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Chapter 23

Support Vector Machines

In this chapter we describe Support Vector Machines (SVM), a classification method
based on maximum margin linear discriminants.

23.1 Linear Discriminants and Margins

Let D be a classification dataset, with n points in d-dimensional space: D =
{(xi, yi)}ni=1. Further, let us assume that there are only two class labels, i.e.,
yi ∈ {+1,−1}, denoting the positive and negative classes.

Hyperplanes A linear discriminant function in d dimensions is given by a hyper-
plane, defined as follows

h(x) = wTx+ b (23.1)

= w1x1 + w2x2 + · · ·+ wdxd + b

Here, w is a d dimensional weight vector, and b is a scalar, called the bias. For points
that lie on the hyperplane, we have

h(x) = wTx+ b = 0 (23.2)

In other words, the hyperplane is defined as the set of all points such that wTx = −b.
To see the role played by b, assuming that w1 #= 0, and setting xi = 0 for all i > 1, we
can obtain the offset where the hyperplane intersects the first axis, since by (23.2),
we have

w1x1 = −b or x1 =
−b
w1

(23.3)

In other words, the point (−b
w1

, 0, · · · , 0) lies on the hyperplane. In a similar manner,
we can obtain the offset where the hyperplane intersects each of the axes, given by
−b
wi

(provided wi #= 0).
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Separating Hyperplane A hyperplane h(x) splits the original d-dimensional
space into two half-spaces. If the input dataset is linearly separable, then we can
find a separating hyperplane h(x), such that for all points labeled yi = −1, we have
h(xi) < 0, and for all points labeled yi = +1, we have h(xi) > 0. In fact, for
any given point x, h(x) serves as a linear classifier or a linear discriminant, which
predicts the class y for any point x, according to the decision rule

y =

{
+1 if h(x) > 0

−1 if h(x) < 0
(23.4)

Let a1 and a2 be two arbitrary points that lie on the hyperplane. From (23.2)
we have

h(a1) = wTa1 + b = 0

h(a2) = wTa2 + b = 0

Subtracting one from the other we obtain

wT (a1 − a2) = 0 (23.5)

This means that the weight vector w is orthogonal to the hyperplane, since it is
orthogonal to any arbitrary vector (a1 − a2) on the hyperplane. In other words, the
weight vector w, gives the direction that is normal to the hyperplane, which fixes
the orientation of the hyperplane, whereas the bias b fixes the offset of hyperplane,
in the d-dimensional space. Since both w and −w are normal to the hyperplane, we
remove this ambiguity by requiring that h(xi) > 0 when yi = 1, and h(xi) < 0 when
yi = −1.

Distance of a Point to the Hyperplane Consider a point x ∈ Rd, such that
x does not lie on the hyperplane. Further let xp be the projection of x on the
hyperplane. Let r be the offset of x along the weight vector w, then as shown in
Figure 23.1, we can write x as a combination of two vectors

x = xp + r

x = xp + r
w

‖w‖ (23.6)

Here r gives the directed distance of the point x from xp, i.e., r gives the offset of x
from xp in terms of the unit weight vector w

‖w‖ . It should be clear that r is positive
if r is in the same direction as w, and r is negative if r is in a direction opposite to
w. r thus gives the offset or directed distance in multiples of the unit weight vector.
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Figure 23.1: Geometry of the Separating Hyperplane in 2D. Points labeled +1 are
shown as circles, and those labeled −1 are shown as triangles. The hyperplane
h(x) = 0 divides the space into two half-spaces. The shaded region consists of all
points x satisfying h(x) < 0, whereas the unshaded region consists of all points
satisfying h(x) > 0. The unit weight vector w

‖w‖ (in gray) is orthogonal to the

hyperplane. The directed distance of the origin to the hyperplane is given as b
‖w‖

Plugging in (23.6) from above in the equation for the hyperplane (23.1)), we get

h(x) = h(xp + r
w

‖w‖ )

= wT

(
xp + r

w

‖w‖

)
+ b

= wTxp + b
︸ ︷︷ ︸

h(xp)

+r
wTw

‖w‖

= h(xp)︸ ︷︷ ︸
0

+r‖w‖

= r‖w‖ (23.7)

The last step follows from the fact that h(xp) = 0, since xp lies on the hyperplane.
From (23.7), we obtain an expression for the directed distance of the point to the
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hyperplane, given as

r =
h(x)

‖w‖ (23.8)

To obtain distance, which must be non-negative, we can conveniently multiply r
by the label y of the point, since when h(x) < 0, the label is −1, and when h(x) > 0
the label is +1. The distance of a point x from the hyperplane h(x) is thus given as

δ = y r =
y h(x)

‖w‖ (23.9)

In particular, for the origin x = 0, the directed distance is

r =
h(0)

‖w‖
=

wT0+ b

‖w‖
=

b

‖w‖

as illustrated in Figure 23.1, and the distance is

δ = y r = −1 r =
−b
‖w‖

Example 23.1: Consider the example shown in Figure 23.1. In this two-
dimensional example, the hyperplane is just a line, which is defined as the set
of all points x = (x1, x2) that satisfy the following equation

h(x) = wTx+ b = w1x1 + w2x2 + b = 0

Rearranging the terms we get

x2 = −
w1

w2
x1 −

b

w2

where −w1
w2

is the slope of the line, and − b
w2

is the offset along the second dimension.
Given any two points on the hyperplane, say p = (p1, p2) = (4, 0), and q =

(q1, q2) = (2, 5), the slope is given as

−w1

w2
=

q2 − p2
q1 − p1

=
5− 0

2− 4
= −5

2

which implies that w1 = 5 and w2 = 2.
Given any point on the hyperplane, say (4, 0), we can compute the offset b

directly as follows

b = −5 x1 − 2 x2

− 5 · 4− 2 · 0 = −20
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Thus w =

(
5
2

)
is the weight vector, and b = −20 is the bias, and the equation of

the hyperplane is given as

wTx+ b =
(
5 2

)(x1
x2

)
− 20 = 0

One can verify that the origin 0 is at a distance of −b
‖w‖ = −(−20)√

29
= 3.71 from

the hyperplane.
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Figure 23.2: Margin of a Separating Hyperplane: 1
‖w‖ is the margin, and the shaded

points are the support vectors.

Margin and Support Vectors of a Hyperplane Given a training dataset of la-
beled points, D = {xi, yi}ni=1 with yi ∈ {+1,−1}, and given a separating hyperplane
h(x) = 0, for each point xi we can find its distance to the hyperplane by (23.9)

δi =
yi h(xi)

‖w‖ =
yi(wTxi + b)

‖w‖ (23.10)

Over all the n points, we define the margin of the linear classifier as the minimum
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distance of a point from the separating hyperplane, given as

δ∗ = min
xi

{
yi(wTxi + b)

‖w‖

}
(23.11)

Note that δ∗ #= 0, since h(x) is assumed to be a separating hyperplane, and (23.4)
must be satisfied.

All the points (or vectors) that achieve this minimum distance are also called
support vectors for the linear classifier. In other words, a support vector, x∗, is a
point that lies precisely on the margin of the classifier, and it satisfies the following
equation

δ∗ =
y∗(wTx∗ + b)

‖w‖ (23.12)

Here, the numerator y∗(wTx∗ + b) gives the absolute distance of the support vector
to the hyperplane, whereas the denominator ‖w‖ makes it a relative distance in
terms of w.

Canonical Hyperplane Consider the equation of the hyperplane (23.2). It is
clear that multiplying on both sides by some scalar s yields an equivalent hyperplane

s h(x) = s wTx+ s b = (sw)Tx+ (sb) = 0

To obtain the unique or canonical hyperplane equation, we choose the scalar s such
that the absolute distance of a support vector from the hyperplane is 1. That is,

sy∗(wTx∗ + b) = 1 (23.13)

s =
1

y∗(wTx∗ + b)
=

1

y∗h(x∗)
(23.14)

Henceforth, we will assume that any separating hyperplane is canonical. That is, it
has already been suitably rescaled so that y∗h(x∗) = 1 for a support vector x∗, and
the margin is given as

δ∗ =
1

‖w‖ (23.15)

For the canonical hyperplane, for each support vector x∗
i (with label y∗i ), we have,

y∗i h(x
∗
i ) = 1, and for any point that is not a support vector, we have yih(xi) > 1,

since, by definition, it must be farther from the hyperplane than a support vector.
Over all the n points in the dataset D, we thus obtain the following set of inequalities

yi (w
Txi + b) ≥ 1, for all points xi ∈ D (23.16)

Figure 23.2 gives an illustration of the support vectors and the margin of a hyper-
plane.
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Example 23.2: Consider the separating hyperplane shown in Figure 23.2, given
by the equation

h′(x) =

(
5
2

)T

x− 20 = 0

Consider the support vector x∗ = (2, 2), with class y∗ = −1. To find the canonical
hyperplane equation, we have to rescale the weight vector and bias by the scalar
s, obtained using (23.14)

s =
1

y∗h′(x∗)
=

1

−1

((
5
2

)T (
2
2

)
− 20

) =
1

6

Thus the rescaled weight vector is

w =
1

6

(
5
2

)
=

(
5/6
2/6

)

and the rescaled bias is

b =
−20
6

The canonical form of the hyperplane is thus given as

h(x) =

(
5/6
2/6

)T

x− 20/6 =

(
0.833
0.333

)T

x− 3.33 (23.17)

The margin of the canonical hyperplane is given as

δ∗ =
y∗ h(x∗)

‖w‖ =

−1
((

5/6
2/6

)T (
2
2

)
− 20/6

)

√
(56 )

2 + (26)
2

=
1

√
29
6

= 1.114

In this example there are five support vectors, namely, (2, 2) and (2.5, 0.75)
with class y = −1 (shown as triangles), and (3.5, 4.25), (4, 3), and (4.5, 1.75) with
class y = +1 (shown as circles), as illustrated in Figure 23.2.
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23.2 SVM: Linear and Separable Case

Given a dataset D = {xi, yi}ni=1 with xi ∈ Rd and yi ∈ {+1,−1}, let us assume
for the moment that the points are linearly separable, i.e., there exists a hyperplane
that perfectly classifies each point. In other words, all points labeled yi = +1 lie on
one side (h(x) > 0) and all points labeled yi = −1 lie on the other side (h(x) < 0)
of the hyperplane. It is obvious that in the linearly separable case, there are in fact
an infinite number of such separating hyperplanes. Which one should we choose?

Maximum Margin Hyperplane: The fundamental idea behind SVMs is to
choose the canonical hyperplane, specified by the weight vector w and the bias b,
that yields the maximum margin among all possible separating hyperplanes h(x) ≡
wTx+ b = 0. If δ∗h represents the margin for hyperplane h(x) = 0, then the goal is
to find the optimal hyperplane h∗

h∗ = argmax
h

{δ∗h} = argmax
w,b

{
1

‖w‖

}
(23.18)

The SVM task is to find the hyperplane that maximizes the margin 1
‖w‖ , subject to

the n constraints given in (23.16), namely, yi (wTxi + b) ≥ 1, for all points xi ∈ D.
Notice that instead of maximizing the margin 1

‖w‖ , we obtain an equivalent for-

mulation if we minimize ‖w‖. In fact, we can obtain an equivalent minimization
formulation given as follows

Objective Function: min
w,b

{
‖w‖2

2

}

Linear Constraints: yi (w
Txi + b) ≥ 1, ∀xi ∈ D

(23.19)

We can directly solve the above primal convex minimization problem with lin-
ear constraints using standard optimization algorithms, as outlined in Section 23.5.
However, it is more common to solve the dual problem, which is obtained via the
use of Lagrange multipliers. The main idea is to introduce a Lagrange multiplier αi

for each constraint, based on the Karush-Kuhn-Tucker (KKT) conditions

αi
(
yi(w

Txi + b)− 1
)
= 0

and αi ≥ 0
(23.20)

Incorporating all the n constraints, the new objective function, called the Lagrangian,
then becomes

min L =
1

2
‖w‖2 −

n∑

i=1

αi
(
yi(w

Txi + b)− 1
)

(23.21)

L should be minimized with respect to w and b, and it should be maximized with
respect to αi.
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Taking the derivative of L with respect to w, and b and setting those to zero, we
obtain

∂

∂w
L = w −

n∑

i=1

αiyixi = 0 or w =
n∑

i=1

αiyixi (23.22)

∂

∂b
L =

n∑

i=1

αiyi = 0 (23.23)

The above equations give important intuition about the optimal weight vector w.
Namely, w can be expressed as a linear combination of the data points xi, with the
signed Lagrange multipliers, αiyi, serving as the coefficients. Furthermore, the sum
of the signed Lagrange multipliers (αiyi) must be zero.

Plugging these into (23.21), we obtain the dual Lagrangian objective function,
which is purely in terms of the Lagrange multipliers, as follows

Ldual =
1

2
wTw −wT

( n∑

i=1

αiyixi

︸ ︷︷ ︸
w

)
− b

n∑

i=1

αiyi

︸ ︷︷ ︸
0

+
n∑

i=1

αi

= −1

2
wTw +

n∑

i=1

αi

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj (23.24)

The dual objective is thus given as

Objective Function: max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

Linear Constraints: αi ≥ 0 ∀i ∈ D, and
n∑

i=1

αiyi = 0

(23.25)

Ldual is a convex quadratic programming problem (note the αiαj terms), which can
be solved using standard optimization techniques. See Section 23.5 for a gradient-
based method for solving the dual formulation.

Weight Vector and Bias: Once we have obtained the αi values for i = 1, · · · , n,
we can solve for the weight vector w and the bias b. Note first that according to the
KKT condition (23.20), we have

αi
(
yi(w

Txi + b)− 1
)
= 0 (23.26)

which gives rise to two cases
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i) αi = 0, or

ii) yi(wTxi + b)− 1 = 0, which gives yi(wTxi + b) = 1

This is a very important result, since if αi > 0, then yi(wTxi+ b) = 1, i.e., the point
xi must be a support vector. On the other hand if yi(wTxi + b) > 1, then αi = 0,
i.e., if a point is not a support vector, then αi = 0.

Once we know αi for all points, we can compute the weight vector w using
(23.22), by taking the summation only for the support vectors

w =
∑

i,αi>0

αiyixi (23.27)

In other words, w is obtained as a linear combination of the support vectors, with
the αi’s representing the weights. The vast majority of points that are not support
vectors have αi = 0, and thus do not play a role in determining w.

To compute the bias b, we first compute one solution bi, per support vector, as
follows

αi
(
yi(w

Txi + b)− 1
)
= 0

yi(w
Txi + b) = 1

bi =
1

yi
−wTxi = yi −wTxi (23.28)

We can take b as the average bias value over all the support vectors

b = avgαi>0{bi} (23.29)

SVM Classifier: Our final SVM model is given as follows. For any new point z,
we predict the class as

ŷ = sign(wT z+ b) (23.30)

where the sign(·) function returns +1 if its argument is positive, and −1 if its
argument is negative.

Example 23.3: Let us continue with the example dataset shown in Figure 23.2.
The dataset has 14 points as shown in Table 23.1.

Solving the Ldual quadratic program yields the following values for the La-
grangian multipliers for the support vectors

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0437
x2 4 3 +1 0.2162
x4 4.5 1.75 +1 0.1427
x13 2 2 −1 0.3589
x14 2.5 0.75 −1 0.0437
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xi xi1 xi2 yi
x1 3.5 4.25 +1
x2 4 3 +1
x3 4 4 +1
x4 4.5 1.75 +1
x5 4.9 4.5 +1
x6 5 4 +1
x7 5.5 2.5 +1
x8 5.5 3.5 +1
x9 0.5 1.5 −1
x10 1 2.5 −1
x11 1.25 0.5 −1
x12 1.5 1.5 −1
x13 2 2 −1
x14 2.5 0.75 −1

Table 23.1: Dataset corresponding to Figure 23.2

All other points are not support vectors, so they have αi = 0. Using (23.27) we
can compute the weight vector for the hyperplane

w =
∑

i,αi>0

αiyixi

= 0.0437

(
3.5
4.25

)
+ 0.2162

(
4
3

)
+ 0.1427

(
4.5
1.75

)
− 0.3589

(
2
2

)
− 0.0437

(
2.5
0.75

)

=

(
0.833
0.334

)

We can compute the final bias as the average of the bias obtained from each support
vector using (23.28)

xi wTxi bi = yi −wTxi

x1 4.332 −3.332
x2 4.331 −3.331
x4 4.331 −3.331
x13 2.333 −3.333
x14 2.332 −3.332
b = avg{bi} −3.332

Thus the optimal hyperplane is given as follows

h(x) =

(
0.833
0.334

)T

x− 3.332 = 0 (23.31)
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This is essentially the same as the canonical hyperplane we found in (23.17) in
Example 23.2. The bias is slightly different due to numerical issues.

23.3 Soft Margin SVM: Linear and Non-Separable Case

So far we have assumed that the dataset is perfectly linearly separable. Here we
consider the case where the classes overlap to some extent so that a perfect separation
is not possible, as depicted in Figure 23.3.
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h
(x
)
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0

1
‖w‖

1
‖w‖

Figure 23.3: Soft Margin Hyperplane: The shaded points are the support vectors.

SVMs can handle such a set of points with overlapping classes by introducing
slack variables ξi in (23.16), as follows

yi(w
Txi + b) ≥ 1− ξi (23.32)

Here ξi ≥ 0 is the slack variable for point xi. First note that if ξi = 0, then the point
is treated the same way as before. In other words that point is at least 1

‖w‖ away
from the hyperplane. If 0 < ξi < 1, then the point is still correctly classified, since it
will remain on the correct side of the hyperplane. However, if ξi ≥ 1 then the point
is misclassified, since in this case it appears on the wrong side of the hyperplane.
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In the non-separable case, also called the soft margin case, the goal of SVM
classification is to find the hyperplane with the maximum margin, that also minimizes
the slack terms. The new objective function is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+ C

n∑

i=1

(ξi)
k

}

Linear Constraints: yi (w
Txi + b) ≥ 1− ξi, ∀xi ∈ D

ξi ≥ 0 ∀xi ∈ D

(23.33)

where C and k are constants that incorporate the cost of misclassification. The
term

∑n
i=1(ξi)

k gives the loss, i.e., an estimate of the deviation from the separable
case. C, which is chosen empirically, is a regularization constant that controls the
trade-off between maximizing the margin (corresponding to minimizing ‖w‖2 /2) or
minimizing the loss (corresponding to minimizing the slack terms

∑n
i=1(ξi)

k). For
example, if C → 0, then the loss component essentially disappears, and the objective
defaults to maximizing the margin. On the other hand, if C →∞, then the margin
ceases to have much effect, and the objective function tries to minimize the loss. The
constant k governs the form of the loss. Typically k is set to 1 or 2. When k = 1,
called hinge loss, the goal is to minimize the sum of the slack variables, whereas
when k = 2, called quadratic loss, the goal is to minimize the sum of the squared
slack variables.

23.3.1 Hinge Loss

Assuming that k = 1, we can compute the Lagrangian for the optimization problem
(23.33) by introducing Lagrange multipliers αi and βi as follows

αi
(
yi(w

Txi + b)− 1 + ξi
)
= 0 with αi ≥ 0 (23.34)

βi(ξi − 0) = 0 with βi ≥ 0 (23.35)

The Lagrangian is then given as

L =
1

2
‖w‖2 + C

n∑

i=1

ξi −
n∑

i=1

αi
(
yi(w

Txi + b)− 1 + ξi
)
−

n∑

i=1

βiξi (23.36)

We turn this into a dual Lagrangian by taking its partial derivative with respect
to w, b and ξi, and setting those to zero, as follows

∂

∂w
L = w −

n∑

i=1

αiyixi = 0 or w =
n∑

i=1

αiyixi (23.37)

∂

∂b
L =

n∑

i=1

αiyi = 0 (23.38)

∂

∂ξi
L = C − αi − βi = 0 or βi = C − αi (23.39)
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Plugging these values into (23.36), we get

Ldual =
1

2
wTw −wT

( n∑

i=1

αiyixi

︸ ︷︷ ︸
w

)
− b

n∑

i=1

αiyi

︸ ︷︷ ︸
0

+
n∑

i=1

αi + C
n∑

i=1

ξi −
n∑

i=1

(αi + βi)ξi

= −1

2
wTw +

n∑

i=1

αi + C
n∑

i=1

ξi −
n∑

i=1

(αi + C − αi)ξi

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

(23.40)

The dual objective is thus given as

Objective Function: max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

Linear Constraints: 0 ≤ αi ≤ C, ∀i ∈ D and
n∑

i=1

αiyi = 0

(23.41)

Notice that (23.41) is exactly the same as the dual Lagrangian in the linearly sep-
arable case (23.25). The only difference is the constraint on each αi, since we now
require that αi + βi = C, which implies that 0 ≤ αi ≤ C. Section 23.5 describes a
gradient ascent approach for solving the dual objective function.

Weight Vector and Bias: Once we solve for αi, we have the same situation as
before, namely, αi = 0 for points that are not support vectors, and αi ≥ 0 only for
the support vectors, which comprise all points xi for which we have

yi(w
Txi + b) = 1− ξi (23.42)

Notice that the support vectors now include all points that are on the margin, which
have zero slack (ξi = 0), as well as all points with positive slack (ξi > 0).

We can obtain the weight vector as before

w =
∑

i,αi>0

αiyixi (23.43)

We can also solve for the βi using (23.39)

βi = C − αi (23.44)

Replacing βi in the KKT condition (23.35), with the expression from above, we
obtain

(C − αi)ξi = 0 (23.45)

Thus for the support vectors with αi > 0, we have two cases to consider
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a) C − αi = 0, or αi = C

b) C−αi > 0, or αi < C. In this case, due to (23.45), we must have ξi = 0. In other
words, these are precisely those support vectors that are on the margin. Using
these, we can solve for bi as follows

αi
(
yi(w

Txi + bi)− 1
)
= 0

yi(w
Txi + bi) = 1

bi = yi −wTxi (23.46)

To obtain the final bias b, we can take the average over all the bi values from
above.

The final SVM model predicts the class for a new point z as follows

ŷ = sign(wT z+ b) (23.47)

Example 23.4: Let us consider the data points shown in Figure 23.3. There are
four new points in addition to the 14 we considered in Example 23.3, namely

xi xi1 xi2 yi
x15 4 2 +1
x16 2 3 +1
x17 3 2 −1
x18 5 3 −1

Let k = 1 and C = 1, then solving the Ldual yields the following support vectors
and the Lagrangian values αi

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0271
x2 4 3 +1 0.2162
x4 4.5 1.75 +1 0.9928
x13 2 2 −1 0.9928
x14 2.5 0.75 −1 0.2434
x15 4 2 +1 1
x16 2 3 +1 1
x17 3 2 −1 1
x18 5 3 −1 1

All other points are not support vectors, so they have αi = 0. Using (23.43) we
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can compute the weight vector for the hyperplane

w =
∑

i,αi>0

αiyixi

= 0.0271

(
3.5
4.25

)
+ 0.2162

(
4
3

)
+ 0.9928

(
4.5
1.75

)
− 0.9928

(
2
2

)

− 0.2434

(
2.5
0.75

)
+

(
4
2

)
+

(
2
3

)
−
(
3
2

)
−
(
5
3

)

=

(
0.834
0.333

)

We can compute the final bias as the average of the biases obtained from each
support vector using (23.46). Note that we compute the per-point bias only for
the support vectors that lie precisely on the margin. These support vectors have
ξi = 0 and have 0 < αi < C. Put another way, we do not compute the bias for
support vectors with αi = C = 1, which include the points x15, x16, x17, and x18.
From the remaining support vectors, we get

xi wTxi bi = yi −wTxi

x1 4.334 −3.334
x2 4.334 −3.334
x4 4.334 −3.334
x13 2.334 −3.334
x14 2.334 −3.334
b = avg{bi} −3.334

Thus the optimal hyperplane is given as follows

h(x) =

(
0.834
0.333

)T

x− 3.334 = 0 (23.48)

One can see that this is essentially the same as the canonical hyperplane we found
in (23.3).

It is instructive to see what the slack variables are in this case. Note that ξi = 0
for all points that are not support vectors, and also for those support vectors that
are on the margin. So the slack is positive only for the remaining support vectors,
for whom the slack can be computed directly from (23.42), as follows

ξi = 1− yi(w
Txi + b)

Thus, for all support vectors not on the margin, we obtain

xi wTxi wTxi + b ξi = 1− yi(wTxi + b)
x15 4.001 0.667 0.333
x16 2.667 −0.667 1.667
x17 3.167 −0.167 0.833
x18 5.168 1.834 2.834
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As expected the slack variable ξi > 1 for those points that are misclassified (i.e.,
are on the wrong side of the hyperplane), namely x16 = (3, 3) and x18 = (5, 3).
The other two points are correctly classified, but lie within the margin, and thus
satisfy 0 < ξi < 1. The total slack is then given as

∑

i

ξi = ξ15 + ξ16 + ξ17 + ξ18 = 0.333 + 1.667 + 0.833 + 2.834 = 5.667

23.3.2 Quadratic Loss

For quadratic loss, we have k = 2 in the objective function (23.33). Notice that for
quadratic loss, we can drop the positivity constraint ξi ≥ 0. This is because, if ξi < 0
is replaced by ξi = 0, then the constraint yi(wTxi + b) ≥ 1− ξi is still satisfied, and
at the same time, ξi = 0 leads to a smaller value of the primary objective C

∑n
i=1 ξ

2
i .

Thus the optimal solution of (23.33) coincides with the revised objective

Objective Function: min
w,b,ξi

{
‖w‖2

2
+ C

n∑

i=1

ξ2i

}

Linear Constraints: yi (w
Txi + b) ≥ 1− ξi, ∀xi ∈ D

(23.49)

The Lagrangian is given as

L =
1

2
‖w‖2 + C

n∑

i=1

ξ2i −
n∑

i=1

αi
(
yi(w

Txi + b)− 1 + ξi
)

(23.50)

Differentiating with respect to w, b, and ξi gives the following conditions, respectively

w =
n∑

i=1

αiyixi

n∑

i=1

αiyi = 0

ξi =
1

2C
αi

Substituting these back into (23.50) yields the dual objective

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj −

1

4C

n∑

i=1

α2
i

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj

(
xT
i xj +

1

2C
δij

)
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where δ is the kronecker delta function, defined as δij = 1 if i = j, and δij = 0
otherwise. Thus the dual objective is given as

max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj

(
xT
i xj +

1

2C
δij

)

subject to the constraints αi ≥ 0,∀i ∈ D, and
n∑

i=1

αiyi = 0

(23.51)

Once we solve for αi using the methods from Section 23.5, we can recover the weight
vector and bias as follows

w =
∑

i,αi>0

αiyixi

b = avgi,αi>0

{
yi −wTxi

}

23.4 Kernel SVM: Nonlinear Case

0

1

2

3

4

5

0 1 2 3 4 5 6 7

Figure 23.4: Nonlinear SVM: Shaded points are the support vectors.

In this section we will describe how to apply the linear SVM approach to solve
problems with a non-linear decision boundary. This can be achieved via the kernel
trick from Chapter 5. Conceptually, the idea is to map the original d-dimensional
points xi in the input space, to points φ(xi) in a high-dimensional feature space via
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some non-linear transformation φ. Given the extra flexibility, it is more likely that
the points φ(xi) might be linearly separable in the feature space. Note however that
the linear decision surface in the feature space actually corresponds to a non-linear
decision surface in the input space.

Example 23.5: Consider the set of points shown in Figure 23.4. There is no linear
classifier that can discriminate between the points. However, there exists a perfect
quadratic classifier that can separate the two classes. That is, given the input space
over the two dimensions X1 and X2, if we transform each point x = (x1, x2)T into
a point in the feature space consisting of the dimensions (X1,X2,X2

1 ,X
2
2 ,X1X2),

via the transformation φ(x) = (
√
2x1,
√
2x2, x21, x

2
2,
√
2x1x2)T , then it is possible

to find a linearly separable hyperplane in the feature space. For this dataset, it
is possible to map the hyperplane back to the input space, where it is seen as
an ellipse (thick black line) that separates the two classes (shown as circles and
triangles). The support vectors are those points (shown in gray) that lie on the
margin (dashed ellipses).

To apply the kernel trick for non-linear SVM classification, we have to show that
all operations require only the kernel function

K(xi,xj) = φ(xi)
Tφ(xj) (23.52)

Let the original database be given as D = {xi, yi}ni=1. Applying φ to each point, we
can obtain the new dataset in the feature space Dφ = {φ(xi), yi}ni=1.

The objective function (23.33) in the feature space is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+ C

n∑

i=1

(ξi)
k

}

Linear Constraints: yi (w
Tφ(xi) + b) ≥ 1, ∀xi ∈ D

(23.53)

where w is the weight vector, and ξi are the slack variables, all in feature space.

Hinge Loss: For hinge loss, we can set up the dual Lagrangian (23.41) as follows

max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjφ(xi)
Tφ(xj)

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj)

(23.54)

Subject to the constraints that 0 ≤ αi ≤ C, and
∑n

i=1 αiyi = 0. Notice that the dual
Lagrangian depends only on the dot product between two vectors in the feature space
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φ(xi)Tφ(xj) = K(xi,xj), and thus we can solve the optimization problem using the
kernel matrix K = {K(xi,xj)}i,j=1,...,n. Section 23.5 describes a stochastic gradient
descent approach for solving the dual objective function.

Quadratic Loss: For quadratic loss, the dual Lagrangian (23.51) corresponds to
a change of kernel. Define a new kernel function K ′, as follows

K ′(xi,xj) = xT
i xj +

1

2C
δij = K(xi,xj) +

1

2C
δij (23.55)

which affects only the diagonal entries of the kernel matrix K. Thus the dual La-
grangian is given as

max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK
′(xi,xj) (23.56)

subject to the constraints that αi ≥ 0, and
∑n

i=1 αiyi = 0. The above optimization
can be solved using the same approach as for hinge loss, with a simple change of
kernels.

Weight Vector and Bias: We can solve for w in the feature space as follows

w =
∑

αi>0

αiyiφ(xi) (23.57)

Since w uses φ(xi) directly, in general, we may not be able or willing to compute w

explicitly. However, as we shall see next, it is not necessary to explicitly compute w

for classifying the points.
Let us first see how to compute the bias via only kernel operations. We compute

b as the average over the support vectors

b =
1

nsv

(
∑

αi>0

yi −
∑

αi>0

wTφ(xi)

)

(23.58)

where nsv is the number of support vectors with αi > 0. Substituting w from above,
we obtain the new expression for b as

b =
1

nsv




∑

αi>0

yi −
∑

αi>0

∑

αj>0

αiyiφ(xi)
Tφ(xj)





=
1

nsv




∑

αi>0

yi −
∑

αi>0

∑

αj>0

αiyiK(xi,xj)



 (23.59)

Notice that b is also a function of the dot product between two vectors in the feature
space φ(xi)Tφ(xj) = K(xi,xj).
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Classifier: Finally, we can predict the class for a new point z as follows

ŷ = sign(wTφ(z) + b)

= sign

(
∑

αi>0

αiyiφ(xi)
Tφ(z) + b

)

= sign

(
∑

αi>0

αiyiK(xi, z) + b

)

(23.60)

Once again we see that ŷ uses only the dot product in feature space.
Based on the above derivation, it is clear that to train and test the SVM classifier,

φ(xi) is never needed in isolation. Instead, all operations can be carried out purely
in terms of the kernel function K(xi,xj) = φ(xi)Tφ(xj). Thus any non-linear kernel
function can be used to do non-linear classification in the input space. Examples of
such non-linear kernels include the polynomial kernel (??), and the Gaussian kernel
(5.12), among others.

Example 23.6: Let us consider the example dataset shown in Figure 23.4. The
dataset has 29 points in total. With C = 4, and a polynomial kernel (??) of degree
q = 2, solving the Ldual quadratic program yields six support vectors, shown as
the shaded (gray) points in Figure 23.4.

xi (xi1, xi2) φ(xi) yi αi

x1 (1, 2) (1, 1.41, 2.83, 1, 4, 2.83) +1 0.6198
x2 (4, 1) (1, 5.66, 1.41, 16, 1, 5.66) +1 2.069
x3 (6, 4.5) (1, 8.49, 6.36, 36, 20.25, 38.18) +1 3.803
x4 (7, 2) (1, 9.90, 2.83, 49, 4, 19.80) +1 0.3182
x5 (4, 4) (1, 5.66, 5.66, 16, 16, 15.91) −1 2.9598
x6 (6, 3) (1, 8.49, 4.24, 36, 9, 25.46) −1 3.8502

The quadratic polynomial kernel is given as

K(xi,xj) = φ(xi)
Tφ(xj) = (1 + xT

i xj)
2

where the transformation φ is given as

φ(x = (x1, x2)) = (1,
√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2)

The table above shows all the transformed points. For example,

x1 = (1, 2)T

is transformed into

φ(xi) = (1,
√
2 · 1,

√
2 · 2, 12, 22,

√
2 · 1 · 2) = (1, 1.41, 2.83, 1, 2, 2.83)T
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We can compute the weight vector for the hyperplane using (23.57)

w =
∑

i,αi>0

αiyiφ(xi) =





0
−1.413
−3.298
0.256
0.82
−0.018





The bias can be computed by using (23.59)

b = −8.841

Given the hyperplane in the transformed space φ(xi1, xi2) =
(1,
√
2xi1,

√
2xi2, x2i1, x

2
i2,
√
2xi1xi2), how do we map the discriminant back

to the original space? Noting that the discriminant in the original space corre-
sponds to an ellipse, we can compute the coordinates of the center as well as the
values for the semimajor and semiminor axes of the ellipse. For our example, the
center is given as (4.046, 2.907), and the semimajor axis is 2.78 and the semiminor
axis is 1.55. These values were used to plot the discriminant in Figure 23.4.

In this example we explicitly transformed all the points into the feature space
just for illustration purposes. The kernel trick allows us to achieve the same goal
using only the kernel function. Further, in this example, we explicitly computed
the weight vector w to illustrate the steps. However, depending on the kernel
function, in general, it may not be possible to explicitly compute w.

23.5 SVM Training Algorithms

We now turn our attention to algorithms for solving the SVM optimization problems.
We will consider simple optimization approaches for solving the dual as well as the
primal formulations. It is important to note that these methods are not the most
efficient to solve the SVM optimization problem. However, since they are relatively
simple, they can serve as a starting point for more sophisticated methods.

For the SVM algorithms in this section, instead of dealing explicitly with the
bias b, we map each point xi ∈ Rd to the point x′

i ∈ Rd+1 as follows

x′
i = (xi1, · · · , xid, 1)T (23.61)

Furthermore, we also map the weight vector to Rd+1, with wd+1 = b, so that

w = (w1, · · · , wd, b)
T (23.62)
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The equation of the hyperplane (23.1) is then given as follows

h(x′) : wTx′ = 0 (23.63)

=⇒ h(x′) :
(
w1 · · · wd b

)





xi1
...

xid
1




= 0

=⇒ h(x′) : w1xi1 + · · ·+ wdxid + b = 0

In the discussion below we assume that the bias has been included into w, and
that each point has been mapped to Rd+1 as given in (23.61) and (23.62). Thus,
the last component of w will yields the bias b. Another consequence of mapping the
points to Rd+1 is that the constraint

∑n
i=1 αiyi = 0 doesn’t apply in the SVM dual

formulations given in (23.41), (23.51), (23.54), and (23.56). This is because there
is no explicit bias term b in the linear constraints given in (23.42). The new set of
constraints is given as

yiw
Tx ≥ 1− ξi (23.64)

23.5.1 Dual Solution: Stochastic Gradient Ascent

We consider only the hinge loss case, since quadratic loss can be handled by a change
of kernel, as shown in (23.56). The dual optimization objective for hinge loss (23.54)
is given as

maxJ(α) =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj) (23.65)

subject to the constraints 0 ≤ αi ≤ C for all i = 1, · · · , n.
Let us consider the terms in J(α) that involve the Lagrange multiplier αk

J(αk) = αk −
1

2
α2
ky

2
kK(xk,xk)− αkyk

n∑

i=1
i &=k

αiyiK(xi,xk) (23.66)

The gradient at α is given as

∇J(α) =

(
∂J(α)

∂α1
,
∂J(α)

∂α2
, · · · , ∂J(α)

∂αn

)T

(23.67)

where the k-th component of the gradient is given as follows

∂J(α)

∂αk
=

∂J(αk)

∂αk
= 1− yk

(
n∑

i=1

αiyiK(xi,xk)

)

(23.68)
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Since we want to maximize the objective function J(α), we should move in the
direction of the gradient ∇J(α). Starting from an initial α, the gradient ascent
approach successively updates it as follows

αt+1 = αt + ηt∇J(αt) (23.69)

Instead of updating the entire α vector in each step, in the stochastic gradient
ascent approach, we can instead update each component independently, and imme-
diately use the new values to update other components. This can result in faster
convergence. The update rule for the k-th component is given as

α′
k = αk + ηk

∂J(α)

∂αk

= αk + ηk

(

1− yk

n∑

i=1

αiyiK(xi,xk)

)

(23.70)

We also have to ensure that the constraints αk ∈ [0, C]. Thus in the update step
above, if αk < 0 we reset it so that αk = 0, and if αk > C we reset it so that αk = C.
The stochastic gradient ascent algorithm is given in Algorithm 23.1.

In Algorithm 23.1 we have to determine the step size ηk for αk. Ideally, we would
like to choose a step size so that the k-th component of the gradient at α′

k goes to
zero. This happens when

ηk =
1

K(xk,xk)
(23.71)

To see why, note that when only α′
k is updated, the other αi do not change. Thus

the new α′ has a change only in α′
k, and we get

∂J(α′)

∂αk
=

(
1− yk

∑

i &=k

αiyiK(xi,xk)

)
− ykα

′
kykK(xk,xk)

plugging in the value of α′
k from (23.70), we have

∂J(α′)

∂αk
=

(
1− yk

∑

i &=k

αiyiK(xi,xk)

)
−
(
αk + ηk

(
1− yk

n∑

i=1

αiyiK(xi,xk)
))

K(xk,xk)

=

(
1− yk

n∑

i=1

αiyiK(xi,xk)

)
− ηkK(xk,xk)

(
1− yk

n∑

i=1

αiyiK(xi,xk)

)

=
(
1− ηkK(xk,xk)

)(

1− yk

n∑

i=1

αiyiK(xi,xk)

)
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Algorithm 23.1: Dual SVM Algorithm: Stochastic Gradient Ascent

SVM-DUAL (D,K,C, ε):

foreach xi ∈ D do xi ←
(
xi

1

)
// map to Rd+1

1

if loss = hinge then2

K← {K(xi,xj)}i,j=1,...,n // kernel matrix, hinge loss3

else if loss = quadratic then4

K← {K(xi,xj) +
1
2C δij}i,j=1,...,n // kernel matrix, quadratic loss5

for k = 1, · · · , n do ηk ← 1
K(xk,xk)

// set step size6

t← 07

α0 ← (0, . . . , 0)T8

repeat9

α← αt10

for k = 1 to n do11

// update k-th component of α

αk ← αk + ηk
(
1− yk

n∑

i=1

αiyiK(xi,xk)
)

12

if αk < 0 then αk ← 013

if αk > C then αk ← C14

αt+1 = α15

t← t+ 116

until ‖αt −αt−1‖ ≤ ε17

substituting ηk from (23.71), we have

∂J(α′)

∂ak
=

(
1− 1

K(xk,xk)
K(xk,xk)

)(

1− yk

n∑

i=1

αiyiK(xi,xk)

)

= 0

Thus in Algorithm 23.1, for better convergence, we choose ηk according to (23.71).
Since the above description assumes a general kernel function between any two
points, we can recover the linear, non-separable case by simply setting K(xi,xj) =
xT
i xj .

Example 23.7 (Dual SVM: Linear Kernel): Figure 23.5 shows the n = 150
points from the Iris dataset, using sepal length and sepal width as the two
attributes. The goal is to discriminate between Iris-setosa (shown as circles)
and other types of iris flowers (shown as triangles). Algorithm 23.1 was used to
train the SVM classifier with a linear kernel K(xi,xj) = xT

i xj and ε = 0.0001,
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Figure 23.5: SVM Dual Algorithm with Linear Kernel

with hinge loss. Two different values of C were used; hyperplane h10 uses C = 10,
whereas h1000 uses C = 1000, specified as as follows

h10(x) :2.74x1 − 3.74x2 − 3.09 = 0

h1000(x) :8.56x1 − 7.14x2 − 23.12 = 0

h10 has a larger margin, but also has a larger slack; it misclassifies one of the
circles. h1000 has a smaller margin, but it also minimizes the slack; it is a separating
hyperplane. In other words, the higher the value of C the more the emphasis on
minimizing the slack.

Example 23.8 (Dual SVM: Quadratic Kernel): Figure 23.6 shows the n =
150 points from the Iris dataset projected on the first two principal components
(u1,u2). The task is to separate Iris-versicolor (in circles) from the other two
types of irises (in triangles). The figure plots the decision boundaries obtained when
using the linear kernel K(xi,xj) = xT

i xj , and the homogeneous quadratic kernel
K(xi,xj) = (xT

i xj)2, where xi ∈ Rd+1, as per (23.61). The optimal hyperplane
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in both cases was found via the gradient ascent approach in Algorithm 23.1, with
C = 10, ε = 0.0001 and using hinge loss.

The optimal hyperplane hl (shown in gray) for the linear kernel is given as

hl(x) : 0.16x1 + 1.9x2 + 0.8 = 0

As expected, hl is unable to separate the classes. On the other hand, the optimal
hyperplane hq (shown as clipped black ellipse) for the quadratic kernel is given as

hq(x) :w
Tφ(x) = 0
(
1.86, 1.32, 0.099, 0.85,−0.87,−3.25

) (
x21,
√
2x1x2,

√
2x1, x22,

√
2x2, 1

)T
= 0

1.86x21 + 1.87x1x2 + 0.14x1 + 0.85x22 − 1.22x2 − 3.25 = 0

hq is able to separate the two classes quite well.

−1.5
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hq

Figure 23.6: SVM Dual Algorithm with Quadratic Kernel

23.5.2 Primal Solution: Newton Optimization

The dual approach is the one most commonly used to train SVMs, but it is also
possible to train using the primal formulation.
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Consider the primal optimization function for the linear, but non-separable case
(23.33). With w,xi ∈ Rd+1 as discussed above, we have to minimize the objective
function

min J(w) =
1

2
‖w‖2 + C

n∑

i=1

(ξi)
k (23.72)

subject to the linear constraints

yi (w
Txi) ≥ 1− ξi and ξi ≥ 0 for all i = 1, · · · , n (23.73)

Rearranging the above, we obtain an expression for ξi

ξi ≥ 1− yi (w
Txi) and ξi ≥ 0

=⇒ ξi = max
(
0, 1− yi (w

Txi)
)

(23.74)

Plugging (23.74) into the objective function (23.72), we obtain

J(w) =
1

2
‖w‖2 + C

n∑

i=1

max
(
0, 1 − yi (w

Txi)
)k

=
1

2
‖w‖2 + C

∑

yi(wTxi)<1

(
1− yi(w

Txi)
)k

(23.75)

The last step follows from the fact that ξi > 0 if and only if 1 − yi(wTxi) > 0,
i.e., yi(wTxi) < 1. Unfortunately, the hinge loss formulation, with k = 1, is not
differentiable. One could use a differentiable approximation to the hinge loss, but
here we describe the quadratic loss formulation.

Quadratic Loss For quadratic loss, we have k = 2, and the primal objective can
be written as

J(w) =
1

2
‖w‖2 + C

∑

yi(wTxi)<1

(
1− yi(w

Txi)
)2

The gradient, or the rate of change in the objective function at w, is given as the
partial derivative of J(w) with respect to w

∇w =
∂J(w)

∂w
= w − 2C

(∑

yi(wTxi)<1

yixi
(
1− yi(w

Txi)
))

= w − 2C
(∑

yi(wTxi)<1

yixi

)
+ 2C

(∑

yi(wTxi)<1

xix
T
i

)
w

= w − 2Cv + 2CSw (23.76)
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where the vector v and the matrix S are given as

v =
∑

yi(wTxi)<1

yixi

S =
∑

yi(wTxi)<1

xix
T
i

Furthermore, the Hessian matrix, defined as the second-order partial derivatives of
J(w) with respect to w, is given as

Hw =
∂∇w

∂w
= I+ 2CS

Since we want to minimize the objective function J(w), we should move in the
direction opposite to the gradient. The Newton optimization update rule for w is
given as

wt+1 = wt − ηtH
−1
wt
∇wt (23.77)

where ηt > 0 is a scalar value denoting the step size at iteration t. Normally one
needs to use a line search method to find the optimal step size ηt, but the default
value of ηt = 1 usually works for the quadratic loss.

Algorithm 23.2: Primal SVM Algorithm: Newton Optimization, Quadratic
Loss

SVM-PRIMAL (D, C, ε):
foreach xi ∈ D do1

xi ←
(
xi

1

)
// map to Rd+1

2

t← 03

w0 ← (0, . . . , 0)T // initialize wt ∈ Rd+1
4

repeat5

v←
∑

yi(wT
t xi)<1

yixi

6

S←
∑

yi(wT
t xi)<1

xix
T
i

7

∇ ← (I+ 2CS)wt − 2Cv // gradient8

H← I+ 2CS // Hessian9

wt+1 ← wt − ηtH−1∇ // Newton update rule (23.77)10

t← t+ 111

until ‖wt −wt−1‖ ≤ ε12

The Newton optimization algorithm for training a linear, non-separable SVMs
in the primal is given in Algorithm 23.2. The step size ηt is set to 1 by default.
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After computing the gradient and Hessian at wt (lines 6–9), the Newton update rule
obtains the new weight vector wt+1 (line 10). The iterations continue until there is
very little change in the weight vector.
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Figure 23.7: SVM Primal Algorithm with Linear Kernel

Example 23.9 (Primal SVM): Figure 23.7 plots the hyperplanes obtained us-
ing the dual and primal approaches for the Iris dataset (sepal length versus sepal
width). We used C = 1000 and ε = 0.0001, with the quadratic loss function. The
dual solution hd (gray line) and the primal solution hp (thick black line) are as
follows

hd(x) :7.47x1 − 6.34x2 − 19.89 = 0

hp(x) :7.47x1 − 6.34x2 − 19.91 = 0

The dual and primal solutions are essentially identical.

Primal Kernel SVMs

In the discussion above we considered the linear, non-separable case for SVM learn-
ing. We now generalize the primal approach to learn kernel-based SVMs, again for
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quadratic loss.
Let φ denote a mapping from the input space to the feature space; each input

point xi is mapped to the feature point φ(xi). Let K(xi,xj) denote the kernel
function, and let ω denote the weight vector in feature space. The hyperplane in
feature space is then given as

h(φ(x)) : ωTφ(x) = 0 (23.78)

Using (23.53) and (23.74), the primal objective function in feature space can be
written as

min J(ω) =
1

2
‖ω‖2 +C

n∑

i=1

L(yi, h(xi)) (23.79)

where L is the loss function L = max(0, 1 − yih(xi))k.
The gradient at ω is given as

∇ω = ω + C
n∑

i=1

∂L(yi, h(xi))

∂h(xi)
· ∂h(xi)

∂ω
(23.80)

where

∂h(xi)

∂ω
=

∂ωTφ(xi)

∂ω
= φ(xi) (23.81)

At the optimal solution, the gradient vanishes, i.e., ∇J(ω) = 0, which yields

ω = −C
n∑

i=1

∂L(yi, h(xi))

∂h(xi)
· φ(xi)

=
n∑

i=1

βiφ(xi) (23.82)

where βi is the coefficient of the point φ(xi) in feature space. In other words, the
optimal weight vector in feature space is expressed as a linear sum of the points
φ(xi) in feature space.

Using (23.82), the distance to the hyperplane in feature space can be expressed
as

yih(xi) = yiω
Tφ(xi) = yi

n∑

j=1

βjK(xj ,xi) = yiK
T
i β (23.83)

where K = {K(xi,xj)}ni,j=1 is the n× n kernel matrix, Ki is the i-th column of K,

and β =
(
β1, · · · ,βn

)T
is the coefficient vector.
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Plugging (23.82) and (23.83) into (23.79), with quadratic loss (i.e., k = 2), yields
the primal kernel SVM formulation purely in terms of the kernel matrix

min J(β) =
1

2

n∑

i=1

n∑

j=1

βiβjK(xi,xj) + C
n∑

i=1

max(0, 1 − yiK
T
i β)

2

=
1

2
βTKβ + C

∑

yiKT
i β<1

(1− yiK
T
i β)

2 (23.84)

The gradient of (23.84) with respect to β can be computed as

∇β =
∂J(β)

∂β
= Kβ − 2C

∑

yiKT
i β<1

yiKi(1− yiK
T
i β)

= Kβ + 2C
∑

yiKT
i β<1

(KiK
T
i ) β − 2C

∑

yiKT
i β<1

yiKi (23.85)

= (K+ 2CS)β − 2Cv (23.86)

where the vector v ∈ Rn and the matrix S ∈ Rn×n are given as

v =
∑

yiKT
i β<1

yiKi

S =
∑

yiKT
i β<1

KiK
T
i

Furthermore, the Hessian matrix is given as

Hβ =
∂∇β

∂β
= K+ 2CS

We can now minimize J(β) by Newton optimization using the following update
rule

βt+1 = βt − ηtH
−1
β ∇β (23.87)

Note that if H is singular, i.e., if it does not have an inverse, then we add a small
ridge to the diagonal to regularize it. That is, we make H invertible as follows

Hβ = Hβ + λI

where λ > 0 is some small positive ridge value.
Once β has been found, it is easy to classify any test point z as follows

ŷ = sign
(
ωTφ(z)

)

= sign

(
n∑

i=1

βiφ(xi)
Tφ(z)

)

= sign

(
n∑

i=1

βiK(xi, z)

)

= sign(βTKz) (23.88)
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where Kz is the column vector of the kernel function of each point xi with the test
point z.

Algorithm 23.3: Primal Kernel SVM Algorithm: Newton Optimization,
Quadratic Loss

SVM-PRIMAL-KERNEL (D,K,C, ε):
foreach xi ∈ D do1

xi ←
(
xi

1

)
// map to Rd+1

2

K← {K(xi,xj)}i,j=1,...,n // compute kernel matrix3

t← 04

β0 ← (0, . . . , 0)T // initialize βt ∈ Rn
5

repeat6

v←
∑

yi(KT
i βt)<1

yiKi

7

S←
∑

yi(KT
i βt)<1

KiK
T
i

8

∇ ← (K+ 2CS)βt − 2Cv // gradient9

H← K+ 2CS // Hessian10

βt+1 ← βt − ηtH−1∇ // Newton update rule11

t← t+ 112

until ‖βt − βt−1‖ ≤ ε13

The Newton optimization algorithm for kernel SVM in the primal is given in
Algorithm 23.3. The step size ηt is set to 1 by default, as in the linear case. In each
iteration, the method first computes the gradient and Hessian (lines 7–10). Next,
the Newton update rule is used to obtain the updated coefficient vector βt+1 (line
11). The iterations continue until there is very little change in β.

Example 23.10 (Primal SVM: Quadratic Kernel): Figure 23.8 plots the hy-
perplanes obtained using the dual and primal approaches on the Iris dataset pro-
jected onto the first two principal components. The task is to separate iris

versicolor from the others, the same as in Example 23.8. Since a linear ker-
nel is not suitable for this task, we employ the quadratic kernel. We further set
C = 10 and ε = 0.0001, with the quadratic loss function. The dual solution hd
(black contours) and the primal solution hp (gray contours) are as follows

hd(x) :1.4x
2
1 + 1.34x1x2 − 0.05 ∗ x1 + 0.66x22 − 0.96 ∗ x2 − 2.66 = 0

hp(x) :0.87x
2
1 + 0.64x1x2 − 0.5x1 + 0.43x22 − 1.04 ∗ x2 − 2.398 = 0
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Figure 23.8: SVM Quadratic Kernel: Dual and Primal

While the solutions are not identical, they are close, especially on the left decision
boundary.
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