W are to be determined. For a given sample xi, the
weight and the value of g determine whether a sample belongs to a particular class.
The discussion in the previous section suggests that in this case, a linear function
represents the classifier.

The distance between two samples is proportional to:

 1/d w∝ …(8)

To maximize this distance, we can minimize w or for that matter
21

2
w subject to

constraint:

 ()1 0t
i iy x w b− + = …(9)

Note that in the above equation both xi and w are one-dimensional matrices. The
problem can thus be solved using Lagrange’s method. The Lagrange’s would,
therefore be:

 ()()2

1

1 1
2

m t
i i ii

L w y x w bα
=

= + − +∑ …(10)

To minimize L, we find its partial derivative for w and b:

 ()()2

1

1 1
2

m t
i i ii

L w y x w b
w w

δ δ α
δ δ =

= + − +

∑ …(11)

1

m

i i ii

L w y x
w

δ α
δ =

= −∑ …(12)

Putting:

 0L
w

δ
δ

= …(13)

We get:

1

m

i i ii
w y xα

=
=∑ …(14)

Similarly, differentiating L with respect to b, we get:

 ()()2

1

1 1
2

m t
i i ii

L w y x w b
b b

δ δ α
δ δ =

= + − +

∑ …(15)

1

m

i ii

L y
b

δ α
δ =

= −∑ …(16)

Support Vector Machines 145

Putting:

 0L
b

δ
δ

= …(17)

We get:

1

0
m

i ii
yα

=
=∑ …(18)

For all positive ai’s:

We can substitute
1

m
i i ii

w y xα
=

=∑ in L, we get:

 ()()2

1

1 1
2

t
i i i

m

i
L w y x w bα

=
= + − +∑ …(19)

 ()()1

1 1
2

mT t
i i ii

L ww y x w bα
=

= + − +∑ …(20)

 ()1 1 1 1

1 (1)
2

m m m mT T
i j i j i j i i j j ji j i j

L y y x x y y x bα α α α
= = = =

= + − +∑ ∑ ∑ ∑ …(21)

1 1 1

1
2

m m mT
i j i j i j ii j j

L y y x xα α α
= = =

= − +∑ ∑ ∑ …(22)

Subject to:

1

0
m

i ii
yα

=
=∑ and 0iα ≥ …(23)

Note that the values of yi, yj, xi and xi are known. Hence the above system of
equations can be solved. However, some of the ai’s will be zeros. The non-zero
ai’s will determine the decision boundary. The following function represents the
decision:

1

0, 1
m

i i ii i iy x b tx hen yα
=

+ ≥ =∑ …(24)

 elseyi = –1 …(25)

Having discussed the mathematics, let us now move to the importance of the cost
parameter and how to handle a non-linearly separable case using the cost parameter.

The non-separable patterns and the cost
parameter
The above theory works if there is a wide margin between two linearly separable
data. Now consider a situation where it is not the case. For example, in Figure 7.6, if
the * and the X in the gutter can be ignored, the above theory can be applied:

146 Machine Learning for Beginners

Figure 7.6: The case of non-separable data and the importance of cost function

Let us reframe the optimization problem so that a small amount of misclassification
may be allowed if instead of that, the margins so formed are far apart. As per Haykin
[2], the definition of hyperplane can be derived by introducing an error term in
equation (5). That is:

 (). 1i ixy w b ξ+ ≥ − …(26)

If the value of the new variable introduced is between 0 and 1, the test sample will be
in the gutter, on the correct side of the hyperplane. To find the hyperplane for which
misclassification is minimized, we need to minimize:

 ()
1

(1)
m

i
f gξ ξ

=
= −∑ …(27)

where m is the number of training samples, and g is a function defined by

 () 0, 0
1, 0

if
g

if
ξ

ξ
ξ

 ≤= >
 …(28)

Interestingly, the above problem is NP-complete. So, to solve this, we relax the
constraint in equation (28) to:

 ()
1

()
m

i
f gξ ξ

=
=∑ …(29)

The problem then reduces to:

 1 1 1

1
2

m m mT
i j i j i j ii j j

L y y x xα α α
= = =

= − +∑ ∑ ∑ …(30)

Support Vector Machines 147

Subject to:

1

0
m

i ii
yα

=
=∑ and i Cα ≤ …(31)

The large value of C allows the misclassification of training examples. One can vary
the value of C and analyze the performance of the model so formed on the test data.

The kernel trick
Let ()xφ be a function that transforms the feature space from the input space. The
decision surface, in terms of ()xφ can be defined as ()

1
0ii

w xφ
∞

=
=∑ . In this case, the

weights can be found by modifying the equation (14) as:

1

()
m

i i ii
w y xα φ

=
=∑ …(32)

And the output decision function of the output space can be expressed as:

1

() () 0
m T

i i i ii
y x x bα φ φ

=
+ =∑ …(33)

Which contains , called the inner product:

(,) () ()T
i iK x x x xφ φ=

This K represents a function that finds the inner product feature space under φ of the
two data points in the space [2]. This function must be symmetric, that is K(x, xi) =
K(xi, x), and the total volume under the surface represented by K must be constant.
The kernel trick allows us to transform the input data into space where non-linearly
separable data points become linearly separable, find the hyperplane, and then
transform the result back to the original space.

The kernel functions provided by sklearn.svm are as follows:
	 •	 linear: <x, xT>
	 •	 polynomial: (γ < x, xT > + r)d, where d is the degree of the polynomial, r is

specified by coef0 and gamma is specified by the gamma parameter

	 •	 rbf:
2Tx x

e
γ− −

, Where the value of gamma must be greater than 0.
	 •	 sigmoid: tanh (γ < x, xT > + r), where r is specified by coef0 and gamma is

specified by the gamma parameter

Moreover, one can define his/her kernel by defining a method and setting the kernel
parameter as the name of that method.

148 Machine Learning for Beginners

SKLEARN.SVM.SVC
The SVC class of the sklearn.svm provides a libsvm based implementation of Support
Vector Machine. Table 7.1 shows the parameters of the sklearn.svm.svc method:

Parameter name Data Type Optional/Default value Description
C float It is an optional parameter.

The default value of this
parameter is 10

This is the Regularization
parameter, which must be
positive.

kernel string It is an optional parameter.
The default value of this
parameter is ’rbf’.

This parameter specifies
the kernel. It can have the
following values: ‘linear’,
‘poly’, ‘rbf’, ‘sigmoid’,
‘precomputed’ or a callable.

degree int It is an optional parameter.
The default value of this
parameter is 3.

This parameter depicts the
degree of the polynomial
kernel function.

gamma {‘scale’,
‘auto’} or
float

It is an optional parameter.
The default value of this
parameter is ’scale’.

This parameter depicts the
kernel coefficient for ‘rbf’,
‘poly’ and ‘sigmoid’.

coef0 float It is an optional parameter.
The default value of this
parameter is 0.0.

This parameter represents
the independent term in
kernel function.

tol float It is an optional parameter.
The default value of this
parameter is 1e-3.

This parameter represents
the tolerance for stopping
criterion.

max_iter int It is an optional parameter.
The default value of this
parameter is -1.

This parameter signifies
the maximum number of
iterations.

random_state int It is an optional parameter.
The default value of this
parameter is None.

This parameter states the
random state used in the
pseudo random number
generator.

Table 7.1: Parameters of sklearn.svm.svc

The fit method crafts the SVM. The attributes of the method are presented in Table 7.2:

Attribute Description
support This attribute gives the indices of the support vectors.
support_vectors This attribute gives the support vectors.
n_support This attribute gives the number of support vectors for each class.

Contd…

Support Vector Machines 149

coef_array This attribute gives the weights assigned to the features.
intercept This attribute gives the constants in decision function.
classes This attribute gives the class labels.

Table 7.2: Attributes of sklearn.svm.svc

The methods of the SVC class are shown in Table 7.3. Note that, like other classifiers,
the fit method is used to craft the model, and the predict method is used to predict
the test data, and other methods help us to see the support vectors, labels, and so on:

Method Description

decision_function This method finds the decision function for the data passed as
the argument.

fit This method fits the SVM model as per the training data.
predict This method is used for the classification of the test data.
score This method returns the mean accuracy.

Table 7.3: Methods of sklearn.svm.svc

Having seen the parameters, attributes, and methods of sklearn.svm, let us now
move to the next section, which presents some experiments using the above methods.

Experiments
The following experiments demonstrate the application of sklearn.svm for
classification. The first experiment classifies the Breast Cancer dataset using the
linear kernel of SVM, by dividing the dataset into train and test set using train_
test_split. The second experiment uses K-Fold validation to accomplish the same
task.

Experiment 1: Classification of Breast Cancer Dataset using SVM, Linear Kernel.

Specifications:
	 •	 Dataset: Breast Cancer
	 •	 Classifier: SVM
	 •	 Kernel: Linear
	 •	 Split: 70% train data, 30% test data

The following steps will take you through the process of classifying the Breast Cancer
dataset using the SVC of sklearn.svc:

Step 1: Import modules

150 Machine Learning for Beginners

The following modules need to be imported to classify the Breast Cancer dataset
using SVM:
import numpy as np

from sklearn.svm import SVC

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

Step 2: Load data

The load_data function returns the data and the labels:
def load_data():

 Data=load_breast_cancer()

 X=Data.data

 y=Data.target

 return (X, y)

Step 3: Evaluate performance
The cal_acc function calculates the accuracy by comparing the predicted values of
the labels and the values of the labels of the test data:
defcal_acc(y_test, y_predict):

 tp=0

 tn=0

 fp=0

 fn=0

 s=np.shape(y_test)

 for i in range (s[0]):

 o1=y_predict[i]

 y1=y_test[i]

 if(o1==1 and y1==1):

 tp+=1

 elif(o1==0 and y1==0):

 tn+=1

 elif(o1==1 and y1==0):

 fp+=1

 else:

Support Vector Machines 151

 fn+=1

 acc=(tp+tn)/(tp+tn+fp+fn)*100

 return(acc)

Step 4: The model

The following code makes use of the above functions to classify the data:
X, y=load_data()

X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3,
random_state=4)

clf=SVC(kernel=’linear’) #gamma=’auto’

clf.fit(X_train,	y_train)

y_predict=clf.predict(X_test)

accuracy=cal_acc(y_test, y_predict)

The accuracy, in this case, comes out to be 94.7368.

Experiment 2: Classification of Breast Cancer Dataset using SVM, Linear Kernel,
K-Fold

Specifications:
	 •	 Dataset: Breast Cancer
	 •	 Classifier: SVM
	 •	 Kernel: Linear
	 •	 Split: K-Fold, K=5

The load_data and cal_acc functions of Experiment 1 are used in the following
code. The reader is expected to write the functions again. The code that uses K-Fold
split and calculates the average accuracy is as follows:
kf=KFold(n_splits=5)

kf

kf.get_n_splits(X)

acc=[]

for train_i,test_i in kf.split(X):

 X_train,X_test=X[train_i],X[test_i]

 y_train,y_test=y[train_i],y[test_i]

 clf=SVC(kernel=’linear’) #gamma=’auto’

	 clf.fit(X_train,	y_train)

152 Machine Learning for Beginners

 y_predict=clf.predict(X_test)

 accuracy=cal_acc(y_test, y_predict)

 acc.append(accuracy)

print(np.mean(acc))

The average accuracy, in this case, comes out to be 95.25384257102935. Note that other
conditions remaining the same, the accuracy in the case of K=10 is 95.25689223057643
and in the case of K=20 is 95.09852216748767. In this case, the variation of K does not
have a great impact on the performance of the system. The accuracies in the 20 folds
of 20-Fold cross-validation are as follows:

[96.55172413793103, 86.20689655172413, 93.10344827586206,
93.10344827586206, 96.55172413793103, 93.10344827586206, 96.55172413793103,
96.55172413793103, 93.10344827586206, 96.42857142857143, 92.85714285714286,
100.0, 100.0, 96.42857142857143, 92.85714285714286, 96.42857142857143,
89.28571428571429, 100.0, 96.42857142857143, 96.42857142857143]

The accuracies in the ten folds of 10-Fold cross-validation are as follows:

[91.22807017543859, 92.98245614035088, 94.73684210526315,
96.49122807017544, 96.49122807017544, 96.49122807017544, 98.24561403508771,
94.73684210526315, 94.73684210526315, 96.42857142857143]

Experiment 3: The following code classifies two sets of images using SVM. The
required modules can be imported using the following code:
from matplotlib import pyplot as plt
import matplotlib.image as mpimg

import numpy as np

from sklearn import svm

from sklearn.model_selection import train_test_split

The images can be converted to grayscale using the following function:
def rgb2gray(rgb):

return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])

The perf_measure function finds the performance of the model. It takes test_y and
y_predicted as parameters:
def perf_measure(test_y,y_predicted):

tp=0

Support Vector Machines 153

tn=0

fp=0

fn=0

for i in range(len(test_y)):

 predicted=y_predicted[i]

 actual=test_y[i]

 if(predicted==actual):

 if(predicted==1):

 tp+=1

 else:

 tn+=1

 else:

 if(predicted==1):

 fp+=1

 else:

 fn+=1

acc=(tp+tn)/ (tp+tn+fp+fn)

sens=(tp)/(tp+fn)

spec=(tn)/(tn+fp)

return (acc,sens,spec)

Suppose you have 20 images of class I and 20 images of class II, the following code
would help you to classify the images, assuming that you have saved the image data
in final_data. Note that the following code uses a linear kernel:
y1=np.zeros((20,1))

y2=np.ones((20,1))

y=np.vstack((y1,y2))

train_X,test_X,train_y,test_y=train_test_split(final_data,	 y,	 test_
size=0.3)

clf = svm.SVC(kernel=”linear”)

clf.fit(train_X,train_y)

y_predicted=clf.predict(test_X)

acc,sens,spec=perf_measure(test_y,y_predicted)

154 Machine Learning for Beginners

The exercises, given at the end of this chapter, take this experiment further. The
reader is expected to carry out all the steps given in the Experiment section of the
exercises to get a better hold of the working of SVM.

Conclusion
The Support Vector Machines, introduced in this chapter are like a thread for the
tailor, rose for a floweriest and wheat for a cook. They are essential, very essential.
They are good both in terms of computation time and memory. They do not use the
whole training set for classification but only its subset for the crafting of separating
hyperplane. The derivation of the separating hyperplane, presented in this chapter,
is for linearly separable data. However, the kernel trick allows us to separate non-
linearly separable data as well. This chapter explains the idea behind the Support
Vector Machines, presents the derivation of the hyperplane, discusses the cost
parameter, and finally discusses the importance of kernels.

The experiments presented in this chapter will help the reader in analyzing the
performance of SVM with various datasets. The reader is also expected to take note
of the variation of the performance of the classifier on changing the parameters.

It may be stated here that there are certain disadvantages to these machines. They
include the problem in choosing the kernel and the regularization parameters.
Also, the sklearn.svm uses 5-Fold CV for the estimation of probabilities, which is
expensive.

Nevertheless, the reader will be able to carry out the classification of numeric,
imaging data, optimize cost and choose kernel using the concepts introduced in this
chapter. The next chapter introduces some of the most important feature extraction
methods and presents its implementation. These include Fast Fourier Transform,
STFT, patches, HOG, and transformation techniques like PCA. The knowledge
of these feature extraction methods will help the reader to develop a robust and
efficient decision model.

Exercises
Multiple Choice Questions
 1. Which of the following is based on the principle of maximum margin?
 a. Support Vector Machine b. Single Layer Perceptron
 c. Multi-Layer Perceptron d. None of the above

Support Vector Machines 155

 2. Which of the following helps us to classify non-linearly separable data using
SVM?

 a. Kernel trick b. Train test split
 c. Both d. None of the above

 3. How is SVM better than MLP?
 a. It uses lesser data points for the creation of hyperplane
 b. It uses the idea of Maximum Margin Classifier
 c. Both
 d. None of the above

 4. The data points used by SVM for the creation of separating hyperplane are?
 a. Support vectors b. All the data samples
 c. Cannot say d. Depends on the situation

 5. The cost parameter?
 a. Helps to improve testing performance
 b. May allow misclassification
 c. Both
 d. None of the above

 6. The Support Vector Machines are used for
 a. Classification b. Regression
 c. Finding outliers d. All of the above

 7. Consider the derivation of the creation of hyperplane. The problem reduces
to?

 a. Quadratic Optimization Problem b. Linear Optimization
 c. None of the above d. Both

 8. The data points having non-zero are?
 a. Support vectors b. Non-support vectors
 c. Uber d. None of the above

 9. Why are the labels in SVM taken as 1 and -1?
 a. Mathematical convenience
 b. It is necessary for Lagrange’s method
 c. Both
 d. None of the above

156 Machine Learning for Beginners

 10. While classifying data, which of the following should be the first preference?
 a. Linear kernel b. Polynomial kernel
 c. rbf d. None of the above

Theory
 1. Explain the concept of Maximum Margin Classifier.
 2. Derive the separating hyperplane in the case of Support Vector Machine.
 3. Explain the cost parameter in SVM.
 4. What is a kernel? Which functions can be used as kernels in SVM?
 5. Explain the advantages and disadvantages of Support Vector Machines.
 6. State various kernels provided by sklearn.
 7. Write an algorithm to classify data using SVM.

Experiment
 1. Take 20 images of the face of a person and 20 images of the face of another

person. The images should have the same dimensions.
 a. Convert the above to grayscale.
 b. Divide the data into train and test samples.
 c. Apply the following to find accuracy, specificity, and sensitivity:
 i. Linear
 ii. Polynomial, degree 3
 iii. rbf
 iv. Sigmoid
 d. Vary the cost parameter in (4) to find the cost at which maximum accuracy

is obtained.
 e. Does the change in the value of , change results in 4(b).
 f. Does the change in the value of , change results in 4(b).
 g. Does the change in the value of , change results in 4(c).
 h. Does the change in the value of , change results in 4(c).

 2. Repeat the experiment by features extracted using PCA.

Introduction
So far, classification algorithms like K-nearest neighbors, neural networks, and
support vector machines have been discussed. These algorithms perform well.
However, a major problem with these algorithms is that the assignment of a label to
a test sample cannot be explained in terms of decision rules.

Duda et al. points to the applicability of algorithms, that use some distance metric,
in the problems related to nominal data [3]. The algorithms like K-nearest neighbors
can be used if the “closeness” amongst the samples can be defined. However,
this closeness does not make sense in many situations. For example, in the case of
nominal data, the distance between two samples may not make sense, and hence
such algorithms should not be applied. In such cases, decision trees come to our
rescue.

Decision trees contain decision nodes and leaf nodes. The decision nodes lead us
to one of the possible branches, depending upon the answer to the question asked
at the node. The leaf nodes, on the other hand, represent labels. In deciding the
class of a test sample, we start with the decision node and move towards the leaf,
which declares the class of the sample. The first section introduces the reader with
the basics of decision trees.

Chapter 8
Decision Trees

158 Machine Learning for Beginners

The formation of these trees requires a feature to be chosen at each level. This feature
is chosen using information gain or Gini index. The algorithms for choosing a
feature at each level are explained in the following sections. The number of branches
originating out of each node depends on the number of discrete values in the feature
represented by the node. If the data is continuous, algorithms for discretization can
be used. This chapter also revisits discretization.

A node can be declared as a leaf if it is pure; that is, it contains only one type of label.
If the decision tree becomes too large, procedures explained in this chapter can be
used to curtail the depth of the tree. In such cases, the node, to be declared as a leaf,
is assigned a label, which is the same as the majority of samples at that node.

Finally, this chapter presents the implementation of decision trees using SKLearn.
The reader will be able to deal with the data containing nominal values after reading
this chapter. This chapter will also help the reader to explain the answer obtained
using a sum of product of the rules represented by each node.

Structure
The main topics covered in this chapter are as follows:
	 •	 Introduction
	 •	 Basics
	 •	 Discretization
	 •	 Information gain and Gini index
	 •	 Implementation

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the importance of decision trees
	 •	 Understand the concept of information gain and the formation of a tree using

the concept of information gain
	 •	 Understand Gini index
	 •	 Implement decision trees using SKLearn
	 •	 Understand the procedures to stop splitting

Decision Trees 159

Basics
In Computer Science, a tree is a non-linear data structure having nodes and branches.
It does not have a cycle or isolated edges/branches. A rooted tree has a root, from
which other nodes originate. Other nodes, in a rooted tree, may have children, and
the leaf nodes do not have any children.

A decision tree (DT) is a classifier in the form of a tree where each node, except
for the leaves, is a decision node. The leaf nodes in these trees represent labels or
probability of belonging to a label.

A DT is created from the train data. Once it is created, the label of the test data is found
by starting from the root and traversing till a leaf node by evaluating conditions on
each decision node, using the feature set of the test data.

To understand this concept, consider a decision tree to decide the Category of a
composition, which has 7 or 14 beats. The train data consist of two features Beats
and Sections and a label called Category. If the composition has 7 Beats, we check
the Sections. If the composition has 223 as the value in the Sections, the Category
is A; otherwise, it is B. Likewise, in the case of a composition having 14 Beats, the
Category is C irrespective of the value in the field Sections (Table 8.1):

Beats Sections Category

7 223 A
7 322 B
14 5234 C
14 3434 C

Table 8.1: Category of a composition having 7 or 14 beats

The corresponding DT is shown in Figure 8.1. Note that the root node and the nodes
at the next level are decision nodes and the leaf nodes are labels. So, for a test sample,
{Beats=7, Sections=322}, the first node checks whether the number of Beats in
the composition is 7 or 14. Since the test sample has 7 beats, the next decision node
checks the value of Sections. Since the sample has 322 as the value of Sections, it
belongs to the Category B:

160 Machine Learning for Beginners

Figure 8.1: Decision tree for Table 8.1

The above tree has two decision nodes and three leaf nodes. The following rules can
be inferred using this DT:

Rule 1: If((Beats == 7) and (Sections = 223)), thenCategory = A

Rule 2: If((Beats == 7) and (Sections = 322)), thenCategory = B

Rule 3: If((Beats == 14)), thenCategory = C

The above tree had discrete values in the columns Beats and Sections. The sections
that follow explain the formation of a decision tree from data having discrete values.
However, often the given data contain continuous values. The following section
gives an idea of what to do in case of continuous values.

Discretization
Many algorithms require the values of data to be discrete. However, in most cases,
the given data is continuous. The process of converting a continuous data into
discrete values is called discretization. Generally, the given data is discretized into
parts of equal length. Dichotomization is a type of discretization which involves
splitting the measured variable at some fixed value to form two categories that can
be described as Low and High. This splitting can be done along the sample median,
called the median split, or along the midpoint of the measured range of the variable.

One of the algorithms used for converting the data into a discrete one is as follow:

Algorithm:
Discretization(Data, n)

 for each column

Decision Trees 161

 min1 = minimum value in the column

 max1 = maximum value in the feature

 step = (max1 – min1)/n

 for k in range (n)

 a=min1+(step*k)

 b=min1+(step*(k+1))

 for each value in the column

 if ((value>=a) and (value<=b)):

 value=k

 end

 end

 end

 end

The following code discretizes the Iris dataset having four features:
Code:
X=data.data[:100,:]

X=np.array(X)

y=data.target[:100]

y=np.array(y)

n=int(input(‘Enter the value of n \t:’))

for i in range (X.shape[1]):

 x1=X[:,i]

 max1=np.max(x1)

 min1=np.min(x1)

 step=(max1-min1)/n

 #print(max1, ‘ ‘,min1, ‘ ‘,step)

 for k in range (n):

 a=min1+(step*k)

 b=min1+(step*(k+1))

 for j in range(x.shape[0]):

 if ((X[j,i]>=a) and (X[j,i]<=b)):

 X[j,i]=k

162 Machine Learning for Beginners

X=pd.DataFrame(X)

print(X)

Output:

0 1 2 3
0 1.0 3.0 0.0 0.0
1 1.0 2.0 0.0 0.0
2 0.0 2.0 0.0 0.0
3 0.0 2.0 0.0 0.0
4 1.0 3.0 0.0 0.0

95 2.0 2.0 3.0 3.0
96 2.0 1.0 3.0 3.0
97 3.0 1.0 4.0 3.0
98 1.0 1.0 2.0 2.0
99 2.0 1.0 3.0 3.0

100	rows	×	4	columns

Having seen one of the ways to discretize data let us now come back to the creation
of a decision tree.

Coming back
In creating a DT node at each level is to be selected, and each child of this node will
deal with a smaller subset of the data. At each node, the process of selecting a feature
at this level and dividing the data is repeated. The testing of a smaller DT will take
less time as compared to a deep one. However, from all trees possible, selecting the
one with minimum depth is a computationally hard problem. So, we may use the
Greedy approach to find the optimal DT. This chapter discusses one such approach.

Step 1: The first step of this algorithm requires us to calculate the entropy of the
target (Entropy_orig). This entropy is defined as follows:

Nmberofclasses

i 2 2 i
i 1

Entropy_orig p log log p
=

= − ×∑

So, if the target contains two classes, then p1 is the probability of a sample belonging
to the first class, and p2 is the probability of a sample belonging to the second class.

Decision Trees 163

Step 2: This is followed by the division of the dataset on the different attributes. It can
be done by calculating the entropy for each branch and adding them proportionally,
to get the total entropy for the split.

Step 3: The above entropy is then subtracted from the entropy before the split
(Entropy_orig). It results in the information gain. The attribute with the maximum
information gain is then selected.

Step 4: Repeat the above steps for each of the so formed branches.

To understand the above algorithm, consider the following dataset having four
features F1, F2, F3, and F4. The dataset has ten samples, and the Labels belong to
{Y, N}:

F1 F2 F3 F4 Label
0 1 3 1 Y
1 2 2 2 N
1 2 0 1 Y
0 1 1 2 N
0 0 3 2 Y
0 0 0 2 Y
1 1 2 2 Y
1 2 2 1 N
1 1 0 1 N
0 1 1 1 Y

The number of Y in the Label is 6, and that of N is 4. The probabilities of Y and N are,
therefore, as follows:

() 6 3
10 5

P Y = =

() 4 2
10 5

P N = =

Step 1: Find Entropy_orig by using the formula:

2 2
1

_ log log
Nmberofvalue

i i
i

Entropy orig p p
=

= − ×∑

In this case, it comes out to be:

() () () ()()_ 1 (log log () log log) 0.9709Entropy orig P Y P Y P N P N= − × × + × =

164 Machine Learning for Beginners

(Note that the base of the logarithm in the above calculation is 2).

To calculate the Information Gain by splitting the data, take one feature at a time as
the root and perform the following steps.

Step 2 a: Find the probability of each discrete value in the column.

The first column consists of two discrete values: 0 and 1 (say). 5 rows of this column
have 0’s and 5 rows having 1’s. So, the probabilities are:

1
5 1

10 2
p = =

2
5 1

10 2
p = =

Step 2 b: Now, consider the values of labels for each of the discrete values in the
column.

For	 0’s	 in	 the	 first	 field,	 there	 are	 four	 ‘Y’s	 and	 one	 ‘N’s	 in	 Label.	 The	
corresponding entropy is:

2 2 2 2
4 4 1 11 (log log log log)
5 5 5 5

E = − × + ×

F1 Label1
0 Y
0 N
0 Y
0 Y
0 Y

For 1’s in the first field, there are two ‘Y’s and three ‘N’s in the label. The corresponding
entropy is:

2 2 2 2
2 2 3 31 (log log log log)
5 5 5 5

E = − × + ×

F1 Label1
1 N
1 Y
1 Y
1 N
1 N

Decision Trees 165

Step 2 c: For each field find
number of values

i ii 1
p E

=
×∑ .

2 2 2 2 2 2 2 2
1 4 4 1 1 1 2 2 3 3(log log log log) (log log log log) 0.8464
2 5 5 5 5 2 5 5 5 5

= − × × + × − × × + × =

Step 2 d: Find the information gain by subtracting the value obtained in 2 c) from
Entropy_orig:

Information Gain = 0.9709 – 0.8464 = 0.1244

Likewise, the calculation of information gain for the second field will be as follows:

F2 Label1
1 Y
1 N
1 Y
1 N
1 Y

F2 Label1
2 N
2 Y
2 N

F2 Label1
0 Y
0 Y

The probabilities of individual discrete values are 5 1 3 21 2 3
10 2 10 10

p p p
= = = =

The individual Ei’s are
1 2 2 2 2

2 2 3 3(log log log log)
5 5 5 5

E == − × + ×

2 2 2 2 2
1 1 2 2(log log log log)
3 3 3 3

E == − × + ×

3 2 2 2 2
2 2(log log 0 log log ()) 0
2 2

E == − × + × =

The value of weighted entropy is:

1

0.8360
number of values

i i
i

p E
=

× =∑

166 Machine Learning for Beginners

And the corresponding information gain is 0.1349. For the third feature, the
information gain is 0.2168, and for the fourth feature, it is 0. The maximum
information gain is for the third feature. This feature would, therefore, be the root
node of the decision tree. Figure 8.2 shows the root and row number of the data to be
used by each of the branches, in the next step:

Figure 8.2: Selection of Root of a Decision Tree in the given dataset

Now, repeat the steps for the first, second, and third branches. While doing this, do
not consider F3. Also note that for the fourth branch. The labels are Y, so there is no
need to proceed in this branch.

The reader is expected to repeat the steps in the next level and verify the tree obtained
is the same as that shown in Figure 8.3:

Figure 8.3: Decision tree creation using information gain

It may be noted that the Gini index can also be used to create a decision tree.

Decision Trees 167

Containing the depth of a tree
Ideally, we continue spitting the tree until the nodes are pure. That is, all the samples
at that node belong to the same class. However, in many cases, this may lead to a
situation wherein the leaf corresponds to a single sample. It also leads to overfitting.
On the other hand, if the number of levels in the tree is deliberately kept very low, the
performance of the tree is affected. We may apply one of the following approaches
to stop splitting:
	 •	 Using the validation set: In this approach, we continue spitting until the

error in the validation set is minimized [3]. While creating a model, the
data is divided into train and test set. The train data is further divided into
training and validation sets. While developing the model, the validation
error is considered. Once we have reached the point of minimum error in the
validation set, the tree can be used for testing.

	 •	 Thresholding: In this technique, splitting is stopped when the reduction in
impurity is less than the pre-decided threshold. In this technique, the tree
is created using the whole data and not just the training data. Also, here
the leaves can be at different levels. In the case of decision trees, this is
considered good. The major problem with this technique is the decision to
find the threshold. As per the literature, this can be done when the leaves
have fewer than a certain percentage of training samples.

	 •	 Objective function minimization: Another method is to create an objective
function, consisting of size and the sum of impurities of the leaves. As per
Duda et al. [3], the following objective function can be used to accomplish
this task:

()
leafnodes

f size i Nα= × +∑
 We can stop spitting when the global minimum is reached.
	 •	 Using statistical tests: as per the literature, statistical tests like chi-square

can be used to find the stopping criteria.
	 •	 Pruning: Another way to contain the depth of a tree is to craft a complete

tree and then start from leaves. The sibling leaves, in this approach, maybe
merged, if their merging creates only a very marginal increase in the impurity.

Implementation of a decision tree using
sklearn
The decision tree in sklearn can be implemented using the class sklearn.tree.
DecisionTree.

168 Machine Learning for Beginners

To instantiate this class, the constructor DecisionTreeClassifier is used. This
method takes the following parameters (Table 8.2):

Parameter Explanation

Criterion This parameter specifies the function with the help of which splitting
is done. This parameter can take the following values i) Gini and ii)
entropy. The default value of this parameter is Gini.

max_depth This parameter specifies the depth. Its default value is None, which
means that the nodes are split till the leaves are pure.

min_samples_
split

This parameter specifies the minimum number of samples required to
split. The default value of this parameter is 2.

min_samples_
leaf

This parameter specifies the minimum number of samples at the leaf.
The default value of this parameter is 1.

max_features This parameter represents the number of features to consider when
looking for the best split. Its default value is None. The possible values
of this parameter are auto, sqrt and log2.

random_state The algorithm uses the random_state as the seed used by the random
number generator. So giving a particular number of results is getting
the same results. The default value of this parameter is None.

Table 8.2: Parameters in decision tree classifier

The attributes of the decision tree classifier have been presented in Table 8.3:

Attributes Explanation
n_classes This parameter represents the number of classes in cases of single

output problems. In the case of multiple output problem, this parameter
represents a list containing the number of classes for each output.

n_features This parameter represents the number of features used for constructing
the tree when the fit is performed.

tree_ This parameter denotes the underlying Tree object.
Table 8.3: Attributes of a decision tree classifier

The next section uses the above methods to implement decision trees.

Experiments
This section presents two experimenters on two different datasets. The first
experiment uses the Iris dataset, and the second uses the Breast Cancer dataset. The
models have been developed, and accuracies have been reported.

Decision Trees 169

Experiment 1 – Iris Dataset, three classes
Step 1: The Iris dataset is loaded, and the data and labels are saved in df and target,
respectively. It is followed by the creation of the train and the test data using the
train_test_split module. The classifier is trained using the X_train and y_train.
Code:
data = datasets.load_iris()

df = pd.DataFrame(data.data, columns = data.feature_names)

target = data.target

X_train, X_test, y_train, y_test =train_test_split(df, target, test_
size=0.33, random_state=42)

clf	=	DecisionTreeClassifier(max_depth=3)	#max_depthis	maximum	number	of	
levels in the tree

clf.fit(X_train,	y_train)

The decision tree so formed is shown in Figure 8.4. The tree is created using
GraphViz():

Figure 8.4: Decision tree for the Iris dataset, using 66 percent of the data with random_state=42

170 Machine Learning for Beginners

Step 2: The following code finds the accuracy of the test data using the above model.
Note that a maximum accuracy of 98.00 is achieved using this classifier.
Code:
y_pred=clf.predict(X_test)

TP=0

TN=0

FP=0

FN=0

for i in range(X_test.shape[0]):

 if(y_test[i]==y_pred[i]):

 if(y_test[i]==1):

 TP+=1

 else:

 TN+=1

 else:

 if(y_pred[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)

print(acc)

Output:
0.98

It may be noted that the tree shown in Figure 8.4 is not created using the entire data,
but only the train data. The tree crafted using the entire data is shown in Figure 8.5.
The tree is created using GraphViz:

Decision Trees 171

Figure 8.5: Decision tree for the Iris dataset, using the entire data

The reader may note the difference in trees in Figure 8.4 and Figure 8.5. The idea
here is to create the decision tree using only the train data and not the entire data.
The second tree has been shown just to reinforce the fact that the tree formed by the
entire data may be different from that formed by using the train data.

Experiment 2 – Breast Cancer dataset, two
classes
Step 1: The breast cancer dataset is loaded, and the data and labels are saved in df
and target, respectively. It is followed by the creation of the train and the test data
using the train_test_split module. The classifier is trained using the X_train and
y_train.

Code:
breast_cancer = datasets.load_breast_cancer()

df = pd.DataFrame(breast_cancer.data, columns = breast_cancer.feature_
names)

target = breast_cancer.target

172 Machine Learning for Beginners

X_train, X_test, y_train, y_test =train_test_split(df, target, test_
size=0.33, random_state=42)

clf	=	DecisionTreeClassifier(max_depth=3)	#max_depth	is	maximum	number	of	
levels in the tree

clf.fit(X_train,	y_train)

The decision tree so formed is shown in Figure 8.6. The tree is created using GraphViz:

Figure 8.6: Decision Tree for the Breast Cancer dataset, using 66 percent of
the data with random_state=42

Step 2: The following code finds the accuracy of the test data using the above model.
Note that a maximum accuracy of 92.02 is achieved using this classifier.

Code:
y_pred=clf.predict(X_test)

TP=0

TN=0

FP=0

FN=0

for i in range(X_test.shape[0]):

 if(y_test[i]==y_pred[i]):

 if(y_test[i]==1):

Decision Trees 173

 TP+=1

 else:

 TN+=1

 else:

 if(y_pred[i]==1):

 FP+=1

 else:

 FN+=1

acc=(TP+TN)/(TP+TN+FP+FN)

print(acc)

Output:
0.9202127659574468

It may be noted that the tree shown in Figure 8.6 is not created using the entire data,
but only the train data. The tree crafted using the entire data is shown in Figure 8.7.
The tree is created using GraphViz ().

Figure 8.7: Decision tree for the complete Breast Cancer dataset

Again, the reader should consider the difference between the two trees (Figure 8.6
and Figure 8.7) and keep in mind that the tree is formed using the train data and not
the entire data.

174 Machine Learning for Beginners

Conclusion
This chapter introduced the decision tree classifier. The creation of a tree using the
concept of information gain has been discussed in detail. The chapter also discusses
the ways to prepare data for applying the decision tree algorithms. A brief discussion
on the splitting has also been included in the chapter.

The reader will be able to implement the decision tree using sklearn and set
parameters as per the requirement. Also, these classifiers will help the reader to
handle multiple class problems as well.

The decision trees are good, can classify multi-class problems, and generally perform
well. However, there are some unresolved issues. The problems are gracefully
handled by the Random Forests, which makes use of many decision trees and comes
under the category of ensemble methods. DT can also be used to perform regression.
The next chapter introduces clustering, which is an unsupervised learning technique.
Let us now hit the exercises to get hold of the concepts studied.

Exercises
Multiple Choice Questions
 1. Which of the following can be used to create a decision tree?
 a. Information gain b. Gini index
 c. Both d. None of the above

 2. Which of the following is an algorithm for creating a decision tree?
 a. C 4.5 b. CART c. ID3 d. All of the above
 3. Which of the following can be used for nominal data?
 a. K-nearest neighbors b. Decision trees
 c. Both d. None of the above

 4. Which of the following can be used to split a tree?
 a. Statistical measures b. Least reduction in purity
 c. Both d. None of the above

 5. Which of the following can be done using decision trees?
 a. Classification of 2-class problems
 b. Classification of multi-class problems
 c. Finding outliers
 d. All of the above

Decision Trees 175

Theory
 1. What is a decision tree? How are the different types of nodes in a decision tree?
 2. Explain the idea of information gain. How does it help in choosing a feature

for the root node?
 3. Explain the Gini index. How does it help in choosing a feature for the root

node?
 4. Explain the various procedures to split a tree.
 5. Explain the advantages of using the decision tree as a classifier.
 6. Explain the disadvantages of using the decision tree as a classifier.
 7. Explain how both information gain and Gini index techniques come under the

preview of Greedy algorithms?

Numerical/Programming
 1. Explain the procedure to select the root node in the following dataset:

Feat1 Feat2 Feat3 Feat4
2 1 1 3
1 2 1 1
2 1 2 3
1 1 2 2
2 2 1 1
1 2 1 1
3 2 2 2
3 1 2 3
1 1 1 3
2 2 1 1

 2. Perform the task using information gain.
 3. Perform the above task using the Gini index. Repeat the process for the

selection of nodes at the succeeding levels and complete the tree.
 4. How will you curtail the depth of the tree to three?
 5. Discretize the Breast Cancer dataset using any of the procedures explained in

the chapter. Divide the data into the train (70% data) and test set (30% data).
Create the decision tree using the train data and evaluate the performance
using the test data.

 6. Lung Cancer Dataset.
 This dataset is available at https://archive.ics.uci.edu/ml/datasets/

Lung+Cancer. It is a multivariate dataset, having 32 instances and 56 attributes.

176 Machine Learning for Beginners

The data contains missing values. Hence the samples that contain missing
values need to be dealt with. The reader may replace the “?” with np.nan and
then remove the rows with NaN by issuing the following commands. Note
that each feature contains discrete values, which is good as this saves the extra
effort of converting the data into a discrete one.

 A portion of the modified data is shown as follows:

1 2 3 4 5 6 7 8 9 10 47 48 49 50 51 52 53 54 55 56
0 3 3 1 0 3 1 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 3 3 2 0 3 3 3 1 1 ... 2 2 2 2 2 2 2 2 1 2
0 2 3 2 1 3 3 3 1 2 ... 2 2 2 2 2 2 2 2 2 2
0 3 2 1 1 3 3 3 2 2 ... 2 2 2 2 2 2 2 1 2 2
0 3 3 2 0 3 3 3 1 2 ... 2 2 2 2 2 2 2 2 1 2
0 3 2 1 0 3 3 3 1 2 ... 2 2 2 2 1 2 2 2 1 2
0 2 2 1 0 3 1 3 3 3 ... 2 2 1 2 2 2 2 1 2 2
0 3 1 1 0 3 1 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 2 3 2 0 2 2 2 1 2 ... 2 2 2 1 3 2 1 1 2 2
0 2 2 0 0 3 2 3 1 1 ... 2 2 2 2 2 2 2 2 2 2
0 2 3 2 0 1 2 1 1 2 ... 2 2 2 2 2 1 1 2 2 1
0 2 1 1 0 1 2 2 1 2 ... 2 2 2 2 2 2 2 1 2 2
0 2 2 1 1 2 3 3 1 1 ... 2 2 2 2 2 1 1 1 2 2
1 3 0 NaN 1 1 2 2 1 1 ... 2 2 2 2 2 2 2 1 2 1
0 3 2 2 1 2 2 2 1 1 ... 2 2 2 2 2 2 2 2 2 2
0 3 2 2 0 1 1 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 2 1 1 0 2 1 3 1 1 ... 2 2 2 2 2 1 1 1 2 2
0 2 0 NaN 0 2 3 3 3 2 ... 2 2 2 2 2 2 2 2 1 2
0 1 2 1 0 3 3 3 1 2 ... 2 2 2 2 2 1 1 2 2 1
0 2 0 NaN 1 3 3 3 1 2 ... 2 2 2 2 1 2 2 1 2 2
0 3 3 2 0 2 1 3 1 1 ... 2 2 1 2 2 2 2 2 1 2
0 2 3 1 1 2 2 1 1 1 ... 3 3 3 3 1 3 3 2 2 1
0 2 3 1 1 1 2 1 1 1 ... 2 2 2 2 2 2 2 2 2 1
0 3 3 1 0 3 3 1 1 1 ... 2 2 2 2 3 2 2 2 2 1
0 2 3 2 0 1 2 2 1 2 ... 2 2 2 1 3 1 2 2 1 2
0 2 2 2 0 2 1 2 1 1 ... 2 2 2 2 2 2 2 1 2 1
0 2 2 1 0 2 2 2 1 1 ... 3 3 2 2 3 2 2 2 2 1
0 3 2 2 0 2 2 2 1 1 ... 2 2 2 3 1 2 2 2 2 2
0 2 1 1 0 2 2 1 1 1 ... 2 2 3 2 2 2 2 2 2 1
0 2 3 2 1 2 2 3 1 1 ... 2 2 2 2 2 2 2 1 2 2
0 2 3 1 0 2 3 3 1 1 ... 2 2 2 2 2 2 2 2 2 2

 The label of the dataset contains two values 0 and 1. Write the steps in creating
a decision tree from the above data.

Introduction
The previous chapters discussed various supervised learning algorithms. In these
algorithms, the data (X) and corresponding labels (Y) are given. The objective is to
find a function that maps X to Y. The mapping is found using the training dataset.
This mapping is then used to find the value of yi for an unknown xi. In unsupervised
learning, X is given, and the aim is to extract the hidden patterns in the data. This
chapter introduces clustering, which comes under unsupervised learning. To
understand the meaning of clustering, consider the following examples.

Let us consider the task of segregating two types of flowers. This task is relatively
easy. Even if you do not know about the two types of flowers, you can segregate
them considering features like sepal length, sepal width, and so on. Note that labels
are not provided to us, and we need to accomplish the task of dividing the flowers
into two groups. This task, therefore, comes under the preview of unsupervised
learning.

The second example is even more interesting. In the Kerala assembly elections in
2011, the two fronts polled 45.83% and 44.94% percent of the total votes polled. The
difference in the percent was very less, and the results could have been different
had the undecided voters had voted for the other front. It would have been possible

Chapter 9
Clustering

178 Machine Learning for Beginners

if there was a way out to detect the undecided voters and present your roadmap
of improving economy, education, and healthcare facilities, assuming elections are
fought on these issues.

If you are burdened with the responsibility of identifying undecided voters using
machine learning methods, what will you do? You are only provided with the
relevant data and cannot identify them by their appearance, or other features for
that matter. In such cases, the unsupervised learning methods like clustering may be
used to segregate the group into various clusters. Unsupervised learning does not
use labels.

The creation of groups from unorganized data is referred to as clustering. Ideally,
the items in a cluster should be as similar to each other as possible and should be
distinct from items of other groups. This similarity can be found by any standard
similarity measure like Euclidian distance, Manhattan distance, and so on. To carry
out clustering, one needs to decide the measure of similarity, figure out the way of
evaluating a cluster, and an algorithm for clustering. The evaluation of a cluster
requires finding inter-cluster separation and intra-cluster cohesion. This chapter
discusses the above issues. This chapter also addresses the question of finding the
number of clusters.

One of the most important applications of clustering is segmentation. It is exciting
and has been widely used in diverse applications. The technique has been used for
detecting objects, identifying the regions of the brain affected by the tumor, and so
on.

Structure
The main topics covered in this chapter are as follows:
	 •	 K-means
	 •	 Spectral clustering
	 •	 Agglomerative clustering
	 •	 Experiments with datasets

Objective
After reading the chapter, the reader will be able to:
	 •	 Appreciate the importance of clustering
	 •	 Understand the working of K-means
	 •	 Understand the limitations of K-means

Clustering 179

	 •	 Understand spectral clustering
	 •	 Understand agglomerative clustering

K-means
Supervised learning techniques have been discussed in detail in the previous
chapters. In supervised learning, we are provided with the training data, which
contains feature vectors and the corresponding labels. The task is to predict the labels
of the test data, which has only a feature vector. It is accomplished by constructing
a function which takes a feature vector as its input and generates the label. The
goodness of this function can be determined by the methods discussed in the second
chapter of this book. Tasks like classification and regression come under the ambit
of supervised learning.

Unsupervised	learning,	on	the	other	hand,	only	deals	with	the	feature	vectors.	
Tasks	like	grouping	data	and	some	techniques	of	reducing	dimensionality	
come	under	unsupervised	 learning.	To	understand	 the	concept,	 consider	
the points shown in Figure 9.1:

Figure 9.1: The points shown in the figure needs to be grouped into two clusters

The most intuitive way to create two groups out of the above points would be, as
shown in Figure 9.2:

180 Machine Learning for Beginners

Figure 9.2: The clusters are formed by taking the points near to each other in one group

This section presents one of the simplest algorithms to accomplish this task. This
algorithm is called K-means clustering. This algorithm requires the number of
clusters as it’s input. Say this number is K. The first step is to take K random samples
and consider them as the centers of the K clusters. It is followed by finding the
distances of each sample from each of these K centroids. The sample is put in the
group from whose centroid it is nearest to. The new groups are formed, and their
mean is found. These means would act as the new centroids. This process is repeated
until there is no change as far as the creation of new centroids is concerned. The
algorithm is as follows.

Algorithm: K Means
Input: The number of clusters, K:
1.	 Randomly	select	K	random	data	points	as	the	centroids.
2. Repeat the following steps until there is no change to the centroids:
	 •	 Find the distance between each data point and all centroids
	 •	 Allocate each data point to the closest cluster
	 •	 Find the average of all data points that belong to each cluster and take this

average as the new centroids for the clusters

The sklearn implementation of K-means has been discussed in the following
sections. This algorithm works well in many cases. However, if the data is not

Clustering 181

linearly separable, the algorithm does not work. Figure 9.3 shows K-means applied
to a non-linearly placed points:

Figure 9.3: The K-Means algorithm does not work well on such data

In such cases, spectral clustering comes to our rescue. The next section discusses the
algorithm and implementation of spectral clustering.

Spectral clustering
Clustering aims to assign data points to some groups with the intent of assigning
the same group to similar data points and different groups to the different ones.
The measure of similarity and the choice of algorithm to segregate the data into
groups, therefore, becomes important. The algorithm that follows finds the distance
between the data points, creates a graph, and finds a Laplacian matrix. It is followed
by finding the Eigenvalues and Eigenvectors of this matrix to determine the groups.

This method aims to create a similarity graph, wherein each vertex represents a
data point, and each edge represents the distance between them. The technique
proves better than the existing techniques. The first step in the algorithm is the
construction of an adjacency matrix. The adjacency matrix of a graph can be found
by finding all possible distances and placing the distance between xi and xj at Aij of
the corresponding matrix. It is followed by the creation of the degree matrix, which
can be found as follows:

1

n

ii ij
j

D A
=

=∑

The difference between the adjacency matrix and the degree matrix is called the
normal Laplacian. That is:

L = A – D

The eigenvalues and eigenvectors of the Laplacian matrix is significant. The second
eigen vector of the matrix gives us the graph cut needed to separate the graph into

182 Machine Learning for Beginners

two components. The vector corresponding to the value here gives the direction
along which the graph can be divided to split it into two components. The algorithm
for spectral clustering is as follows.

Algorithm – Spectral clustering
1. Create a similarity graph
2.	 Find	the	first	k	eigenvectors	of	the	Laplacian	matrix
3.	 The	above	matrix	is	subjected	to	k-means	to	create	k classes

This algorithm is computationally expensive and hence cannot be easily applied to
datasets having a very large number of features. Let us now move to another type of
clustering called hierarchical clustering.

Hierarchical clustering
The methods like K-means, despite being simple, are limited in the sense that they
need the number of clusters as the input to the procedure. It may work if you know
the data. However, in most cases, you will not know the number of groups and hence
will not be able to use these algorithms. The algorithm discussed in this section does
not need this information.

Hierarchical clustering can be classified as top-down or bottom-up. Let us start with
the bottom-up approach. In this approach, we start with each sample as a separate
cluster and use some similarity measure to find the two nearest samples. The group
formed would now act as one of the samples, and the above process is repeated
until a single group is created. To accomplish this task if the distance between the
two samples a and b is d, then the distance between (a,b) and a new sample c can be
calculated using either of the following methods:
	 •	 SingleLinkdistance((a,b),c) = minimum(distance(a,c), distance(b,c))
	 •	 ComplexLinkdistance((a,b),c) = maximum(distance(a,c), distance(b,c))
	 •	 AverageLinkdistance((a,b),c) = average(distance(a,c), distance(b,c))

To understand the above, consider the following example. The number of features
in the Iris dataset is four. The first five samples of the data are given by the matrix A:

5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5 3.6 1.4 0.2

A =

Clustering 183

The distance amongst samples xi and xj can be found by using the following formula
(assuming that the number of features is k):

2
, , ,

1

()
k

i j i k j k
k

d x x
=

= −∑

The following matrix shows the distance between the two points. Note that Wij
represent the distance between the ith and the jth the sample:

W =

_ 1 2 3 4 5
1 0.0 0.29 0.26 0.42 0.02
2 0.29 0.0 0.09 0.11 0.37
3 0.26 0.09 0. 0.06 0.26
4 0.42 0.11 0.06 0. 0.42
5 0.02 0.37 0.26 0.42 0.

Note that the sec0ond minimum distance amongst the points is 0.02 (the minimum
distance is 0). It is the distance between the first and the fifth sample. Let us club
together these two samples into one group and compute the distance of (1, 5) from
all other points using the complex link:
 • Distance of (1, 5) from Sample 2: 0.37
 • Distance of (1, 5) from Sample 3: 0.26
 • Distance of (1, 5) from Sample 4: 0.42

The matrix now becomes:

_ (1,5) 2 3 4
(1,5) 0.0 0.29 0.26 0.42

2 0.37 0.0 0.09 0.11
3 0.26 0.09 0. 0.06
4 0.42 0.11 0.06 0.

Repeat the above procedure with the new matrix. We can see that the second
minimum distance is that between (3, 4):

(1, 5) 2 (3, 4)
(1, 5) 0.0 0.29 0.42

2 0.37 0.0 0.11
(3, 4) 0.42 0.011 0.0

184 Machine Learning for Beginners

From the above matrix, it is evident that (3, 4) will now be clubbed with 2, thereby
making ((3, 4), 2). In the last step, the item (1, 5) is clubbed with ((3, 4), 2), therefore
creating ((1, 5), ((3, 4), 2)). The corresponding dendrogram is shown in Figure 9.4:

Result: ((1, 5), ((3, 4), 2))

Figure 9.4: Dendrogram – furthest distance clustering algorithm

The above process is also referred to as the furthest distance clustering algorithm.
Instead of creating the complete dendrogram, we can also stop when this distance
exceeds a threshold. In this case, the algorithm becomes the complete linkage
algorithm.

If the clubbing of samples is done by taking the minimum of the two distances, that
is:
 • distance((a,b),c) = minimum(distance(a,c), distance(b,c))

The algorithm is referred to as the minimum distance clustering algorithm. The steps
involved in the application of this algorithm are shown as follows.

In the following matrix W, Wij represents the distance between the ith and the jth the
sample.

_ 1 2 3 4 5
1 0.0 0.29 0.26 0.42 0.02
2 0.29 0.0 0.09 0.11 0.37
3 0.26 0.09 0. 0.06 0.26
4 0.42 0.11 0.06 0.0 0.42
5 0.02 0.37 0.26 0.42 0.0

Note that the second minimum distance amongst the points is 0.02 (the minimum
distance is 0). It is the distance between the first and the fifth sample. Let us club

Clustering 185

together these two samples into one group and compute the distance of (1,5) from
all other points:
 • Distance of (1,5) from Sample 2: 0.29
 • Distance of (1,5) from Sample 3: 0.26
 • Distance of (1,5) from Sample 4: 0.42

The matrix now becomes:

_ (1,5) 2 3 4
(1,5) 0.0 0.29 0.26 0.42

2 0.29 0.0 0.09 0.11
3 0.26 0.09 0.0 0.06
4 0.42 0.11 0.06 0.0

Repeat the above procedure with the new matrix. We can see that the second
minimum distance is that between (3, 4):

(1, 5) 2 (3, 4)
(1, 5) 0.0 0.29 0.26

2 0.37 0.0 0.09
(3, 4) 0.26 0.09 0.0

From the above matrix, it is evident that (3, 4) will now be clubbed with 2, thereby
making ((3, 4), 2). In the last step, the item (1, 5) is clubbed with ((3, 4), 2), therefore
creating ((1, 5), ((3, 4), 2)). The corresponding dendrogram is shown in Figure 9.5.

Result: ((1, 5), ((3, 4), 2))

Figure 9.5: Dendrogram – A minimum distance clustering algorithm

186 Machine Learning for Beginners

The grouping of samples can also be done by taking the average of the two distances,
that is:
 • distance((a,b),c) = average(distance(a,c),distance(b,c))

The algorithm is referred to as the average distance clustering algorithm. The reader
is expected to create a dendrogram using the above formula for the matrix A.

Implementation
This section consists of a few experiments. For each of the four methods:
 • K-means
 • Spectral clustering
 • Agglomerative clustering
 • DBSCAN

Three experiments have been designed. These experiments have been designed to
ascertain the goodness of a method on data having three clusters with the same
variances, different variances, and different numbers of samples. The first nine
experiments have been presented, and the last three experiments are left for the
reader.

K-means
The theory of K-means has already been discussed in the second section. This section
presents the implementation of the algorithm using the methods provided by the
sklearn. Note that the data is generated using make_blobs, which takes the number
of samples and the random state as the input. The clustering is carried out using the
fit_predict method of KMeans. The predicted values are stored in y_predicted.

In the first experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an almost equal number of samples. Note that since
no input is provided for setting the variance of the data of the three clusters, all of
them will have the same variance.

Experiment 1
1.	 Importing	the	modules:
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.cluster import KMeans
 from sklearn.datasets import make_blobs

Clustering 187

2. Generating data for clustering:
 n_samples = 200
 random_state = 10
 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

3. Applying sklearn.KMeans to predict the clusters:
	 y_predicted	 =	 KMeans(n_clusters=3,	 random_state=random_state).fit_

predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_predicted)
 plt.title(“K Means Clustering I”)
	 plt.show()

The output is shown in Figure 9.6:

Figure 9.6: Applying sklearn.KMeans for clustering on the data generated by make_blobs

In the second experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an almost equal number of samples. Note that input
is provided for setting the variance of the data of the three clusters as 1, 0.5, and 3.0.

Experiment 2
Step 1 and Step 2 of Experiment 1 to be used on as-it-is basis:
X_1, y_1 = make_blobs(n_samples=n_samples, cluster_std=[1, 0.5, 3.0],
random_state=random_state)

y_predicted	 =	 KMeans(n_clusters=3,	 random_state=random_state).fit_
predict(X_1)

188 Machine Learning for Beginners

plt.scatter(X_1[:, 0], X_1[:, 1], c=y_predicted)

plt.title(“K Means II”)

plt.show()

The output is shown in Figure 9.7:

Figure 9.7: Applying sklearn for clustering on the data generated by make_blobs. The three
clusters have different values of variances

In the third experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an odd number of samples. Note that since no input is
provided for setting the variance of the data, all the three groups will have the same
variance.

Experiment 3
Step 1 and Step 2 of Experiment 1 to be used on as-it-is basis:
X_not_balanced = np.vstack((X[y == 0][:500], X[y == 1][:200], X[y == 2]
[:10]))

y_predicted	 =	 KMeans(n_clusters=3,random_state=random_state).fit_
predict(X_not_balanced)

plt.scatter(X_not_balanced[:, 0], X_not_balanced[:, 1], c=y_pred)

plt.title(“Blobs having differnt number of elements”)

plt.show()

The output is shown in Figure 9.8:

Clustering 189

Figure 9.8: Applying sklearn.KMeans for clustering on the data generated by make_blobs. The
three clusters have a different number of samples

The above experiments bring forth the following points:
 • KMeans works well for balanced data wherein each block has the same variance
 • The performance of KMeans is fairly good even in balanced data wherein

each block has a different variance, provided that this value is not too large
 • The algorithm works well even for data in which different clusters have a

varying number of samples
However, the algorithm does not produce good results for clusters having non-
linear shapes. The reader is expected to refer to the exercises given at the end of the
chapter to appreciate this point.

Spectral clustering
In sklearn, spectral clustering finds the affinity matrix, which represents the
similarity amongst the samples. The Laplacian of this matrix is quite informative,
and the second eigenvector of this Laplacian is used to find the cut which divides
the graph corresponding to the affinity matrix. It is followed by the application of
K-means to the groups so formed. It may be stated that the implementation provided
by sklearn “amgsolver” is used for solving the eigenvalue problem, which makes
it rather efficient.
The spectral clustering finds the normalized cut in the similarity graph, which works
appealingly well in the case of images wherein weights of the edges are computed as
the gradient of an image. As per the official documentation in sklearn the similarity
is given by the following formula:

similarity = np.exp(-beta * distance / distance.std())

190 Machine Learning for Beginners

[https://scikit-learn.org/stable/modules/clustering.html]. The following code
uses the sklearn implementation of the algorithm.
In the fourth experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an almost equal number of samples. Note that since
no input is provided for setting the variance of the data of the three clusters, all of
them will have the same variance.

Experiment 4
1.	 Importing	the	modules:
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.cluster import SpectralClustering
 from sklearn.datasets import make_blobs

2. Generating data for clustering
 n_samples = 200
 random_state = 10
 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

3. Applying sklearn. SpectralClustering to predict the clusters:
 y_predicted = SpectralClustering(n_clusters=3, random_state=random_

state).fit_predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_predicted)
 plt.title(“Spectral Clustering”)
plt.show()

The output is shown in Figure 9.9:

Figure 9.9: Applying sklearn.SpectralClustering for clustering data generated by make_blobs

Clustering 191

In the fifth experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an almost equal number of samples. Note that input is
provided for setting the variance of the data as of the three clusters as 1, 0.5, and 3.0.

Experiment 5
Step 1 and Step 2 of Experiment 4 to be used on as-it-is basis:
X_1, y_1 = make_blobs(n_samples=n_samples, cluster_std=[1, 0.5, 3.0],
random_state=random_state)

y_predicted = SpectralClustering(n_clusters=3, random_state=random_
state).fit_predict(X_1)

plt.scatter(X_1[:, 0], X_1[:, 1], c=y_predicted)

plt.title(“Spectral Clustering II”)

plt.show()

The output is shown in Figure 9.10:

Figure 9.10: Applying sklearn.SpectralClustering for clustering data generated by make_blobs.
The three clusters have different values of variance

In the sixth experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an odd number of samples. Note that since no input is
provided for setting the variance of the data, all the three groups will have the same
variance.

Experiment 6
Step 1 and Step 2 of Experiment 4 to be used on as-it-is basis:

192 Machine Learning for Beginners

X_not_balanced = np.vstack((X[y == 0][:500], X[y == 1][:200], X[y == 2]
[:10]))

y_predicted= SpectralClustering(n_clusters=3,random_state=random_state).
fit_predict(X_not_balanced)

plt.scatter(X_not_balanced[:, 0], X_not_balanced[:, 1], c=y_predicted)

plt.title(“Blobs having unequal number of elements in each cluster”)

plt.show()

The output is shown in Figure 9.11:

Figure 9.11: Applying sklearn.SpectralClustering for clustering on the data generated
by make_blobs. The three clusters have a different number of samples

Experiments 4, 5, and 6 bring forth the following points:
 • Spectral Clusterin works well for balanced data wherein each block has the

same variance.
 • The performance of Spectral Clusterin is fairly good even in balanced data

wherein each block has a different variance, provided this value is not very
large.

 • The algorithm works well even for data in which different clusters have a
varying number of samples.

 • The algorithm also produces good results for clusters having non-linear
shapes. The reader is expected to refer to the exercises given at the end of the
chapter to appreciate this point.

Clustering 193

Agglomerative clustering
As explained in the previous section, the agglomerative clustering is a type of
clustering which crafts nested clusters by repeatedly combining or splitting the
samples. The agglomerative clustering of sklearn uses the bottom-up approach in
which the samples are merged. This merging uses any one of the following criteria:
 • WARD
 • Maximum
 • Average
 • Single

In the WARD criterion, the sum of squares within all clusters is minimized. The rest
of the algorithms have been explained in the previous section. The following code
uses the sklearn implementation of the algorithm.

In the seventh experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an almost equal number of samples. Note that since
no input is provided for setting the variance of the data of the three clusters, all of
them will have the same variance.

Experiment 7
1.	 Importing	the	modules:
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.cluster import AgglomerativeClustering
 from sklearn.datasets import make_blobs

2. Generating data for clustering:
 n_samples = 200
 random_state = 10
 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

3. Applying sklearn. AgglomerativeClustering to predict the clusters
	 y_predicted	=	AgglomerativeClustering(n_clusters=3).fit_predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_predicted)
 plt.title(“Agglomerative Clustering”)
	 plt.show()

194 Machine Learning for Beginners

The output is shown in Figure 9.12:

Figure 9.12: Applying sklearn.AgglomerativeClustering for clustering on the data generated by
make_blobs

In the eighth experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an almost equal number of samples. Note that the
input is provided for setting the variance of the data as of the three clusters as 1, 0.5,
and 3.0.

Experiment 8
Step 1 and Step 2 of Experiment 7 to be used on as-it-is basis
X_1, y_1 = make_blobs(n_samples=n_samples, cluster_std=[1,0.5,3.0],
random_state=random_state)

y_predicted	=	AgglomerativeClustering(n_clusters=3).fit_predict(X_1)

plt.scatter(X_1[:, 0], X_1[:, 1], c=y_predicted)

plt.title(“Agglomerative Clustering II”)

plt.show()

Clustering 195

The output is shown in Figure 9.13:

Figure 9.13: Applying sklearn.AgglomerativeClustering for clustering on the data generated by
make_blobs. The three clusters have different values of variance.

In the ninth experiment, 200 samples are generated using make_blobs. The data
contains three clusters having an odd number of samples. Note that since no input is
provided for setting the variance of the data, all the three groups will have the same
variance.

Experiment 9
Step 1 and Step 2 of Experiment 1 to be used on as-it-is basis:
X_not_balanced = np.vstack((X[y == 0][:500], X[y == 1][:200], X[y == 2]
[:10]))

y_predicted	 =	 AgglomerativeClustering(n_clusters=3).fit_predict(X_not_
balanced)

plt.scatter(X_not_balanced[:, 0], X_not_balanced[:, 1], c=y_predicted)

plt.title(“Blobs having differnt number of elements”)

plt.show()

196 Machine Learning for Beginners

The output is shown in Figure 9.14:

Figure 9.14: Applying sklearn.AgglomerativeClustering for clustering on the data generated by
make_blobs. The three clusters have a different number of samples.

The above discussion brings forth the following points:
 • AgglomerativeClustering works well for balanced data wherein each block

has the same variance.
 • The performance of AgglomerativeClustering is fairly good even in

balanced data wherein each block has a different variance, provided this
value is not very large.

 • The algorithm works well even for data in which different clusters have a
varying number of samples.

DBSCAN
In this algorithm, the clusters are formed by identifying the areas with low density.
This concept makes it computationally expensive, but it can find clusters with any
shape. This algorithm takes two parameters:
 • minimum samples
 • eps

As per the official documentation:

“We define a core sample as being a sample in the dataset such that there exist min_samples
and other samples within a distance of eps, which are defined as neighbors of the core sample.
This tells us that the core sample is in a dense area of the vector space.

Clustering 197

A cluster is a set of core samples that can be built by recursively taking a core sample,
finding all of its neighbors that are core samples, finding all of their neighbors that
are core samples, and so on. A cluster also has a set of non-core samples, which are
samples that are neighbors of a core sample in the cluster but are not themselves core
samples. Intuitively, these samples are on the fringes of a cluster.”

[2.3. Clustering — scikit-learn 0.22.1 documentation].

The DBSCAN(eps=<value>, min_samples=<value>) method is used for accomplishing
the task using this algorithm. The reader is expected to carry out experiments similar
to experiments 1, 2, and 3 using the DBSCAN function of sklearn.

Conclusion
As per Shimon Ullman et al., “Clustering is the organization of unlabeled data into
similarity groups called clusters.[4]” A clustering algorithm aims to come up with
clusters that are similar to each other and dissimilar to elements in the other clusters.
The technique finds its applications in diverse fields. It was first used to analyze the
location of cholera deaths on a map. It not only helped to find that these locations
had dirty wells but also helped the doctors to control the spread of disease. You
can use this technique to suggest the causes of various problems by identifying the
locations and analyzing the data about these locations. This technique is useful for
the segmentation of images, finding patterns, finding target groups for analysis, and
so on.

To form clusters, we need to decide the similarity measure, the way to evaluate
clusters, and the algorithm for clustering. Euclidean and Manhattan distances, which
special cases of Minslowski distance, have already been discussed in the book. To
evaluate clusters, the sum of squared errors can be used. This chapter discusses two
types of clustering:
 • Hierarchical
 • Partitional

The hierarchical clustering can be segregated as divisive and agglomerative. The
partitional clustering can be segregated as centroid based and model-based. This
chapter discusses the above algorithms and compares them.

The next chapter discusses various feature extraction techniques. These would help
the reader not only to improve the performance but also to analyze the results. Let
us now hit the exercises.

198 Machine Learning for Beginners

Exercises
Multiple Choice Questions
 1. Clustering comes under the ambit of?
 a. Supervised Learning b. Unsupervised Learning
 c. Semi-supervised Learning d. None of the above

 2. Which of the following initially identifies K centroids and then allocates
samples to each cluster based on its similarity from it?

 a. K-means b. Spectral clustering
 c. Both d. None of the above

 3. Which of the following uses Laplacian in finding clusters?
 a. K-means b. Spectral clustering
 c. Both d. None of the above

 4. In the above question, what is done after finding the Laplacian?
 a. Finding eigenvalues Aand vectors
 b. Finding the shortest distance path in the graph
 c. Both
 d. None of the above

 5. Which of the following is not a type of hierarchical clustering?
 a. Top-down b. Bottom-up
 c. Depth First Search d. None of the above

 6. Which of the following term is generally not associated with hierarchical
clustering?

 a. Single Link
 b. Complex Link
 c. Average Link
 d. All the terms are associated with hierarchical clustering

 7. Which of the following can be used if the shapes of the two clusters are non-
linearly embedded?

 a. K-means b. Spectral clustering
 c. Both d. None of the above

Clustering 199

 8. Which of the following can be used to find the number of clusters?
 a. K_means b. W c. Both d. None of the above
 9. Which of the following is sensitive to the number of clusters?
 a. K-means b. Spectral clustering
 c. Both d. None of the above

 10. Which of the following can be used for segmentation?
 a. Clustering b. Classification
 c. Both d. None of the above

Theory
 1. What is clustering? What are the types of clustering?
 2. Explain the K-means algorithm. Write the pseudo-code for the same. What are

the limitations of this algorithm?
 3. Explain the spectral clustering algorithm. Write the pseudo-code for the same.

What are the limitations of this algorithm?
 4. Explain the hierarchical clustering algorithm. Write the pseudo-code for the

same. What are the limitations of this algorithm?
 5. Explain the process of finding the number of clusters for clustering.
 6. Write some applications of clustering.

Numerical
 1. The following data contains six samples and four features. Write the steps of

finding clusters using hierarchical clustering for this data:

x1 12 4 3 2
x2 2 23 2 1
x3 1 12 7 3
x4 3 9 4 3
x5 1 6 7 2
x6 8 9 4 5

 2. In question number 1, draw dendrogram for each of the following technique:
 a. Single link b. Average link c. Complex link
 3. For the above question, apply K-means for K=2.
 4. For the above question, apply K-means for K=3.
 5. Create a Laplacian matrix for the matrix provided in Question 1.

200 Machine Learning for Beginners

Programming
Consider the following code:
Step 1: Include the modules:
import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import AgglomerativeClustering

from sklearn.datasets import make_moons

Step 2: Apply AgglomerativeClustering:
n= 200

random_state = 10

X, y = make_moons(n_samples=n, random_state=random_state)

y_pred	=	AgglomerativeClustering(n_clusters=2).fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_pred)

plt.title(“Agglomerative Clustering applied to make_moons”)

plt.show()

The output is shown in Figure 9.15:

Figure 9.15: Applying Agglomerative Clustering to make_moons

Based on the above, perform the following task:
a.	 Apply	K-means	to	the	data
b. Apply spectral clustering to the data
c.	 Analyze	the	above	results	and	state	why	spectral	clustering	works	wonders	here
d.	 Apply	 various	methods	 in	 agglomerative	 clustering	 (like	 a	ward,	 single	 link,	

complex	link,	and	average	link)	to	the	above	data	and	analyze	the	output

Introduction
So far, we have learned the preprocessing of data, selection of features, and basic
machine learning tasks like classification and regression. Let us shift our focus to
improving the performance of the model. It can be done by a) varying the parameters
of the classifier, b) selecting the relevant features, or c) taking the data into an
altogether different dimension(s), in which data becomes better for the required
tasks. To understand this, consider a boy called Hari, who is a good poet but writes
technical books as a profession. It is because the latter pays more in this world as
compared to the former. If he is transferred to another dimension in which poetry
pays more than academic writing or teaching, he may peruse poetry as his career and
academic writing as his hobby as he is good in poetry. The absence of any pressure
may improve his academic writing skills. So Hari, in the transformed dimension, is
a more useful person for the society. Alas, we cannot shift him to new dimensions,
but at least we can shift the data in some other dimensions to make it more useful.

If the number of features in the given dataset is large, then the machine learning
model may suffer from overfitting. To handle this problem, feature selection and
feature extraction can be used. Feature selection places the features in order of their
relevance to the labels. The second chapter of this book introduced some of the
most important feature selection methods. This problem can also be handled using

Chapter 10
Feature Extraction

202 Machine Learning for Beginners

feature extraction, which extracts features from the given data and hence takes the
given data to a new set of dimensions where the data becomes more suitable for a
given machine learning task. It may also result in improved performance with a
reduced number of features. The reduction in the number of features will lead to
faster training and may also result in improved visualization.

Feature extraction aims to create new features from the existing ones. This chapter
introduces the reader to some of the most important feature extraction methods.
These include:
 • The frequency-based methods
 • Finding patches in an image
 • Histogram of orientated gradients
 • Principal component analysis

These feature extraction methods have been explained and implemented in the
sections that follow. These methods can be used for text data, images, and even
sound. The reader is expected to use these methods and apply classification methods
learned in the previous chapters to analyze the effect of these methods.

Structure
The main topics covered in this chapter are as follows:
 • Introduction
 • Fourier Transform and Short Term Fourier Transform
 • Patches
 • Histogram of orientations
 • Principal Component Analysis
 • Experiments with datasets

Objective
After reading the chapter, the reader will be able to:
 • Appreciate the importance of feature extraction
 • Understand the use of Fourier Transform
 • Understand the shortcomings of Fourier Transform
 • Understand feature extraction using patches

Feature Extraction 203

 • Understand the implementation of the histogram of oriented gradients
 • Use principal component analysis

Fourier Transform
Fourier analysis helps us to express a given function as a sum of periodic signals. The
Fourier Transform of a signal takes it from the time domain to the frequency domain.
Moreover, the inverse Fourier Transform helps us to recover the original signal from
the components obtained by the Fourier Transform of a signal. The corresponding
discrete counterpart is referred to as the Discrete Fourier Transform (DFT). However,
the complexity of the most common method of finding the transform is O(n2). The
Fast Fourier Transform (FFT) is an efficient implementation of DFT. The input to
FFT is in the time domain, and the output is in the frequency domain. The FFT finds
its applications in numerous domains.

The np.fft uses the following implementation of FFT:

1

0
exp 2

n

K m
n

mkA a i
n

π
−

=

= −
∑

Input is {a0, a1, …, am} and k varies from 0 to (n – 1).

The output of np.fft follows a standard order. The first half of the output contains
positive frequencies, and the second half from (n+1)/2 to the last term contains
negative frequencies. You can find the modulus of the output using np.mod and the
phase spectrum by np.angle. The inverse DFT is given by the expression:

1

0

1 exp 2
n

m k
k

mka A i
n n

π
−

=

=
∑

Where m varies from 0 to (n – 1). The parameters of the np.fft function are as follows
(Table 10.1):

Parameter Type Explanation
a array_like This parameter represents the input array.
n int It is an optional parameter. It represents the length of the

transformed axis of the output. The input is truncated or
padded with zeros if the value of n is not the same as the
input.

axis int It is an optional parameter. It represents the axis over which
to compute the FFT

Table 10.1: The parameters of np.fft

204 Machine Learning for Beginners

The attributes of the function are as follows (Table 10.2):

Attribute Type Explanation
out complex It is the truncated or zero-padded input.

Table 10.2: The attributes of np.fft

This function raises the IndexError exception. One can find out the most prominent
frequency (or frequencies) by using the fft. The following steps take the reader
through the implementation of fft using np.fft:

Step 1: Import the following modules:
import matplotlib.pyplot as plt

import numpy as np

from scipy import signal

Step 2: Ask the user to enter the amplitude and frequency of and plot the signal:
A=float(input(‘Enter	amplitude\t:’))

f=int(input(‘Enter frequency\t:’))

t=np.linspace(-np.pi, np.pi,256)

y=A*np.sin(2*np.pi*f*t)

plt.plot(t,y)

plt.show()

Output: The output of the above code is as follows (Figure 10.1):

Figure 10.1: The sin signal

Feature Extraction 205

Step 3: Find the Fast Fourier Transform of the signal using np.fft:
sp = np.fft.fft(y)

freq = np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

Output: The output of the above code is as follows (Figure 10.2):

Figure 10.2: Fourier Transform of the sin signal

We can also find the magnitude of this complex Fourier Transform thus generated.
The plot of the magnitude of FFT of the sin signal is shown in Figure 10.3:

Figure 10.3: Magnitude of the complex Fourier Transform of sin signal

Note that the graph is symmetric about the y-axis. In the positive direction, there is
a single frequency. Now consider the following signal (Figure 10.4):

206 Machine Learning for Beginners

() ()1 1 2 2sinsin 2 sinsin 2y A f t A f tπ π= +

The FFT of this signal would generate two frequencies and hence would help us to
see what frequencies (and how many) constitute the signal. The following code asks
the user to enter two frequencies and generates the sin signal. The FFT of this signal
is then calculated. The FFT and corresponding magnitude are shown in figures that
follow.

Code:
A1=float(input(‘Enter	amplitude\t:’))

f1=int(input(‘Enter frequency\t:’))

t=np.linspace(-np.pi,np.pi,256)

y1=A1*np.sin(2*np.pi*f1*t)

A2=float(input(‘Enter	amplitude\t:’))

f2=int(input(‘Enter frequency\t:’))

y2=A2*np.sin(2*np.pi*f2*t)

y=y1+y2

plt.plot(t,y)

plt.show()

Output: The output of the above code is as follows:
Enter amplitude :10

Enter frequency :2

Enter amplitude :10

Enter frequency :4

Figure 10.4: y = A1 sin(2πf1 t) + A2 sin(2πf2 t)

Feature Extraction 207

The FFT of the above signal can be found as follows. The output is shown in Figure
10.5:
Code:
sp=np.fft.fft(y)

freq=np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f,mod2)

Output: The output of the above code is as follows (Figure 10.5):

Figure 10.5: The FFT of

The magnitude of the complex Fourier Transform of is shown in Figure 10.6:

Figure 10.6: Magnitude of the complex Fourier Transform of

208 Machine Learning for Beginners

Likewise, the FFT of a signal containing three frequencies would generate three
frequencies. The following code asks the user to enter three frequencies and generates
the sin signal (Figure 10.7). The FFT of this signal is then calculated. The FFT and
corresponding magnitude are shown in Figure 10.8 and Figure 10.9.

Code:
A1=float(input(‘Enter	amplitude\t:’))

f1=int(input(‘Enter frequency\t:’))

t=np.linspace(-np.pi,np.pi,256)

y1=A1*np.sin(2*np.pi*f1*t)

A2=float(input(‘Enter	amplitude\t:’))

f2=int(input(‘Enter frequency\t:’))

y2=A2*np.sin(2*np.pi*f2*t)

A3=float(input(‘Enter	amplitude\t:’))

f3=int(input(‘Enter frequency\t:’))

y3=A3*np.sin(2*np.pi*f3*t)

y=y1+y2+y3

plt.plot(t,y)

plt.show()

Output: The output of the above code is as follows:
Enter amplitude :10

Enter frequency :2

Enter amplitude :10

Enter frequency :4

Enter amplitude :10

Enter frequency :8

Figure 10.7: y = A1 sin(2πf1 t) + A2 sin(2πf2 t) + A3 sin(2πf3 t)

Feature Extraction 209

The following code finds the Fourier Transform of this signal.

Code:
sp = np.fft.fft(y)

freq = np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f,mod2)

The output of the above code is shown in Figure 10.8:

Figure 10.8: The FFT of y = A1 sin(2πf1 t) + A2 sin(2πf2 t) + A3 sin(2πf3 t)

The magnitude of the signal is as follows (Figure 10.9):

Figure 10.9: The magnitude of FFT of y = A1 sin(2πf1 t) + A2 sin(2πf2 t) + A3 sin(2πf3 t)

210 Machine Learning for Beginners

So far, we have seen that the Fourier Transform can extract frequencies of simple
signals. These frequencies may help us to distinguish between two signals. However,
this method does not give desirable results with non-stationary signals. Although
the FFT of a signal composed of two parts having different frequencies can also
extract the various frequencies, the Fourier Transform of signals shown in Figure
10.10 and Figure 10.13 generate the same Fourier Transforms.

Code:
A=float(input(‘Enter	amplitude\t:’))

f1=int(input(‘Enter frequency 1\t:’))

f2=int(input(‘Enter frequency 2\t:’))

t=np.linspace(-np.pi, np.pi,256)

y=np.zeros(256)

for i in range(128):

y[i]=A*np.sin(2*np.pi*f1*t[i])

for i in range(128,256):

y[i]=A*np.sin(2*np.pi*f2*t[i])

plt.plot(t,y)

plt.show()

#print(t)

Output: The output of the above code is as follows:
Enter amplitude :10

Enter frequency 1 :2

Enter frequency 2 :4

Figure 10.10: A non-stationary signal

Feature Extraction 211

The following code finds the FFT of this signal.
Code:
sp = np.fft.fft(y)

freq = np.fft.fftfreq(y.shape[-1])

plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f,mod2)

Output: The output of the above code is shown in Figure 10.11:

Figure 10.11: The FFT of the signal shown in Figure 10.10

The magnitude of the output is shown in Figure 10.12:

Figure 10.12: The magnitude of the FFT of the signal shown in Figure 10.10

212 Machine Learning for Beginners

Now, if the signal is changed so that the first part contains the higher frequency and
the second part contains the lower one (Figure 10.13), the FFT of the signal remains
the same (Figure 10.14 and Figure 10.15).

The output of the re-run:
Enter amplitude :10

Enter frequency 1 :2

Enter frequency 2 :4

Figure 10.13: Another example of a non-stationary signal

The Fourier Transform of Figure 10.13 is shown in Figure 10.14:

Figure 10.14: The FFT of the signal shown in Figure 10.13

The magnitude of the Fourier Transform of the Figure 10.13 is shown in Figure 10.15:

Feature Extraction 213

Figure 10.15: The magnitude of the FFT of the signal shown in Figure 10.13

The implementation and use of FFT have been elaborately explained. However, it
has its shortcomings. The FFT cannot find the order of frequencies or the positions
at which a particular frequency occurred. To find this, we use Short Term Fourier
Transform (STFT). The STFT can be used for determining changes in the frequency
and phases of non-stationary signals. The scipy.signal module can be used to find
the stft of a given signal. Table 10.3 presents the parameters of the stft function of
the signal module of scipy:

Parameter Type Explanation
x array_like This parameter denotes the time series of measurement

values
fs float It is an optional parameter. This parameter represents

the sampling frequency of the x time series. The default
value of this parameter is 1.0.

window str or tuple or
array_like

It is an optional parameter. The default value of this
parameter is the Hann window. The get_window can be
seen for a list of windows.

nperseg int It is an optional parameter. This parameter represents
the length of each segment. The default value of this
parameter is 256.

boundary str or None It is an optional parameter. This parameter specifies
whether the input signal is extended at both ends.

axis int It is an optional parameter. It represents the axis along
which the STFT is computed. The default is axis=-1.

Table 10.3: The parameters of scipy.signal.stft

214 Machine Learning for Beginners

The following table (Table 10.4) shows the attributes of the stft function:

Attribute Type Explanation
f ndarray This attribute represents the array of sample frequencies.
t ndarray This attribute represents the array of segment times.
Zxx ndarray This attribute represents the STFT of x.

Table 10.4: The attributes of scipy.signal.stft

The following code finds the stft of the given signal.

Code:
f, t,sp = signal.stft(y, 1000, nperseg=1000)

#plt.plot(freq, sp.real, freq, sp.imag)

plt.show()

f=np.linspace(-3,3,256)

mod1=[np.sqrt((i.real**2+i.imag**2)) for i in sp]

mod2=np.abs(sp)

plt.plot(f[127:],mod2[:,0])

plt.show()

plt.plot(f[127:],mod2[:,1])

plt.show()

plt.plot(f[127:],mod2[:,2])

plt.show()

Output: The output of the code is shown in figures (Figure 10.16(a), Figure 10.16(b)
and Figure 10.16(c):

Figure 10.16 (a): The STFT of the signal shown in Figure 10.13

Feature Extraction 215

Figure 10.16 (b): The STFT of the signal shown in Figure 10.13

Figure 10.16 (c): The STFT of the signal shown in Figure 10.13

The frequency-based feature extraction is useful in the case of audio signals. The
next section introduces patches, which can be used in the case of images.

Patches
Consider an image of size . A naïve way of extracting information from this image is
to consider all the pixels as features, thus making an array containing 25 elements.
This array will act as a feature vector.

One can also extract local information from the given image using patches. If we
consider a patch, which moves 1 pixel at a time, as shown in Figure 10.17, 16 sub-
arrays are generated for a image. Assume that we find the mean and the standard
deviation of each of these 16 patches and consider the 32 values so obtained as the

216 Machine Learning for Beginners

features of the given image. Although the number of features will increase, but the
features vector will become more informative.

Figure 10.17: A patch moves on a image

Scipy provides an in-build function for extracting patches in sklearn. The details of
the function are presented in the next section.

sklearn.feature_extraction.image.extract_
patches_2d
This function reshapes a 2D image into a collection of patches. The resulting patches
are allocated in a dedicated array. The parameters of the function are shown in
Table 10.5:

Parameter Type Explanation

image array This parameter represents the original image data.
patch_size tuple of integers This parameter represents the dimension of each

patch.
max_patches integer It is an optional parameter. The default value of

the parameter is none. it denotes the maximum
number of patches to extract.

Contd…

Feature Extraction 217

random_state int This parameter denotes the RandomState. It is an
optional parameter, and its default value is None.

Table 10.5: Parameters of extract_patches_2d

The parameters and attributes of the function are as follows (Table 10.6):

Attribute Type Explanation
patches array It is the collection of patches extracted from the image.

Table 10.6: Attributes of extract_patches_2d

The following code extracts patches from the given image using the above function.

Code:
from sklearn.datasets import load_sample_image

from sklearn.feature_extraction import image

from matplotlib import pyplot as plt

import numpy as np

from skimage.color import rgb2gray

img1=load_sample_image(‘flower.jpg’)

img1=rgb2gray(img1)

plt.imshow(img1)

plt.show()

patches=image.extract_patches_2d(img1,(2,2))

plt.imshow(patches[10000,:,:])

plt.show()

The above code results in a set of patches, from which relevant features can be
extracted and used as features in classification or regression. The next section
introduces a Histogram of oriented gradients, which can be used to represent an image
compactly.

Histogram of oriented gradients
The Histograms of Oriented Gradients (HOG) is a popular feature descriptor. This
technique finds the frequency of orientations in a localized portion of a given image.
To calculate features using HOG, sliding window traverses over the whole image
and gradients from a block are calculated from the change in intensities of a pixel
within a block.

218 Machine Learning for Beginners

First of all, we convert a given image into a grayscale. Take a block, say of that
matter, of . This block will have 25 pixels, and for any pixel at the horizontal and
vertical gradient is calculated as follows:

H = I(i,	j + 1) – I(i,	j – 1)
V = I(i	+	1,	j) – I(i	–	1,	j)

2 2()Magnitude H V= +

1 1tan tan VTheta
H

− −
=

Now, a histogram of theta is as formed, which acts as the feature set. In sklearn,
the HOG has been implemented in the skimage.feature.hog. The following code
demonstrates the implementation of HOG using sklearn. Note that the HOG image
corresponding to Figure 10.18 is shown in Figure 10.19:
Code:
def rgb2gray(rgb):

 r,g,b=rgb[:,:,0],rgb[:,:,1],rgb[:,:,2]

 gray=0.2989*r+0.5870*g+0.1140*b

 return gray_img

#Original image

data = load_sample_images()

len(data.images)

img1 = data.images[0]

img1.shape

plt.imshow(img1)

Output:

Figure 10.18: Original Image

Feature Extraction 219

#Finding HOG image

img2=rgb2gray(img1)

plt.imshow(img2)

fd, hog_image = hog(img1, orientations=8, pixels_per_cell=(16, 16),cells_
per_block=(1, 1), visualize=True, multichannel=True)

plt.imshow(hog_image)

Output:

Figure 10.19: The HOG image

Likewise, for data.images[1] (Figure 10.20 (a)), the HOG is shown in Figure 10.20 (b):

Figure 10.20 (a): Original Image of flower

220 Machine Learning for Beginners

Figure 10.20 (b): HOG of the image shown in Figure 10.20 (a)

The user can use the fd, obtained in the above code, as the feature of the given image.
This feature vector can be used to construct the features of the two given classes in
a classification problem, and the data so obtained can be used for classification. The
next section introduces the principal component analysis. The method transforms
the data in the new dimensions considering the variance.

Principal component analysis
The principal component analysis transforms the given data into another set of
dimensions and finds the direction cut of maximum scatter. It is accomplished
by using the eigenvectors. Take, for example, the data of students of a particular
school. The data contains m features, including the age of a student and his date of
birth. Since both of them are dependent and assuming the rest of the attributes are
not dependent, the relevant information is contained in the rest of (m – 1) features.
Now imagine if we do not know about the dependency of features and still want
to remove the redundant features. The method described in this section helps us to
achieve this task.

The given data X is a n × m matrix, having n samples and m features.

Find mean
1

n

i
X X

=
=∑ , which becomes a 1 × m matrix:

1. Subtract X from X by broadcasting X
2. Find ()()TS X X X X= − −
3. Find the eigenvalues and eigenvectors of S
4. Place the vectors in the increasing order of their eigenvalues

To get hold of the method, consider Figure 10.21. The first figure shows the original
data, which requires two dimensions to separate the data. The second figure shows

Feature Extraction 221

the new dimension, found by applying principal component analysis. Note that the
transformation takes the data into new dimensions. Here, just one axis is sufficient
to classify the data:

Figure 10.21: Data before and after applying PCA

The following steps will take you through the process of transforming the data using
the principal component analysis:

Step 1: Import the following modules:
from sklearn.datasets import load_iris

import numpy as np

from matplotlib import pyplot as plt

from numpy import linalg

Figure 10.22 shows the first feature. The red and the blue color denote the samples of
the two classes. Note that the given data cannot be classified easily using only one
feature:

Figure 10.22: The first feature of the data. The red and blue dots represent the two classes.

222 Machine Learning for Beginners

Next, we find the PCA of the given data.
Step 2: Find PCA:
mean=np.mean(Data, axis=0)

s=np.matmul(np.transpose(Data-mean),(Data-mean))

val, vec=linalg.eig(s)

Data_transformed=np.matmul(Data,vec)

print(Data_transformed.shape)

Data1=Data_transformed[50:100,:]

Data2=Data_transformed[100:150,:]

plt.plot(index,Data1[:,0],’rs’)

plt.plot(index,Data2[:,0],’bs’,)

plt.xlabel(‘Feature Number’)

plt.ylabel(‘Feature Value’)

plt.show()

plt.plot(index,Data1[:,1],’rs’)

plt.plot(index,Data2[:,1],’bs’,)

plt.xlabel(‘Feature Number’)

plt.ylabel(‘Feature Value’)

plt.show()

Figure 10.23 shows the first feature of the transformed data. The red and the blue
color denote the samples of the two classes. Note that the classification of the given
data has become easy using only this feature:

Figure 10.23: The First feature of the transformed data.
The red and blue dots represent the two classes.

Feature Extraction 223

Note that the classification becomes easy after the transformation. In general, you
can use only a few features of the transformed data to accomplish your task after
applying PCA.

Conclusion
Feature extraction is an important constituent of any machine learning model. It
helps us to extract relevant features from the given data. It may also help us to reduce
dimensionality, hence making the model efficient and effective.

This chapter introduces four important feature extraction methods, namely, Fourier
Transform, patches, HOG, and principal component analysis. The basics, theory,
and implementation of these topics have been explained in the chapter.
The	reader	is	expected	to	implement	the	above	techniques	and	use	
the	classifiers	studied	the	previous	chapters	to	see	the	effect	of	these	
techniques	on	the	performance	of	the	model.	Moreover,	there	are	some	
other	feature	extraction	techniques	like	ICA	and	LDA.	LDA	has	already	
been	discussed	in	the	book.	The	reader	is	requested	to	explore	the	
Bibliography	at	the	end	of	this	book	for	more	feature	extraction	methods	
like	Local	Binary	Patterns	and	Wavelet	Transform.

Exercises
Multiple Choice Questions
 1. Which technique helps us to transform the data into a frequency domain?
 a. Fourier Transform b. Local binary pattern
 c. Principal component analysis d. All of the above

 2. Which technique helps us to transform the data into new dimensions based on
variance?

 a. Fourier Transform b. Local binary pattern
 c. Principal component analysis d. All of the above

 3. Which technique helps us to find the edges of a picture?
 a. Fourier Transform b. Local binary pattern
 c. Principal component analysis d. All of the above

224 Machine Learning for Beginners

 4. Which technique is more efficient Discrete Fourier Transform or Fast Fourier
Transform?

 a. Discrete Fourier Transform b. Fast Fourier Transform
 c. Both are equally efficient d. Cannot say

 5. Which of the following helps you to analyze non-stationary signals?
 a. Discrete Fourier Transform b. Fast Fourier Transform
 c. Short Term Fourier Transform d. None of the above

 6. Which of the following signal cannot be analyzed using FFT?
 a. Sin signal consisting of a single frequency
 b. Sin signal consisting of two frequencies
 c. Non-stationary signal
 d. None of the above

 7. Patches are generally used for?
 a. Audio data b. Video data
 c. Imaging data d. None of the above

 8. Fourier is used for?
 a. Audio data b. Video data
 c. Imaging data d. None of the above

 9. PCA is generally used for?
 a. Audio data b. Video data
 c. Imaging data d. All of the above

 10. Which of the following is not a feature extraction method?
 a. PCA b. LDA c. LBP d. FDR

Theory
 1. Explain the concept of principal component analysis and write the algorithm

to find the PCA of a given data.
 2. Explain the Fourier Transform. Write an algorithm to find the Fourier Transform

of a given signal.
 3. What changes will you make in the above algorithm to improve its complexity?
 4. Which type of signals cannot be analyzed using the Fourier Transform? Explain

Short Term Fourier Transform.
 5. Explain the importance of patches.

Feature Extraction 225

Programming
 1. Find the first-order statistical features of an image.
 a. Can you use the feature obtained so obtained for classification? Take any

imaging dataset with two classes and verify.
 b. Explain the results so obtained.

 2. Take an image and convert it into grayscale.
 a. Check if the intensity of each pixel is between 0 and255.
 b. Now, for each pixel, find whether its intensity is greater than each of its

eight neighbors or not.
 c. Replace the neighbor’s value by 1, if the neighbor’s value is greater than the

intensity of the central pixel; else replace the neighbor’s value by 0.
 d. Find the decimal equivalent of the eight-bit binary number obtained by the

neighbor’s binary value obtained in c).
 e. Observe the image, what difference do you see vis-à-vis the original one.

 3. Now repeat the above steps for two sets of images and use SVM to classify the
dataset. Report the accuracy, specificity, and sensitivity.

 4. Repeat the above experiment by replacing the transformed image with the
histogram of intensity values.

 5. Can you reduce the number of bins in the above histogram?
 6. Why do you think the above system can classify the images? The reader may

refer to http://www.scholarpedia.org/article/Local_Binary_Patterns.
 7. The Histogram of Gradients (HoG) is a technique that counts occurrences of

gradient orientation in localized portions of an image. The reader may refer
to https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients for a
detailed explanation of the method. Implement the method and classify any
imagining dataset using this feature extraction technique.

 8. Apply PCA to an imaging dataset (2-class problem) and classify the dataset.
Report accuracy, specificity, and accuracy. Can you explain the results?

 9. Refer to the bibliography at the end of this book and implement Wavelet
Transforms. Can this feature extraction technique for classification.

 10. Can you suggest a feature extraction method based on the combination of
Q2 and Q1? Verify your claim by taking an imaging dataset and performing
classification.

Pandas: Software Library, mainly used for Data manipulation and Analysis.

Developed By: Wes McKinney.

Released On: 11th January 2008.

Free: It is released under the three-clause BSD license.

Important Data Structures: (a) Series and (b) Data Frame.

Series: A Pandas Series represents a one-dimensional array of indexed data [5].

Data Frame: A Data Frame is a two-dimensional labeled array that stores ordered
collection of columns [5].

Creating a Pandas series
The Series function helps us to create Series data type. It can be done using:
 • List
 • An Array
 • A dictionary.

appendix 1
Cheat Sheet – Pandas

228 Machine Learning for Beginners

Using a List
Syntax:
Pandas.Series(L)

Where L is a list.

Example:
L= [10, 20, 30, 40, 50]

Series(L)

L=[10, 20, 30, 40, 50]

S1= pd.Series(L)

S1

Output:
0 10

1 20

2 30

3 40

4 50

dtype: int64

Using NumPy Array
Syntax:
Pandas.Series(Arr)

Where Arr is an NumPy array.

Example:
Arr1=np.random.randint(3, 89, 10)

S2=pd.Series(Arr1)

S2

Output:
0 61

1 9

2 82

Cheat Sheet – Pandas 229

3 63

4 11

5 41

6 37

7 68

8 10

9 48

dtype: int32

Using Dictionary
Syntax:
Pandas.Series(D)

Where D is a dictionary

Example:
D1={‘Harsh’:100, ‘Aayush’:22, ‘Arush’:22}

S3=pd.Series(D1)

S3

Output:
Harsh 100

Aayush 22

Arush 22

dtype: int64

Indexing
Procedure Example Code

Using Keys Access the value corresponding to the key
‘Arush’ in Series S1

S1[‘Arush’]

Using index Access the value at index 0 S1[0]

_ Access value at the last position S3[-1]

Accessing values
using loc

Access value corresponding to the key ‘Harsh’
in Series S1

S1.loc[‘Harsh’]

Accessing values
using iloc

Access value at index =1 in the Series S1 S1.iloc[1]

230 Machine Learning for Beginners

Slicing
Slicing produces a Sub-Series from a given Series.

Example:
Access element from index 3 up to 5 (5 not included) from Series S1.
S1[3:5]

Common methods
The common methods of the Series data type are presented in Table 2:

Function Purpose Example
head() This method displays the top 5 values of the

Series.
S1.head()

tail() This method displays the last five values of the
Series.

S1.tail()

index It displays the index(s) of the given Series. S1.index()

describe() This method shows the count, mean, min, max,
25%, 50%, 75% and std (standard Deviation)

S1.describe()

sort_values() This method sorts the items of the given Series
and displays the indexes of the sorted arrays.

S1.sort_values()

max It finds the maximum value from a given series. S1.max()

min It finds the minimum value from a given series. S1.min()

sum It finds the sum of values from a given series. S1.sum()

median It finds the median of the value from a given
series.

S1.median()

value_counts It counts the frequencies of values in a given
Series.

S1.value_counts()

Table 1: Common methods of the Series Data Type

Boolean index
In a Series, the necessary condition can be specified inside the square brackets to get
the elements that satisfy the given condition. For example, the following statement
selects the elements of S1, which are greater than 20 and put them in S2:

S2=S1[S1>20]

Cheat Sheet – Pandas 231

DataFrame
Creation
a)	 By	passing	a	dictionary	in	which	each	index	is	associated	with	a	list	of	values	in	

the DataFrame method of Pandas.

 Example:
 D={‘Harsh’:[1, 2, 3, 4], ‘Arsh’:[4, 5, 6, 7], ‘Sparsh’: [7, 9, 8, 10]}
 DF_=pd.DataFrame(D)

 Output:

Harsh Arsh Sparsh
0 1 4 7
1 2 5 8
2 3 6 9
3 4 7 10

b) By passing a two-dimensional NumPy array in the DataFrame method of Pandas:

 Example:
 arr2=np.random.randint(2, 89, (3,3))
 DF_2=pd.DataFrame(arr2)

 Output:

0 1 2
0 64 85 66
1 5 80 84
2 23 60 38

c) By passing some Series in the DataFrame method of Pandas:

 Example:
 S1=pd.Series(np.random.randint(2,89,10))
 S2=pd.Series(np.random.randint(0,10,10))
 S3=pd.Series(np.random.randint(20,70,10))
 DF_3=pd.DataFrame({‘Score’:S1, ‘Papers’:S2, ‘Age’:S3})
 DF_3

232 Machine Learning for Beginners

 Output:

Score Papers Age
0 25 4 46
1 77 0 33
2 16 9 67
3 43 1 61
4 48 8 33
5 72 5 22
6 79 3 49
7 80 6 23
8 20 6 20
9 53 0 27

Adding a Column in a Data Frame
Syntax:
<name of the Data Frame>[‘<Column Name’>] = L

Where L is a List.

Example:
Sal=np.random.randint(10000,100000,10)

DF_3[‘Sal’]=Sal

DF_3

Output:

Score Papers Age Sal
0 25 4 46 19850
1 77 0 33 17093
2 16 9 67 90831
3 43 1 61 77055
4 48 8 33 58274
5 72 5 22 95604
6 79 3 49 29780
7 80 6 23 88793
8 20 6 20 29931
9 53 0 27 22357

Cheat Sheet – Pandas 233

Deleting column
The drop function helps us to delete a column from a DataFrame.

Example:

DF_3.drop(‘Sal’, axis=1)

DF_3

Output:

Score Papers Age
0 25 4 46
1 77 0 33
2 16 9 67
3 43 1 61
4 48 8 33
5 72 5 22
6 79 3 49
7 80 6 23
8 20 6 20
9 53 0 27

Addition of Rows
The concat function helps to concatenate a DataFrame with another Data Frame.

Example:

DF_4=pd.DataFrame(np.random.randint(10,1000,(5,3)))

pd.concat([DF_3, DF_4])

Output:

0 1 2 Age Papers Sal Score
0 NaN NaN NaN 46.0 4.0 19850.0 25.0
1 NaN NaN NaN 33.0 0.0 17093.0 77.0
2 NaN NaN NaN 67.0 9.0 90831.0 16.0
3 NaN NaN NaN 61.0 1.0 77055.0 43.0
4 NaN NaN NaN 33.0 8.0 58274.0 48.0

Contd…

234 Machine Learning for Beginners

5 NaN NaN NaN 22.0 5.0 95604.0 72.0
6 NaN NaN NaN 49.0 3.0 29780.0 79.0
7 NaN NaN NaN 23.0 6.0 88793.0 80.0
8 NaN NaN NaN 20.0 6.0 29931.0 20.0
9 NaN NaN NaN 27.0 0.0 22357.0 53.0
0 566.0 436.0 746.0 NaN NaN NaN NaN
1 597.0 331.0 666.0 NaN NaN NaN NaN
2 997.0 407.0 702.0 NaN NaN NaN NaN
3 958.0 447.0 741.0 NaN NaN NaN NaN
4 906.0 226.0 688.0 NaN NaN NaN NaN

Deletion of Rows
The drop function is used to drop rows/columns from a Data Frame.

Example:

DF_4.drop([4], axis=0, inplace=True)

Output:

0 1 2
0 566 436 746
1 597 331 666
2 997 407 702
3 958 447 741

unique
The unique function finds unique values in a column of a Data Frame.

Example: To see the unique values of the age column of the Students_df Data Frame
issue the following command:
Students_df.Age.unique()

nunique
The nunique function finds the number of unique values in a Data Frame column.

Example:
Students_df.Age.unique()

Cheat Sheet – Pandas 235

Iterating a Pandas Data Frame
a) iterrows():
 The pandas.DataFrame.iterrows method helps us to iterate through the rows of

a Data Frame.
 Example:
	 for	index,	row	in	DF_4.iterrows():
	 	 print(index,’	:	‘,	row)

b) index:
 The pandas.DataFrame.index	attribute	may	also	be	used	to	iterate	over	a	given	

Data Frame rows.
 Example:
 for ind in DF_3.index:
 print(DF_3[‘Age’][ind],’ year old, Papers= ‘, DF_3[‘Papers’][ind])

 Output:
 46 year old, Papers= 4 33 year old, Papers= 0 67 year old, Papers= 9

61 year old, Papers= 1 33 year old, Papers= 8 22 year old, Papers= 5
49 year old, Papers= 3 23 year old, Papers= 6 20 year old, Papers= 6
27 year old, Papers= 0

c) iteritems():
 The DataFrame.iteritems() method can also be used to iterate through a Pandas

Data Frame.
 Example:
 for label, col in DF_4.iteritems():
 print(label,’ : ‘, col)

 Output:
 0 : 0 566 1 597 2 997 3 958 Name: 0, dtype: int32 1 : 0 436 1 331 2

407 3 447 Name: 1, dtype: int32 2 : 0 746 1 666 2 702 3 741 Name: 2,
dtype: int32

Some of the important methods and procedures to deal with the Pandas data types
have been presented in this Appendix. The reader should visit https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html for a
detailed discussion on DataFrames and https://pandas.pydata.org/pandas-docs/
stable/reference/api/pandas.Series.html for a detailed discussion on Series.

Introduction
Face classification is the process of identifying the face of a person from an image.
It is an important problem but not an easy one. The conventional algorithms fail at
detecting or classifying faces. We are given two sets of images: first containing the
face of a person and the second containing the face of another person. The task is to
identify the first person from an image that is not provided in the training set. In this
process, the training set contains images of a face, and the corresponding label and
the label of the test set needs to be predicted.

Here, machine learning comes to our rescue and helps us tackle this problem. The
Pipeline used in this problem requires the pre-processing of the data, followed by
feature extraction, feature selection and finally applying the classification algorithm.

In this appendix the Local Binary Pattern (LBP) is used for feature extraction, Fischer
Discriminant Ratio (FDR) is used for feature section and the classification is carried
out using the Support Vector Machine. The results of the application of the pipeline
on the given dataset are encouraging.

appendix 2
Face Classification

238 Machine Learning for Beginners

Data
Source: The project uses two sets of images having 28 images each belonging to two
classes which are henceforth called Actor1 and Actor2. The images are of the shape
60 × 60 × 3. The data set was divided into test and train by taking 70% of the images
for training and 30% for testing.

Conversion to grayscale:
Before applying feature extraction, the images are converted into the grayscale. This
is because LBP has been used for feature extraction. One of the aims of this extraction
method is to detect edges, which can be detected using the grayscale images also.
The shape of each image after this conversion becomes 60 × 60.

Methods
Feature extraction
LBP aims at finding the relevant features and at the same time reducing the number
of features. Local Binary Pattern (LBP) is a simple yet very efficient texture operator
which labels the pixels of an image by thresholding the neighborhood of each pixel
and considers the result as a binary number [6]. The original LBP operator [6] forms
labels for the image pixels by thresholding the 3 x 3 neighborhood of each pixel
with the center value and considering the result as a binary number. The histogram
of these 28 = 256 different labels can then be used as a texture descriptor [6]. The
application of feature extraction reduces the dataset to a () matrix.

Splitting of data
Sklearn module train_test_split is used to spit the data in training data and test data
with testing data of size 30%.

Feature Selection
Fisher Discriminant Ratio (FDR) aims at assigning value to each feature based on its
mean and the variance, in accordance with its relevance to the label. The features are
then arranged in the decreasing order of their FDR values.

Face Classification 239

Forward Feature Selection
Forward feature selection is an iterative method in which we start with zero feature
in the model. We continue adding a feature in each iteration which improves the
performance of the model until addition of a new variable starts to degrade the
performance of the model.

Classifier
The Support Vector Machine is a popular classification algorithm. SVM classifier is
used as it can perform maximum separation hyperplane. SVM classifier with the
linear kernel is used as a classifier and is trained using training data and then used
to predict labels of testing data.

Observation and Conclusion
The variation of accuracy with the number of features is shown in Figure 1. It can be
observed that the highest accuracy achieved is 91% when only 4 features are taken
for model training.

Figure 1: Variation of accuracy with the number of features.

The reader is encouraged to try out the combinations of different feature extraction
methods, classifiers, and feature selection methods and compare the results.

General
Richard O. Duda, Peter E. Hart, and David G. Stork. (2000). Pattern Classification
(2nd Edition). Wiley-Interscience, USA.

Mitchell Tom M., (1986). Machine Learning, Mg. Graw Hill.

Simon Haykin. (1998), Neural Networks: A Comprehensive Foundation (2nd. ed.).
Prentice Hall PTR, USA.

Russell, S. & Norvig, P. (2003). Artificial intelligence, a modern approach (2nd ed.).
Englewood Cliffs: Prentice Hall.

T. Ojala, M. Pietikäinen, and D. Harwood (1994), “Performance evaluation of texture
measures with classification based on Kullback discrimination of distributions”,
Proceedings of the 12th IAPR International Conference on Pattern Recognition
(ICPR 1994), vol. 1, pp. 582 - 585.

T. Ojala, M. Pietikäinen, and D. Harwood (1996), “A Comparative Study of Texture
Measures with Classification Based on Feature Distributions”, Pattern Recognition,
vol. 29, pp. 51-59.

BiBliography

242 Machine Learning for Beginners

Nearest Neighbors
[1] Cover, T. M. (1968). Estimation by the nearest neighbor rule. IEEE Transactions

on Information Theory, IT-14, 50–55.a

[2] Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, IT-13, 21–27. Dasarathy, B. V. (1991). Nearest-
neighbor classification techniques. Los Alomitos: IEEE Computer Society Press.

[3] Dudani, S. A. (1975). The distance-weighted k-nearest-neighbor rule. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-6, 325–327.

Neural Networks
[1] Minsky, M. & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT.

[2] Hopfield, J. J. (1982). “Neural networks and physical systems with emergent
collective computational abilities”. Proc. Natl. Acad. Sci. U.S.A. 79 (8): 2554–
2558.

[3] McCulloch, Warren; Walter Pitts (1943). «A Logical Calculus of Ideas Immanent in
Nervous Activity». Bulletin of Mathematical Biophysics. 5 (4): 115–133.

[4] Rosenblatt, F. (1958). “The Perceptron: A Probalistic Model For Information
Storage And Organization In The Brain”. Psychological Review. 65 (6): 386–408.

[5] Minsky, M.; S. Papert (1969). An Introduction to Computational Geometry. MIT
Press.

[6] McCulloch, Warren; Pitts, Walter (1943). “A Logical Calculus of Ideas Immanent
in Nervous Activity”. Bulletin of Mathematical Biophysics. 5 (4): 115–133.

[7] Hebb, Donald (1949). The Organization of Behavior. New York: Wiley.

Support Vector Machines
[1] Cortes, Corinna; Vapnik, Vladimir N. (1995). “Support-vector networks” (PDF).

Machine Learning. 20 (3): 273–297.

Decision Trees
[1] Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and

regression trees. Belmont: Wadsworth International Group.

[2] Dietterich, T. (1998). Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10, 1895–1923.

Face Classification 243

[3] Murty, M. N. & Krishna, G. (1980). A computationally efficient technique for
data clustering. Pattern Recognition, 12, 153–158.

[4] Quinlan, J. R. (1987). “Simplifying decision trees”. International Journal of Man-
Machine Studies. 27 (3): 221–234.

[5] K. Karimi and H.J. Hamilton (2011), “Generation and Interpretation of Temporal
Decision Rules”, International Journal of Computer Information Systems and
Industrial Management Applications, Volume 3

[6] Wagner, Harvey M. (1 September 1975). Principles of Operations Research: With
Applications to Managerial Decisions (2nd ed.). Englewood Cliffs, NJ: Prentice
Hall.

[7] R. Quinlan, “Learning efficient classification procedures”, Machine Learning: an
artificial intelligence approach, Michalski, Carbonell & Mitchell (eds.), Morgan
Kaufmann, 1983, p. 463–482.

[8] Utgoff, P. E. (1989). Incremental induction of decision trees. Machine learning,
4(2), 161–186.

Clustering
[1] Cheeger, Jeff (1969). “A lower bound for the smallest eigenvalue of the

Laplacian”. Proceedings of the Princeton Conference in Honor of Professor S.
Bochner.

[2] William Donath and Alan Hoffman (1972). “Algorithms for partitioning of
graphs and computer logic based on eigenvectors of connections matrices”.
IBM Technical Disclosure Bulletin.

[3] Fiedler, Miroslav (1973). “Algebraic connectivity of graphs”. Czechoslovak
Mathematical Journal.

[4] Stephen Guattery and Gary L. Miller (1995). “On the performance of spectral
graph partitioning methods”. Annual ACM-SIAM Symposium on Discrete
Algorithms.

[5] Daniel A. Spielman and Shang-Hua Teng (1996). “Spectral Partitioning Works:
Planar graphs and finite element meshes”. Annual IEEE Symposium on
Foundations of Computer Science.

[6] Ng, Andrew Y and Jordan, Michael I and Weiss, Yair (2002). “On spectral
clustering: analysis and an algorithm” (PDF). Advances in Neural Information
Processing Systems.

244 Machine Learning for Beginners

[7] Rokach, Lior, and Oded Maimon. “Clustering methods.” Data mining and
knowledge discovery handbook. Springer US, 2005. 321-352.

[8] Frank Nielsen (2016). “Chapter 8: Hierarchical Clustering”. Introduction to
HPC with MPI for Data Science. Springer.

[9] R. Sibson (1973). “SLINK: an optimally efficient algorithm for the single-link
cluster method” (PDF). The Computer Journal. British Computer Society. 16 (1):
30–34.

[10] D. Defays (1977). “An efficient algorithm for a complete-link method”. The
Computer Journal. British Computer Society. 20 (4): 364–366.

Fourier Transform
[1] Taneja, H.C. (2008), “Chapter 18: Fourier integrals and Fourier transforms”,

Advanced Engineering Mathematics, Vol. 2, New Delhi, India: I. K. International Pvt
Ltd, ISBN 978-8189866563.

[2] Jont B. Allen (June 1977). «Short Time Spectral Analysis, Synthesis, and Modification
by Discrete Fourier Transform». IEEE Transactions on Acoustics, Speech, and Signal
Processing. ASSP-25 (3): 235–238.

Principal Component Analysis
[1] Jackson, J.E. (1991). A User’s Guide to Principal Components (Wiley).

[2] Jolliffe, I. T. (1986). Principal Component Analysis. Springer Series in Statistics.
Springer-Verlag. pp. 487.

[3] Jolliffe, I.T. (2002). Principal Component Analysis, second edition (Springer).

Histogram of Oriented Gradients
[1] Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human

Detection, lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

